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Abstract. The mathematical apparatus of simulation 
diffraction by spiral nanotubes of arbitrary chemical 
composition, whose structure is described with the use of 
Bravais cells, is developed. The case of electron 
microdiffraction by a single nanotube is considered, the 
distributions of intensity in layer planes and lengthways 
layer lines are calculated. 
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1. Introduction 

Over the last 50 years, the development of 
structural analysis of nanotubes by diffraction methods 
has been dedicated, mainly, to nanotubes of coaxial type: 
chiral and nonchiral nanotubes [1-3]. However, it seems 
obvious that the best part of synthesized nanotubes belong 
to spiral type: they represent cone structure or roll, when 
the cone angle is zero [4]. Therefore, the necessity for 
development of structural analysis of these abundant types 
of nanotubes is driven by further progress of nano-
technology. 

The first efforts in investigation of diffraction by 
spiral structures were related with two works of the 
middle of the last century: theoretical study performed by 
Jagodzinski and Kunze [5] and Whittaker’s simulative 
optical experiments [6]. Jagodzinski and Kunze tried to 
solve the problem of describing spiral structure by 
approximation of spiral lattice by semi cylindrical layers. 
It is obvious that such approximation is quite rough, and 
diffraction from this structure will resemble diffraction 
from a cylindrical tube rather than from spiral. 

Whittaker’s simulative optical experiments made 
significant contributions to the investigation of spiral 
structures. In this experiments Whittaker performed 
comparison study of diffraction from artificial two-

dimensional models of coaxial and spiral lattices. Due to 
impossibility of making real models of cylindrical lattices 
(because of small dimensions of the nanotube), Whittaker 
transferred experiment to larger dimensions – to the range 
of visible light. Thus, he scaled up the size of artificial 
models of cylindrical lattices (masks) in accordance with 
wave length increasing (in comparison with X-rays). 
Experimental results allowed him to describe and analyze 
azimuthal distribution peculiarity of diffraction intensities 
in reciprocal space of coaxial and spiral lattices and to 
make a conclusion that the diffraction patterns from 
coaxial and spiral structures are very similar and differ 
only in fine details [6].  

The development of quantitative theory of 
diffraction by spiral nanotubes was being restricted for a 
long period of time by the lack of crystallographic 
description of such structures. At the beginning of this 
century, description within a framework of model of 
elastic layer was proposed, and on this basis quantitative 
theory of diffraction was developed [7]. However, the 
examination of different types of nanotubes has showed 
that such model is inapplicable for best parts of nanotubes, 
and chiral angles that correspond to the interlayer shift 
often have significant value. 

In the recent years, the crystallographic description 
of spiral (roll) nanotubes within a framework of model of 
strong layer and with arbitrary chiral angle was made [4]. 
The description is based on the usage of rectangular 
Bravais lattice, and is applicable for nanotubes of arbitrary 
chemical composition. This fact is very important because 
of the report about synthesis of cylindrical structures that 
have non-hexagonal motif of atoms arrangement [8]. 
Bravais lattice also allows using well-known coordinates 
of atoms of flat analogues of nanotubes during the 
diffraction pattern computation.  

This research is dedicated to the development of 
quantitative theory of diffraction by spiral nanotubes of 
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any chemical composition. Because of the absence of 
crystallographic description of cone nanotubes, the 
investigation is made on the basis of roll structure [4]. 
Detailed analysis of the problem, uncovering essential 
differences between diffraction from coaxial and spiral 
structures and comparison with experimental data will be 
done in our next articles. 

2. Results and Discussion 

2.1. The Diffraction Amplitude 

Atoms of roll nanotube (Fig. 1) with arbitrary 
chiral angle εс within the model of strong layer have 
cylindrical coordinates [4]: 
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where n – index number of spiral-helical site line on the 
surface of  the roll; ν – index number of lattice site on the 
site line; xj, yj, zj – radial, circular and longitudinal linear 
coordinates of jth atom in Bravais cell relative to the 
beginning of this cell; ρ0 – initial radius of a roll;  d – 
thickness of the layer; τ = d/2π; a and b – parameters 
(dimensions) of rectangular Bravais cell’s base, where 
side a is chosen in the direction closest to the tube axis, 
and parameter b – in the direction closest to the tube 
cross-section (side b is perpendicular to a). Index numbers 
n and ν are limited only by dimensions of a nanotube until 
the roll is not divided into the turns. 
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Fig. 1. Lattice parameters of roll nanotube 
 

The diffraction amplitude in general form: 
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where {R, φ*, z*} – the cylindrical coordinate system in 
reciprocal space of an object; fj(R*) – the electron atomic 
scattering factor of   jth atom in Bravais cell, 

2 2* *R R z= +  – the scalar of radius-vector of a certain 
point in reciprocal space. From (1) and (2) it can be 
assumed that analytical estimation of lattice sums (over n 
and ν) in general is complicated, and calculation of 
diffraction intensity that corresponds to amplitude (2) can 
be done only numerically. 

Let us consider the structure of the nanotube in 
case of small chiral angle εс – this approach, according to 
[4], allows dividing spiral structure into turns. Thus, in 
practically important case, when generator g = 2πd/b [4] is 
odd (in case of chrysotile nanotube) and p0 = 2πρ0/b is 
semi-integer, coordinates (1) of jth atom of vth primitive 
unit cell on mth turn (index number of m begins from zero) 
of nth spiral-helical site line in the first approximation 
represent a relatively simple expression: 
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where ν = 0 – (pm-1); 0 2m
gp p mg= + + . 

Let us neglect parameter zj in expression under 
radical in (3) and expand radical into a series in powers of 
the smallness of εс to the linear term and neglect 
parameter yj in comparison with other terms: 
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Substituting (4) into (3) and neglecting relatively 
small terms gives coordinates of atoms: 
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For this reason diffraction amplitude (2): 
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where N – the length of the nanotube in units of а and  
М – number of layers.  

Let us expand the last exponentional function into 
cylindrical waves in accordance with equation  
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Let us consider summands of diffraction amplitude 
(5) and (6) sequentially. Then, let us estimate summands 
of q-series that make a strong contribution to amplitude of 
reflexes, and achieve analytic relations governing regions 
of existence of intensity’s maxima in reciprocal space. 
Simulated diffraction profiles will be calculated in case of 
electron microdiffraction by single nanotube. We also did 
not take into account any fudge factors (for absorption, 
etc.) at this stage of development.  

2.2. Reflexes h0 and h00 

Let us consider diffraction amplitude (5). The sum 
taken over n has a sharp maximum when  

* hz
a

= , 0, 1, 2,...h = ± ±         (7) 

Such equation governs coordinates of so called 
«layer planes» of reciprocal space of the nanotube. Near 
or on this layer planes stand maxima of diffraction 
amplitude. When the flattish Ewald’s sphere of electron 
beam in TEM cuts reciprocal space of the nanotube, layer 
planes transform into «layer lines» in diffraction pattern. 
Indexes of these lines coincide with the value of index h. 

By using the Bessel function approximation, we 
can simplify our algebraic expression for finding 
maximum condition of sum over ν: 
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Let us expand ρmv into a series in powers of the 
smallness of its second term: 
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Therein lies the method of linear approximation for 
coordinates of atoms, that allows us to continue our 
analysis. As a result, the last sum can be cast into: 

( )cos 2 cos 2 sin 2 cos 2
4 4

c c
m j m j

b b
h R x i h R x

a a
      + − + + − =            

∑ ∑ν ν
ν ν

ε επ π
π ν π ρ π ν π ρ 

( )cos 2 cos 2 sin 2 cos 2
4 4

c c
m j m j

b b
h R x i h R x

a a
      + − + + − =            

∑ ∑ν ν
ν ν

ε επ π
π ν π ρ π ν π ρ  

1 1 1cos 2 cos 2
2 8 8

c c
m j m j

b b
h R Rx h R Rx

a a
        = + + − + − − + +       

        
∑ ν ν
ν

ε ε
π ν ρ π ν ρ 

1 1 1cos 2 cos 2
2 8 8

c c
m j m j

b b
h R Rx h R Rx

a a
        = + + − + − − + +       

        
ν ν

ε ε
π ν ρ π ν ρ  

1 1sin 2 sin 2
2 8 8

c c
m j m j

b bi h R Rx h R Rx
a a

        + + + − + − − +       
        

∑ ν ν
ν

ε ε
π ν ρ π ν ρ 

1 1sin 2 sin 2
2 8 8

c c
m j m j

b b
h R Rx h R Rx

a a
        + + + − + − − +       

        
ν ν

ε ε
π ν ρ π ν ρ  

These sums have maxima when 
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The first term in brackets is approximately equal to 
kpm having relative high value that, even after dividing by 
d, goes far beyond the scope of limits of considered region 
of R coordinate. Therefore, k = 0 and the amplitude (5) 
governs strong reflexes [9, 10]. The next term corresponds 
to locations of maxima of mth summands of the diffraction 
amplitude of h00 reflex for monoclinic, and when εс = 0 – 
for an orthogonal polytypic modification of nanotube 
structure [4]. 

Consequently, the amplitude (5) governs series of 
pseudoorthogonal h0 [9] and h00 reflexes from a roll 
nanotube in case of strong layer. Arithmetical sign « ± » 
provides positive value of R coordinate in both sides of 
reciprocal space of an object, where layer planes with  
h < 0 and h > 0 stand. In the case of h > 0 we must choose 
negative value. With these results we can estimate 
expression for amplitude (5): 
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where N – value of sum over n, index S signify that these 
reflexes are strong. 

Fig. 2 shows calculated profiles of the beginning of 
2nd layer line for monoclinic roll nanotubes with different 
chiral angles. Each curve is a summation of 
pseudoorthogonal h0 and monoclinic h00 reflexes (when 
the chiral angle is small reflexes merge with each other). 
The pseudoorthogonality effect was analyzed earlier in 
case of chiral and nonchiral nanotubes [9, 10]. In this case, 
as for nonchiral nanotubes, pseudoorthogonal reflexes are 
formed by primary maximum of Bessel functions with 
zero index and thus reflexes are located in R = 0.  
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Fig. 2. Profiles of the beginning of 2nd layer line of monoclinic 

roll nanotubes with different chiral angles εс (degrees). The 
maximum intensity (1.69⋅1011) is synthetically limited 

 
Let us consider the amplitude (6) and related 

diffraction effects. 

2.3. Reflexes of General Position 

The amplitude (6) can be cast into such form: 
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For estimation of the maximum condition of lattice 
sums over v, we should use the Bessel function 
approximation: 
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For further analysis we use linear approximation 
again. Let us expand φmvj into a series in powers of the 
smallness of 2τ(bv + yj) to the linear term: 
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The upper arithmetical sign in arguments of 
exponential functions and in value mqjA±  corresponds to the 
first term of amplitude (12), and lower – to the second term. 

Consequently, the amplitude (12) can be cast into 
such form: 
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Therefore, the diffraction amplitude consist of four 
summands, each of which contains product of sum over n 
( mqS ±  multiplier) by sum over ν. Maxima of amplitude 
could be achieved when conditions (10) and (16) are 
fulfilled simultaneously. These conditions generate a set 
of equations for defining z* and q. Results of defining q 
for four summand of the amplitude (15) are noted in 
fourth column in the Table, in which we neglected a value 
containing 2

cε  multiplier. 
By substituting q from the fourth column into the 

second, and by neglecting summands of second order of 
smallness (values of first order of smallness are εс and 
1/2πρт), we can achieve coordinates of layer lines 
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for all four terms, where it is necessary to take into 
account arithmetical signs of k and εс. From (17) we see 
that in this case, in comparison with diffraction by chiral 
nanotubes, coordinates of layer lines in a first 
approximation are independent of the layer number т. 

Let us consider the fourth column of the Table. It 
is obvious that among the three summands contributing to 
q, the first summand has the largest on modulus value, 
when k ≠ 0. Thus, this summand governs arithmetical sign 
of q. By taking into account the fact that q ≥ 1 by 
convention, it may be deduced that 1st and 2nd summands 
of amplitude (15) govern reflexes with k > 0, and 3th and 
4th - with k < 0. In consequence of R ≥ 0 by convention, 
the amplitude of strong reflexes is governed by 2nd and 3th 
summands when k = 0. Because of symmetry of reciprocal 
space, we will consider only layer lines with h ≥ 0. 
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Therefore, our estimation shows that strong 
reflexes of the diffraction pattern from a roll nanotube 
with small chiral angle stand on layer lines (7), and diffuse 
reflexes are shifted from lines by the value proportional to 
chiral angle in direction corresponding to its sign and sign 
of k index. By considering the fourth column as a rule for 
choosing terms of series over q in the amplitude (12), we 
will get expressions for the amplitude of strong reflexes. 

2.4. Strong Reflexes of Zero Layer Line 

From the Table for h = k = 0 we can estimate q: 
q2 = q3 = Rd, and, keeping in mind that q must be integer, 
we can get an expression: 

2 3q q l= =     ⇒ l
lR
d

= , 1, 2, 3, ...l =          (18) 

This expression describes locations of so called 
«basal» reflexes 00l on the layer line with z* = 0. 
Therefore, 00l reflexes are described by primary 
summands of series over q in the expression (12), 
moreover each reflex is described by its own summand 
with q = l. As a result, in case of inessential overlap of 
Bessel functions the amplitude (12) can be written as: 

( ) (00

,
, 2 cos 2l l

S j m j m l m j
m j

A R i N f l J R∗  = − − ∗ ∑ ∑ ν ν
ν

ϕ ϕ ϕ ϕ π ρ 

) ( ), 2 cos 2S j m j m l m jA R i N f l J R = − − ∗ ν νϕ ϕ ϕ ϕ π ρ  

where maxima of mlS ±  equal to N are taken into account. 
Corresponding intensity 

( ) (
11

00 2

0 0
, 4 cos 2

mpM
l

S j m j m l m j
j m v

I R N f l J R
−−

∗

= =

 
 = − − ∗   

∑ ∑ ∑ ν νϕ ϕ ϕ ϕ π ρ 

) ( )
2

, 4 cos 2S j m j m l m jI R N f l J R
 

 = − − ∗   
ν νϕ ϕ ϕ ϕ π ρ                      (19) 

is independent of chiral angle, but has an angular 
dependence to φ*. Fig. 3 shows profiles of 00l reflexes 
calculated from the expression (19). It is interesting to 
note that only 00l reflex has small-angle tail. 

2.5. Strong Reflexes Standing  
on the Layer Lines with h > 0  

Here from the Table and for k = 0 we can estimate: 

2 2 m c
hq Rd
a

= − πρ ε , 3 2 m c
hq Rd
a

= + πρ ε        (20) 

Integrality requirement for q gives: 

0

2 m c
h l

lR h
d ad

= ±
πρ ε

 

where l is governed by the expression (18).  
Thus in this case, as in the preceding subject, 

strong reflexes h0l (except h00 reflexes) are also 

described by primary terms of series over q in the 
expression (12). However, by comparing with similar 
expressions for monoclinic polytypic modifications of 
circle, chiral and also spiral nanotubes in model of elastic 
layer, it is easy to see that the variable 2πρтεс plays the 
role of interlayer shift Δz. Taking into account the result 
of the Section 2.2. of the article, we can write an 
expression for locations of maxima of mth summands of 
strong reflexes h0l on the layer line in traditional way [9]: 

0

21 m c
h lR l h

d a
= +

πρ ε
, 0, 1, 2, ...l = ± ±  

In the same way as in the previous section of sum 
(11) let us set:  

2 3mq mqS S N± ±≈ ≈  
and the amplitude (12) for q = l, 1, 2, ...l = , can be 
conceived of as: 

( )0

,

, 2 exp 2 exp 2 cos 2mjh l l
S j m j m l m j

m j

z
A R Ni f ih ih l J R

a a
∗  

≈ − − ∗ 
 

∑ ∑ϕ π π ν ϕ ϕ ϕ π ρ× 

× ( ), 2 exp 2 exp 2 cos 2mj c
S j m j m l m j

z b
A R Ni f ih ih l J R

a a
     ≈ − − ∗       

∑ ∑ ν ν
ν

ε
ϕ π π ν ϕ ϕ ϕ π ρ× 

× ( ) ( ), 2 exp 2 exp 2 cos 2S j m j m l m jA R Ni f ih ih l J R   ≈ − − ∗    
ν νϕ π π ν ϕ ϕ ϕ π ρ           (21) 

This expression for h = 0 is totally identical to (19). 
Thus, expression (21) governs amplitudes of couples of 
strong reflections 0 0h l h l−  from roll monoclinic 
nanotube with small chiral angle in the model of strong 
layer. 

Fig. 4 shows profiles of reflexes 20+200 taken 
from Fig. 2, and profiles of 20l reflexes calculated for 
intensity corresponding to the amplitude (21), with 
structural parameters of chrysotile and different chiral 
angles. As expected during the analysis, the diffraction 
profile is a summation of pair 0 0h l h l− reflexes for l > 0 
and εс = -0.04о. In case of the orthogonal polytypic 
modification of roll nanotube (εс = 0), reflexes from pairs 
join together and make a summary single reflex, which is 
routinely [11] identified as h0l reflex.  

Increasing of chiral angle leads to degradation of 
diffraction conditions (Fig. 4). It must be emphasized that 
such effect is not a result of our approximations. It is 
obvious that within the framework of the assumed model 
small angle εс is a good simulation parameter. However, 
from (3) it follows that increasing of chiral angle will lead 
to strong change in z coordinates of atoms from one layer 
to another. This leads to “destruction” of scattering planes 
h0l and, as a result, to deterioration of diffraction 
conditions. 
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Fig. 3. Strong reflexes of zero layer line from roll nanotube for φ* = 0 
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Fig. 4. Strong reflexes on the second layer line from chrysotile monoclinic roll nanotube  
with φ* = 0 and εс = -0.04о (solid line), -0.5º (dotted line) and -1º (dashed line) 

 

2.6. Diffuse Reflexes 

Locations of layer lines of diffuse reflexes are 
governed by the expression (17) with regard to algebraic 
sign of k index. The amplitude (12) describes the profile 
of diffuse reflex hk0. In this amplitude selection of terms 
of series over q should be done in accordance with the 
Table: q1 and q2 – for k > 0, and q3, q4 – for k < 0. 
However, selection of terms of series that contribute 
significantly to diffraction amplitude must be done in 
slightly complicated way – this way will be discussed 
below. 

Our findings allow estimating locations of main 
maxima of diffuse reflexes. Let us use one of the well 
known properties of the Bessel function, which lies in the 
fact that its main maximum located near the value of an 
argument equal to index of the function. For the amplitude 
(12) and noted in the Table q this gives: 

0

0

0 :

0 :

hk c

chk

k hk R
b a

k hk R
b a

> ≈ −

−
< ≈ +

ε

ε
                         (22)            

where we neglect relatively small values. By comparing 
expressions (17) and (22) it is easy to see that for εc > 0 
reflex 0hk  lies above the layer line with z* = h/a and at 
smaller values of R, and 0hk  reflex – under the layer line 
with biggest R. For εc < 0 reflexes will interchange places. 

For estimation of an angular splitting relatively to 
the centre of reciprocal space of such reflexes in 
microdiffraction pattern, we determine the formula for 
scalar vector of main maximum of diffuse reflex from 
(17) and (22): 

2 2
2 2

0 0 *hk hk
k hR R z
b a

∗    = + ≈ +   
   

 (23) 
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The splitting is independent on the value of the 
chiral angle. It means that the splitting of diffuse reflexes 
occurs on the arc of a circle with the center coinciding 
with the centre of reciprocal space. From (17) and (22) it 
also follows that the distance between two main maxima 
of diffuse reflexes having opposite signs of k index may 
be written as: 

2 2

* 2 c
k h
b a

   ∆ = +   
   

ε                     (24) 

Sought value of splitting angle can be estimated 
from (23) and (24): 

0

* 2 c
hkR∗

∆
≈ ε  

Let us get quantitative expressions describing 
diffuse reflexes. The integrality requirement of q and 
results of previous sections give that each mth summand of 
amplitude of diffuse reflex is described by the group of 
terms of the series over q in the amplitude (12). Each 
group consists of terms, q-indexes of which are varied 
sequentially near the value ( )0k p mg+ . Limits of this 
group can be easily obtained from the last column in the 
Table: 

( )0 max 0 maxq k p mg l k p mg l≈  + −  ÷  + +    ( )0 max 0 maxq k p mg l k p mg l≈  + −  ÷  + +          (25) 

where lmax – the smallest integer greater than Rd, that is 
used during simulation.  

Indexes of corresponding Bessel functions in the 
amplitude (12) also differ by one, and for this reason, 
these functions are closely adjacent to each other in R 
scale. This means that we can not neglect their overlap, 
and therefore, we must add diffraction amplitudes rather 
than diffraction intensities. On the other hand, for 
increment of k difference between indexes of two adjacent 
groups correspond to the value ( )0k p mg+ . In case of 
such significant distance in R scale and inessential overlap 
of Bessel functions, we may consider diffraction ampli-
tudes of diffuse reflexes independently of each other. 

Note that in this case q indexes of terms of the 
series that governs diffuse reflexes are not small, therefore 
we can not neglect second term in round brackets of sums 
(11), as we did in case of strong reflexes. For this reason 
maximum condition of sums gives: 

2
c

m

q
z a h∗ 

± = 
 

ε
π π

πρ
 ⇒ *

2 c c
m

qh h kz
a a b

= ≈m mε ε
πρ

 

where k should be taken modulo.  
By comparing this expression with (17), it may be 

concluded that in case of diffuse reflexes, mqS −  sum 
corresponds to reflexes with k > 0 and mqS +  - to reflexes 
with k < 0. 

Taking into account the expression (17), the 
amplitude (12) in case of diffuse reflex with k > 0, it can 
be conceived of as: 

( ) ( )0 1

, , ,
, cos 2 sin 2hk q q

D j qmvj q m j qmvj q m j
q m v j

A R N f i J R i J R∗ + ≈ + ∑ ν νϕ γ π ρ γ π ρ 

( )0 1, cos 2 sin 2hk q q
D j qmvj q m j qmvj q m jA R N f i J R i J R∗ + ≈ + ν νϕ γ π ρ γ π ρ                          (26) 

where D index means “diffuse” and  

( ) ( )2
2qmvj c mj c m j m

m

qh z b q
a

 
= + + + − − ∗ 

 
νγ π ε ε ν ϕ ϕ ϕ

πρ
. 

A similar estimation can be made for diffuse reflex 
with k < 0: 

( ) ( )0 1

, , ,
, cos 2 sin 2hk q q

D j qmvj q m j qmvj q m j
q m v j

A R N f i J R i J R∗ +≈ +∑ ν νϕ γ π ρ γ π ρ 

( )0 1, cos 2 sin 2hk q q
D j qmvj q m j qmvj q m jA R N f i J R i J R∗ +≈ +ν νϕ γ π ρ γ π ρ          (27) 

where 

( ) ( )2
2qmvj c mj c m j m

m

qh z b q
a

 
= − + − − − ∗ 

 
νγ π ε ε ν ϕ ϕ ϕ

πρ
. 

Limits of summation over q in expressions (26) 
and (27) are defined by the expression (25).  

Let us consider peculiarities of the intensity 
distribution of diffuse reflexes in cross-section (relatively 
to the axis of nanotube) of reciprocal space of a roll 
nanotube. For theoretical estimation the Bessel function 
has to be approximated by cosine. Terms and multipliers 
that contribute a significant value to estimation of the 
amplitude (27) for q ≈ kpm are then approximately 
represented by 

0cos 2 2 2mkp
c m m

m

hi m kp R
a

 − ∗± 
 

∑ π πρ ε ϕ π ρ  

Addition of summands in real and imaginary parts 
of the amplitude depends on the parameter kgm. It is 
obvious that for even kg cosinusoidal summands come 
only into real part of the amplitude and sinusoidal – only 
into imaginary part. In case of odd kg summands come 
into real and imaginary part alternately. In that case we 
should change m to 2m and modify the limits of 
summation. In this analysis limit of summation does not 
matter, and therefore, considering the expression can be 
approximated by  

0
2cos 2 2 2c

m

h kg Rd m A
a

  − ∗± +    
∑ π

πρ ε ϕ π  

where A contains summands that are independent of 
summation index. 

Sums have maxima when 

0
2 2 2c

h kg Rd n
a

− ∗± =
π

πρ ε ϕ π π  

where n – integer.  
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This expression is equation for the class of right-
handed and left-handed Archimedean spirals are arranged 
in layer plane (17) in reciprocal space. Let us deduce φ* 
from the expression near the spiral beginning, where 

/R k b≈ (since we wish to study points where spirals 
begin we should consider only right-handed spirals): 

0 02 22 2 2
c c

h d hn R n
kg a kg kg kg a kg k

∗ = − + ⋅ + ≈ − + ⋅ +
πρ πρπ π π π π

ϕ ε ε 

0 02 22 2 2
c c

kh d hn R n
kg a kg kg kg a kg k

∗ = − + ⋅ + ≈ − + ⋅ +
πρ πρπ π π π π

ϕ ε ε  

From the first term at the right side of the equation 
it follows that the pattern is repeated every π/kg angle and 
it turns out that it has 2kg-fold symmetry. It is easy to see 
that for even kg in imaginary and real parts of amplitude 
summands are twice as much and this yields that the 
pattern has a kg-fold symmetry. Therefore, the pattern has 
a symmetry center in both cases. Note that we can use 
such analytic simplification only for qualitative 
evaluation, but not for exact calculation. 

Obtained results allow us to pass to simulation of 
diffraction profiles of diffuse reflexes along the layer line 
using (26) and (27). For this purpose according to (17) it 
is necessary to choose z* coordinate of layer line and 
azimuthal angle φ*, at which the reciprocal space of the 
nanotube is cut by Ewald’s sphere of electron beam. 

Fig. 5 shows simulated distribution of intensity of 
110 diffuse reflex from the roll orthogonal chrysotile 
nanotube in the {R, φ*} plane with coordinate z* 
expressed in (17). In accordance with our estimation this 
distribution has a helical fashion that is very similar to 
diffuse reflexes from coaxial nanotubes [9, 10]. Distortion 
of 2kg-fold symmetry (generator g of chrysotile is equal to  

5) on the lower levels of intensity connected with 
existence of the end points of spiral lattice in {ρ, φ} plane, 
angle locations of which in this simulation are agreed. 

Fig. 6 shows simulated profiles of 110 reflex along 
the layer line (17) for different φ*, showed in Fig. 5 by 
straight lines of the same type. From the picture it follows 
that the profile of diffuse reflex depends on the nanotube 
orientation relatively to electron beam. This peculiarity 
has a significant importance for lattice parameters (b) 
measuring technique that uses microdiffraction pattern 
from single nanotube.  

 

 
 

Fig. 5. Simulated distribution of intensity of 110 diffuse reflex 
from roll chrysotile nanotube in the {R, φ*} plane 
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Fig. 6. Simulated profiles of 110 diffuse reflex for different φ* showed in Fig. 5  
by straight lines of the same type 
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The truth is that any of several points of the 
beginning of pair spiral reflexes in Fig. 5 could be 
associated with the main maximum of diffuse reflex hk0. 
Its polar radius is about Rhk0 ≈ k/b, and here “≈” sign 
means that the point is slightly shifted from the k/b value 
in the direction of large R according to average radius of 
the nanotube [12]. However, for random orientation of the 
nanotube relatively to its axis, every point of intersection 
between spiral-reflex and Ewald’s sphere could be the 
maximum of diffuse reflex in the microdiffraction pattern. 
This may cause serious errors while measuring lattice 
parameters.  

The presented diffraction theory also allows 
explaining the origin of local maxima of intensity in the 
region of “tails” of diffuse reflexes that typically occurs in 
microdiffraction patterns from single nanotube. The 
performed analysis and simulated profiles in Figs. 5 and 6 
demonstrate that it is a result of cutting of spiral reflexes 
set, that represents diffuse reflex, by Ewald’s sphere. The 
maxima indexing problem and the peculiarities of spiral 
reflexes will be considered in the next articles of this series. 

3. Conclusions 

The examination of purposed theory of diffraction 
by spiral (scroll) nanotubes in case of small chiral angle 
was done. Peculiarities of diffraction by spiral (scroll) 
nanotubes resemble diffraction from coaxial nanotubes 
with some exceptions. In case of spiral nanotubes strong 
reflections of zero layer line have angular dependence 
whereas diffraction by coaxial nanotubes doesn’t have 
such peculiarity. Further investigations of differences in 

diffraction from spiral and coaxial nanotubes will be 
done in the next articles of this series. 
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КІЛЬКІСНА ТЕОРІЯ ДИФРАКЦІЇ  
НА СПІРАЛЬНИХ НАНОТРУБКАХ 

 
Анотація. Розроблено математичну модель дифракції 

на спіральних нанотрубках довільного хімічного складу, 
структура яких описується з використанням комірок Браве. 
Розглянуто випадок мікродифракції електронів на окремій 
нанотрубці, розрахований розподіл інтенсивності в площині 
шарів і вздовж ліній шарів. 

 
Ключові слова: спіральна нанотрубка, лінія шару, 

хіральний кут, хризотил, мікродифракція електронів. 
 




