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Abstract. Cylindrical coordinates of atoms of multilayer
nonchiral, chiral and scroll nanotubes of arbitrary
composition are developed by projecting the structure of
plane analogue on corresponding surface. The coaxial and
spiral cylindrical lattices, Bravais cells and chiral indexes,
expressed in terms of these cells, are used for description
of nanotubes structure. The model of multilayer chiral
nanotube with not close packed layers is proposed.

K eywor ds. nanotube, chiral, spiral, scroll.

1. Introduction

Nanotubes were first opened at the beginning of the
50-th by direct observation of the particles of chrysotile,
garnierite and halloysite in electron microscope [1-3]; then
the bases of nanotubes crystallography were founded as
generalization of the traditional theory on cylindrical
crystals [4-6]. The experimental researches have shown
that nanotubes are of four basic types (Fig. 1): coaxial —
circular (non-chiral) and chiral (helical), and spiral — roll
(scroll) and cone (cone scrall), and also have polytype
modifications, associated with mutual shifts and turns of
layers. Today the nanotubes crystallography is at the
beginning of its development, therefore there isa descrip-
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tion of structure of three types of nanotubes only: circular,
chiral and rall [7]. All known nanotubes have layer
structure and plane analogues with the same structure of
unit cell: carbon nanotube — graphite, chrysotile —
lizardite, SnS,-nanotube — stanisulite, etc. Therefore the
nanotubes description is developed on the basis of
structures of analogues in view of cylindrical symmetry.
Let us consider some aspects of the problem, genera for
all types of nanotubes.

The nanotubes structure is expressed in cylindrical
coordinate system {p, ¢, Z by projecting the analogue's
layer structure on the corresponding surface (the axis z
coincides with nanotubes axis). It allows using the
structural data of analogue for the nanotube description.
According to the rules accepted for layer crystals the
Bravais cell parameters a and b are chosen in a plane of
layer. The parameter ¢ of cylindrical lattice is indefinite,
the thickness of layer d, and also longitudinal and
azimuthal interlayer shifts are used instead of it. The basis
of nanotubes crystallography is expression for radiuses of
their layers.

Fy=ro+md (1)

where po — interna radius of nanotube, m = 0-M-1 —
number of the layer, M — quantity of layers.
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Fig. 1. The general types of nanotubes
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At a cylindrical bend of layer the origin of Bravais
cell inradia direction is chosen on the level on which the
value of circular parameter b of cylindrical lattice does not
depend on curvature of cell. For example, such level of
cell of sulfide and chrysotile nanctubes coincides with a
sheet of metal; in case of carbon nanotube the choice is
obvious. Thus, the choice of nanctube cells origin in a
radial direction is not arbitrary.

Availability of special direction — the nanotube
axis — alows proposing a single axes selection for its
structure description. Let us assume rectangular Bravais
cel (Fig. 2) is forrlned by basic vectors: a, closest to

nanotube axis, and b, closest to its cross section; at such
axes selection the chiral angle &; is minimal. !_et uslset tlhe
atom position in a plane layer by vector 1, =ry +r;,

1
where rrm =na+nb — the plane lattice vector, n and

v — integers, j — the number of atom in Bravais cell. Then
vector r;, determining atom position in Bravais cell, has

components %, y; and z aong vectors a, b and
lengthways the normal to layer, accordingly. Hence,
vector T, j has components: an + X — in direction of

vector a, by + y; —dong vector b and z — lengthways the
normal to layer. It is necessary to note that coordinate z
may have any sign because of the special choice of cell’s
originintheradial direction.

To transform coordinates in cylindrical system let
us enter in the layer's plane two two-dimensional
rectangular systems of coordinates {y', Z} and {y, 7}
(Fig. 2), having the same origin and turned respectively to
each other on angle &, thus the axis z is paralle to
nanotube axis and axis y — to vector b. Then in the
system {y', Z} aoms have coordinates: y$ = +y;,

z§ =an+x;. The transformation of coordinates from
system{y’, Z} tosystem{y, Z} gives.
{ymj :(tn+yj)cosec— (an+xj)sinec @
%zmj = (tn + yj)sinec +(an+ xj)cosec
After discovering carbon nanotubes the alternative
description of nanotubes structure was proposed, not using
concepts "unit cell” and "cylindrical lattice” [8, 9.
Nanotube was built with the help of a set of helical lines,
along which all atoms were located. This is equivaent to
description of usual crystal as a set of sublattices which
number is equal to number of atoms in unit cell. It is
obvious that such approach complicates both the analysis
of effects associated with local point symmetry, and use of
the structural data of plane analogues. The way of
definition of cylindrical layer with the help of pair integers
(chiral indexes), proposed there, is rather convenient [10].
But the units (structural hexagons) in terms of which these
numbers are expressed are not universal, as there is no

firm belief that the layers of al nanotubes have hexagonal
symmetry. Really, the mixed-layer nanotubes SnS,/SnS
[11] were synthesized recently, which SnS-layers have no
structural hexagons and, hence, their chiral indexes cannot
be determined. It is obvious that the chiral indexes
expressed in terms of unit cells can be universal only.

As the axis z coincides with nanotube axis, the
cylindrical coordinates of atom in system {p, ¢, Z for
circular, chiral and roll structures (Fig. 1) result by
equating of value yy,; to the length of appropriate curve' s
archin cross section of nanotube.

nanotube axis

Fig. 2. The coordinate systemsin layer,
oriented respectively to nanotube axis

2. Circular Nanotube

The structure of circular nanotubes is most simple,
as a chiral angle & = 0, therefore parameter a of Bravais
cell is measured in direction of nanotubes axis, and
parameter b — in direction of its cross section circle. The
dtes of cylindrica lattice are located on the dte circles,
which, in turn, are located on cylindrical surfaces (Fig. 3b).
The atom coordinates (2) in syssem{y, zZ2 become smpler:

[%hj = +y; 3

12y =an+x;

Limits of variation of integer parameters. n = 0—N-1),
v = 0Hp-1), where N — number of site circles on the
cylinder, p = 2zp/b — number of cells on the circle of
cylinder, integer by definition.

In a case of multiwall circular nanotube taking into
consideration (1) we get:

I = m+z=rg+md+z

I; ) :E+ﬁ+e (5)

1z =an+x; + Dz,

m
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Fig. 3. The projecting and parameters of the circular nanotube

where values ey, and Az, determine the origin of m-th
layer in azimuthal and longitudinal directions,
accordingly, in relation to the general origin. As a matter
of fact, these values define the mutual ordering of layers
in these directions, and also the polytype modifications,
formed by appropriate interlayer shifts. For example,
Whittaker [5] believed angular phases of layers &y, are
absolutely random (Whittaker’'s model); the azimuthal
ordered model was proposed later [12]. For example, the
experimental researches of chrysotile nanotubes show that
the most widespread polytype modifications are
monoclinic (clinochrysotile, Az, = mAz Fig. 4) and
orthogonal (orthochrysotile, Az, = 0) [12]. The radial
ordering of multiwall circular nanotube layers depends on
realizing of close packing condition (1) at integer numbers
pm Of cellson the circles of every layer. Let’s assume there
is an integer number pr, of unit cells on a site circle of

m-th layer p,, :Zp%. Then the number of cells on a
circle of the following layer is equal to:
_2(r,t+d) _2por 2pd _
P = = s D= p kg (6)
2pd

where g :T — generator of cylindrical lattice [5, 12].

It is visible that when py and generator are integers the
numbers of cells on the circles of every layer are integers
too, that is the close packed circular nanotube takes place.
Thus the number pn, varies on the value of generator at
transition from one cylinder to another: pm = po + Mg.

The generator g is a number determined by the
sizes of unit cell. This implies that the layer structures
capable to ensure the integer generator by their parameters
b and d, can form perfect enough circular nanotubes only
(for example, the generators of chrysotile and carbon

"armchair" nanotube are equal to 5 with high accuracy). In
Fig. 5 the examples of cross sections of circular lattices
with various values of generator are given.

Fig. 4. Thelongitudina section of monoclinic nanotube lattice

a) b)

Fig. 5. The cross-sections of circular lattices
withg=4 (@ ardg=5(b)
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3. Chiral Nanotube

In the case of singlewall chiral nanotube equating
of coordinate y,; to the length of circle arch in cross
section (Fig. 6) according to (2) gives:

ymj = rj -

= m] :%gm +yj)cosec- (an+xj)sinecfd @)

The expressions (2) and (7) determine z- and ¢-
coordinates of atoms, respectively, onacylindrical surface
with radius p. Thus the p-coordinate of atom is determined
by condition r ; =r +z;.

To form the regular singlewall chiral lattice it is
necessary that the "end" of alayer was correctly combined
with its "beginning”, that is there should be an integfar p of
parameters b on a turn of site line (along vector b of a
plan layer), and the step of this line (along vector a of a

plan layer) should be equal to an integer s of parameters a.
It means that (numbers of unit cells start from zero):

;[J np,j - 2p :j n+s,0,j

i _ )
TZnp.j =~ Zn+s0,
The substitution of (2) and (7) in (8) gives:
s (CIRICONNC

Thus, addition of two integers p and s to
parameters of plane layer completely determines the
singlewall chiral nanctube structure. By analogy with
indexes introduced for carbon nanotubes [10], let’s name
these integers as chiral indexes of singlewall nanotube

b
Y

Fig. 6. The projecting and parameters of the chiral nanotube

(p, S). It is necessary to emphasize that these indexes are
expressed in terms of Bravais cells. Taking that into
sine, =

account
- ___bo
J(as)” +(bp)” J(as)” +(bp)’
the coordinates of singlewall chiral nanotube atoms can be

written down as:
i

and cose, =

1 2 2
"I (as)” +(bp)" + 7
) bp(ln +vy.)- as{an+x.
Imj=2p ( ’2) (2 ’)- (10)
(as)” +(bp)
_ as(tn + yj)+bp(an+ xj)

- 2 2
i V(es)’ +(op)

Let's consider a posshility of exisence of
multiwall close packed chiral nanotube with radiuses of
layers, forming an arithmetic progression. From (1) and
(9) it follows that the problem turns into existence of the
integer solutions of equation

o \(esa) + (opn) =rovmd (a1

concerning variables py, and s, — the chiral indexes of m-
th layer. It is obvious that generaly there are no such
solutions. Hence, multiwall close packed nanotube is
possible only if the values pn and s, in (11) under
condition of (1) become integer owing to small distortions
of layer structure. Whittaker pointed this problem in the
50-th of the last century, writing that the layers of a
multiwall chiral lattice should have small distortions [4].
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There is another possibility that the condition (1)
with integers pm, and s, does not implement exactly. Let's
assume that the layers, as it is widely spread among layer
crystals, inherit orientation of each other, that is have
identical or rather close chiral angles. In this case it is
possible to propose the recurrent procedure allowing
determination parameters of nanotube layers from
parameters of internal layer. Let's assume internal layer
has chiral indexes (po, S), determining its initial radius po
and chiral angle ¢.o. Then the chira indexes of m-th layer
can be determined from ¢.0 and radius of the previous
layer pm 1 as the nearest integer values of variables

2p(r,,+d
o= 201t D e
and Sh :Mgneco (12)

and then the chiral angle of layer and itsradius— from:

1
tgecm:% rng
m

In this model the chiral indexes (pm, Sn) of al
layers are univalently determined by indexes of internal
layer (po, So), therefore the last can be considered as chiral
indexes of multiwall nanotube. It is obvious that owing to
this procedure the radiuses of multiwall chiral nanotube's
layers deviate from progression (1), and their chira angles
&em have some variations too (Fig. 7). The proposed
procedure of chiral indexes determination can be used
both in the nanotubes structural analysis and for

(asy)” +(bpy)”

calculation of their physical characteristics: band
structure, phonon spectrum and so on.
35 r
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Fig. 7. The dependence of chiral angle e,
(degrees) on the number of layer

It follows from (12) that, in view of variations
associated with rounding off, the number of cells on the
turn of helix (first chiral index) can be written down as:

P » Po + Mg COSE -

Hence, if the value gcoseq — integer, the number of
cells on the turn of helix of every layer is integer too (po,
as well as earlier, is supposed integer), that is a perfect
enough chiral nanotube can be formed. The analysis of
lattice parameters b and d of plane layer compounds
shows that, for example, the generators g of WS,;, MoS,
and SnS; have values 7.11, 7.08 and 5.08, respectively.
From experimental data it is known that the chiral type of
structure prevails among the corresponding nanotubes and
correction to cosine of chira angle typica value (5-7°)
results in much better conformity to integers.

It is possible to write down from (10) the
coordinates of multiwall chiral nanotube atoms as.

-.-
:::rmj :% (asm)2+(bpm)2+zj

I - )

%J' =2 bpm(tn +y,2) asm(azn+xj)+em 13)
j:; (asm)” +(bpr)

P, Ay )vom(anex)

o

P s+ (bpn)?

parameters e, and Az, were defined above. The proposed
model of multiwall chiral nanotube is not the only
possible and complete. The point is that calculations of
basal reflexes profiles for some structures at small s
shows the presence of superperiod, associated with step
character of s, variation, which is not observed in the
experiment. However it seems obvious that at the
presence of interlayer splits the system of cylindrical
layers can not be strictly coaxial. Thus, it is possible as
development of model by displacement of axes of layers
up to their contact, and realization of close packing by the
linear defects.

4. Roll Nanotube

There is, on the face of it imperceptible, but
essential similarity between coaxial and spiral structures:
after displacing a coaxial structure layers respectively to
each other along the radial cut on thickness of layer d the
spiral structure is formed (Fig. 8). This implies that the
number of cells on spiral nanotube turn should vary on the
value of generator at transition from turn to turn, asin the
case of coaxial nanotube at transition from layer to layer.

Th(? crystallographic "directions’, corresponding to
direction b of aroll nanctube layer (Fig. 9), are the three-
dimensional spira-helical lines, which kind depends on
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the model of layer. The model of strong layer assumes
that it can not have distortions, and the dependence of
coordinate z of aspiral-helical line' s point on the length of
its plan projection L has linear character: z = Ltge.. Then
the chiral angle & is parameter of lattice, but the
longitudinal interlayer shift is indefinite. If the layer is
capable to distortions (model of elastic layer [7]), the
longitudinal interlayer shift can be constant [12] and be
used as parameter of lattice. Then dependence z(L)
becomes nonlinear and chiral angle becomes indefinite.
Let's consider model of strong layer, as available
experimental data do not give examples of elastic model.

Fig. 8. The mutud transformation of coaxia
and spiral structures

An unlimited Archimedes spiral with step d looks
like:

d

=tF t =— 14
r » (14)

where p and ® — polar coordinates.

It follows from (14) that the radiuses of spiral turns
form an arithmetic progression that is the spiral structures
are close packed by definition. The length of spira as a
function of polar angle:

F e ~
L=t oV1+F2dF :%gt:\/lﬂiz +In(F +\/1+F2)E
0

In the case of real nanotubes F — is large enough
value. Hence, it is possible to neglect the unit under
radical and the logarithmic addendum, which is the part of
a percent from the first. Then:

tF?

L»—o (15)

Let's develop a layer of unlimited roll nanotube on
a plane (Fig. 10) keeping orientation (angle &;) of its
crystallographic directions relative to the nanotube axis.
From Fig. 10 it is visible that at constant parameters a, b,
d, and & dl crystallographic equivaent unlimited roll
lattices are determined by displacement the layer
lengthways y' on a distance 0 < Ab < b (is shown in Fig.
10 by shaped line). Any limited (that is having finite
internal and external radiuses) roll lattice at the specified
constant parameters is a part of one of this unlimited

lattices. Parameter Ab, named by azimuthal shift,
determines the azimuthal shift polytype modification of
roll nanotube.

Thus, the beginning of limited roll lattice is moved
along axisy' on the distance Ab plus an integer number vg
of b-parameters. Then in the system {y’, Z} aoms have
coordinates: y¢, =(ny+n)b+Db+y;, z§ =an+x; —ina
layer's plane and z — lengthways the normal. The
transformation of coordinates from system {y', Z} to
system{y, Z gives:

} Ymj = 8no +n )b+ Db+ y; fcose, - (an+ X )sinec

[

§Zm; =§no +n)b+Db+ yszinec+(an+xj)cosec
Projecting layer on the roll surface, that is

equating Yy, to the value L from (15) and taking into

account (14), we have:

]

} (16)

}:rmj :\/Zt {gno +n )b+ Db+ y; jcose, - (an+ xj)sinec} +z,

|
1 2( A .
.l Fmi :\/t—{gno +n)b+ Db+ y; jcose, - (an+ X )suneC
}zmj = §no +n)b+Db+y; Bsine, +(an+x; ) cose,
|

— the cylindrical coordinates of roll nanotube
atoms.

The starting point of a roll lattice corresponds to
(16) under condition of equality of valuesn, v, x;, y; and z
to zero:

: F o =4/2 (nob+Db)cose,

iFo :t—oz\/tg(nob+ Db) cose, (17)
i
;:; Z, = (ngb+Db)sine,

Let's move the origin of coordinates in this point.
Then (16) transforms into:
}rmj :\/r§+2t gnb+yj)cosec- (an+xj)sine08+zj
?i mj :tl[\/r§+2t gnb+yj)cosec- (an+xj)sine08- ro} (18)
;

;zmj :(nb+ yj)sineC +(an+xj)coseC

— the final expression for coordinates of limited
chiral roll nanotube atoms, where gn,; = ®n\j — Do.

The term "chiral" is used because here angle ¢ has
the same meaning as in case of coaxial chiral nanotubes -
orientation of one of the layer’s crystallographic directions
relative to the nanotube axis. Unlike the coaxial chiral
nanotubes, in this case a chird angle ¢; determines
simultaneously both rotary and longitudinal  shift
(monaclinic) polytype modifications, as it sets both the
turn of layer relative to direction of nanotube' s axis and
the interlayer shift. In case Ab = 0 and & = 0 the polytype
modification is called orthogonal.
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Crystallography of Coax

Fig. 9. The projecting and parameters of the roll nanotube

Fig. 10. Theroll layer devel oped on aplane

nanotube axis

Fig. 11. The spiral-helical line devel oped on aplane
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Let’sdividearall lattice into the turns. In Fig. 11
the limited three-dimensional spiral-helical line vy,
developed on aplane{y, Z, is shown, M, —initial lines of
roll nanotube turns (as m-th is named the turn, the starting
radius of which corresponds to this value of m). The
length AL of the limited plan spiral, according to (15) and
(17) looks like:

_ _tie2 p2\_tj &rg
DL=L LO—Z(F Fo)= e
at ¢ = 2zmit is possible to obtain coordinates of crossing
points of y- and y' -axes with m-th turn’sinitial line:

Yo = DLy, = 2pr gm+pdm?

Y' = YCOSE, = (2pr0m+pdm2)cosec

4] L—rd +—(19)

(20)

Hence (Fig. 11), y-coordinate of starting point of
the m-th turn

Ymo = Y 'm COSE; = (Zpr om+p dmz)COSZGc
Equating this to expression (19) we obtain the

azimuthal
. 1 25
JmOzt_( rg+2[ym0'r0) (21)
and from (20) —
Zmo = Y'mSine, = (2pr 0m+pdm2)sineccosnec (22

longitudinal coordinates of starting points of the spiral’s
turns, and also the longitudinal interlayer shift in these

points
Do = Zmst0 - Zmo = €27 o +Pd (2m+1)gsine cose, (23)
It is necessary to notice, the lessis relation d/po, the
less is longitudinal interlayer shift dependence on the

layer number m.
Let's calculate the length of the m+-th turn. From (20):

DY = Vit Y'm = €201 o +pd(2m+1)fcose,
Then the number of parameters b, going in the
m-th turn,

_Dy'n _a0ry +2|0d |od9Cose

PnT T g b b 5
_a&pr + go
mg +—= _cose
&b 2g
The generator g, previously introduced, appears in
the right part of (24). In a practically important case of
small ¢ (24) transformsin:
2pr
J = py+mg+ 9, po=—pb°
that isat transition from turn to turn the number of siteson
a turn changes on the value of generator as for circular
lattices. If po is integer the numbers py, are integers or
semi-integers depending on the evenness or oddness of
the generator, accordingly. Hence, in such roll lattices
with even generator each turn starts from site; in the case

(24)

P >>2pb0+mg+

of odd generator the even turns starts from site, but odd
ones—from interstitial. In particular, the unlimited and so-
called "multiple" lattices, in whichinitial radius pg is equal
to an integer number of parameters d, are the same
(Fig. 12).

In the case of small & expressions (21)-(23)

transform  into jmo:2pm,zm0»(2pr0m+pdmz)ec,

Dz, » €201 o +pd(2m+1)ge,, respectively, and the
initial radiuses of turns correspond to (1). Each turn of the
multiple structure with even generator, and also an even
turn of the structure with odd generator start from the site,
therefore coordinates of their atoms can be determined
from (18) in approach of small . by replacement pg — pm
and addition of the value zy from (22) to zcoordinate.
The azimuthal angle of atom @i thus measured from the
beginning of appropriate turnis:

:r —_— \/ mt2 by - (an+xj)ecfd+zj
%j mj tl{\/r§+2t g1b+yj—(an+xj)eCu }(25)

i

Zom —an+(2pr0m+pdm2 +nb+ yj)ec+xj

In the case of even generator index n = O-(pyrl).
There are pyrl/2 whole unit cels or pytl/2 dtes
belonging to this turn in the case of even turns of structure
with odd generator. Hence, index v vary in limits
n=0-(pnrl/2).

a) b)

Fig. 12. The cross-sections of the multiple roll |attices
withg=4 (@ ardg=5 (b)
In the case of odd turns of structure with odd
generator each turn gtarts from interstitial, which means
addition of value 1/2 to theindex v in (25):

M om \/ S22 gn+Y2)b+y; - (an+xj)ecg+zj

i
T
!J mmj > 3-[\/“%4'2 gn+]/2)b+yj'(an+xj)ecg_
T
I
fom

o

- —an+82pr0m+pdm2 +(n+Y2)b+y; e +x,
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Here the p,-1/2 of whaole unit cells take place too.
However the number of sites belonging to thisturnis equa
to pnr1/2 too, as the "lagt" site of odd turn does not belong
to it, but is the "first" for the following (even) turn. This
means that index n vary in limits n = 0-(p-3/2) on the odd
turn. The case of the odd generator and semi-integer
Po = 2mpo/b isthe very same asthe case of even generator.
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KPUCTAJIOT PA®ISI KOAKCIAJIbHUX 1
CIIPAJIbHUX HAHOTPYBOK JJOBLILHOTO
CKJIALY

Anomayin. Ompumano yuiiHOpUYHi KOOPOUHAMU AMOMIG
b6azamowaposux axipanbHux, XipaibHux ma CHIPATGHUX HAHO-
MpyOOK O0BLILHO2O XIMIUHO20 CKIAOY BHACHIOOK NPOEKMYBAHHS
CmMpYKmMypu n10CKo20 aHanozy Ha 8ionogiony nogepxwio. s onucy
CmMpYKmypu HAHOMpPYyOOK GUKOPUCMAHO KOAKCIAbHI Ma CRipaibHi
yuninopuuni pewiimku, komipku bBpase ma indexcu xipanvrocmi,
supasceni 6 yux Komipkax. 3anponomosano modenv 6azamo-
wWapoeol XipansHoi HaHOMPYOKU 3 HEWLILHUM NAKYEAHHIM WAPIE.

Krouosi cnosa. nanompyoka, XipanvHuil, CnipaibHuLi, pyioH.








