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Abstract. Cylindrical coordinates of atoms of multilayer 
nonchiral, chiral and scroll nanotubes of arbitrary 
composition are developed by projecting the structure of 
plane analogue on corresponding surface. The coaxial and 
spiral cylindrical lattices, Bravais cells and chiral indexes, 
expressed in terms of these cells, are used for description 
of nanotubes structure. The model of multilayer chiral 
nanotube with not close packed layers is proposed. 
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1. Introduction 

Nanotubes were first opened at the beginning of the 
50-th by direct observation of the particles of chrysotile, 
garnierite and halloysite in electron microscope [1-3]; then 
the bases of nanotubes crystallography were founded as 
generalization of the traditional theory on cylindrical 
crystals [4-6]. The experimental researches have shown 
that nanotubes are of four basic types (Fig. 1): coaxial – 
circular (non-chiral) and chiral (helical), and spiral – roll 
(scroll) and cone (cone scroll), and also have polytype 
modifications, associated with mutual shifts and turns of 
layers. Today the nanotubes crystallography is at the 
beginning of its development, therefore there is a descrip- 

tion of structure of three types of nanotubes only: circular, 
chiral and roll [7]. All known nanotubes have layer 
structure and plane analogues with the same structure of 
unit cell: carbon nanotube – graphite, chrysotile – 
lizardite, SnS2-nanotube – stanisulite, etc. Therefore the 
nanotubes description is developed on the basis of 
structures of analogues in view of cylindrical symmetry. 
Let us consider some aspects of the problem, general for 
all types of nanotubes. 

The nanotubes structure is expressed in cylindrical 
coordinate system {ρ, φ, z} by projecting the analogue’s 
layer structure on the corresponding surface (the axis z 
coincides with nanotubes axis). It allows using the 
structural data of analogue for the nanotube description. 
According to the rules accepted for layer crystals the 
Bravais cell parameters a and b are chosen in a plane of 
layer. The parameter c of cylindrical lattice is indefinite, 
the thickness of layer d, and also longitudinal and 
azimuthal interlayer shifts are used instead of it. The basis 
of nanotubes crystallography is expression for radiuses of 
their layers: 

0= +m mdρ ρ    (1) 

where ρ0 – internal radius of nanotube, m = 0–M-1  – 
number of the layer, M – quantity of layers.  

  
 
 
 
 
 
 

 
    circular     chiral         roll    cone  

Fig. 1. The general types of nanotubes 
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At a cylindrical bend of layer the origin of Bravais 
cell in radial direction is chosen on the level on which the 
value of circular parameter b of cylindrical lattice does not 
depend on curvature of cell. For example, such level of 
cell of sulfide and chrysotile nanotubes coincides with a 
sheet of metal; in case of carbon nanotube the choice is 
obvious. Thus, the choice of nanotube cells origin in a 
radial direction is not arbitrary. 

Availability of special direction – the nanotube  
axis – allows proposing a single axes selection for its 
structure description. Let us assume rectangular Bravais 
cell (Fig. 2) is formed by basic vectors: ra , closest to 
nanotube axis, and 

r
b , closest to its cross section; at such 

axes selection the chiral angle εc is minimal. Let us set the 
atom position in a plane layer by vector = +

r r r
n j n jr r rν ν , 

where = +
rr r

nr na bν ν  – the plane lattice vector, n and  
ν – integers, j – the number of atom in Bravais cell. Then 
vector r

jr , determining atom position in Bravais cell, has 

components xj, yj and zj along vectors ra , 
r
b and 

lengthways the normal to layer, accordingly. Hence, 
vector r

n jr ν  has components: an + xj – in direction of 

vector ra , bν + yj – along vector 
r
b  and zj – lengthways the 

normal to layer. It is necessary to note that coordinate zj 
may have any sign because of the special choice of cell’s 
origin in the radial direction. 

To transform coordinates in cylindrical system let 
us enter in the layer’s plane two two-dimensional 
rectangular systems of coordinates {y’, z’} and {y, z}  
(Fig. 2), having the same origin and turned respectively to 
each other on angle εс, thus the axis z is parallel to 
nanotube axis and axis y’ – to vector 

r
b . Then in the 

system {y’, z’} atoms have coordinates: ′ = +j jy b yν ν , 
′ = +nj jz an x . The transformation of coordinates from 

system {y’, z’} to system {y, z} gives: 
( ) ( )
( ) ( )

cos sin

sin cos

 = + − +


= + + +

n j j c j c

n j j c j c

y b y an x

z b y an x

ν

ν

ν ε ε

ν ε ε
.       (2)  

After discovering carbon nanotubes the alternative 
description of nanotubes structure was proposed, not using 
concepts "unit cell" and "cylindrical lattice" [8, 9]. 
Nanotube was built with the help of a set of helical lines, 
along which all atoms were located. This is equivalent to 
description of usual crystal as a set of sublattices which 
number is equal to number of atoms in unit cell. It is 
obvious that such approach complicates both the analysis 
of effects associated with local point symmetry, and use of 
the structural data of plane analogues. The way of 
definition of cylindrical layer with the help of pair integers 
(chiral indexes), proposed there, is rather convenient [10]. 
But the units (structural hexagons) in terms of which these 
numbers are expressed are not universal, as there is no 

firm belief that the layers of all nanotubes have hexagonal 
symmetry. Really, the mixed-layer nanotubes SnS2/SnS 
[11] were synthesized recently, which SnS-layers have no 
structural hexagons and, hence, their chiral indexes cannot 
be determined. It is obvious that the chiral indexes 
expressed in terms of unit cells can be universal only. 

As the axis z coincides with nanotube axis, the 
cylindrical coordinates of atom in system {ρ, φ, z} for 
circular, chiral and roll structures (Fig. 1) result by 
equating of value ynvj to the length of appropriate curve’s 
arch in cross section of nanotube. 
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jrr  
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 nanotube axis 
     z’    z 
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     b
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              y 
 

Fig. 2. The coordinate systems in layer,  
oriented respectively to nanotube axis 

2. Circular Nanotube 

The structure of circular nanotubes is most simple, 
as a chiral angle εc = 0, therefore parameter a of Bravais 
cell is measured in direction of nanotube’s axis, and 
parameter b – in direction of its cross section circle. The 
sites of cylindrical lattice are located on the site circles, 
which, in turn, are located on cylindrical surfaces (Fig. 3b). 
The atom coordinates (2) in system {y, z} become simpler: 

 
= +

 = +

j j

nj j

y b y

z an x
ν ν

   (3) 

Limits of variation of integer parameters: n = 0–(N-1),  
v = 0–(p-1), where N – number of site circles on the 
cylinder, p = 2πρ/b – number of cells on the circle of 
cylinder, integer by definition. 

In a case of multiwall circular nanotube taking into 
consideration (1) we get: 

0= + = + +

 = + +

 = + + ∆

mj m j j

j
m j m

m m

mnj j m

z md z

yb

z an x z

ν

ρ ρ ρ

ν
ϕ ε

ρ ρ
           (5) 
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Fig. 3. The projecting and parameters of the circular nanotube 
 

 

where values εm and Δzm determine the origin of m-th 
layer in azimuthal and longitudinal directions, 
accordingly, in relation to the general origin. As a matter 
of fact, these values define the mutual ordering of layers 
in these directions, and also the polytype modifications, 
formed by appropriate interlayer shifts. For example, 
Whittaker [5] believed angular phases of layers εm are 
absolutely random (Whittaker’s model); the azimuthal 
ordered model was proposed later [12]. For example, the 
experimental researches of chrysotile nanotubes show that 
the most widespread polytype modifications are 
monoclinic (clinochrysotile, Δzm = mΔz, Fig. 4) and 
orthogonal (orthochrysotile, Δzm = 0) [12]. The radial 
ordering of multiwall circular nanotube layers depends on 
realizing of close packing condition (1) at integer numbers 
pm of cells on the circles of every layer. Let’s assume there 
is an integer number pm of unit cells on a site circle of  

m-th layer 2
= m

mp
b

πρ . Then the number of cells on a 

circle of the following layer is equal to: 

1
2 ( ) 2 2

+
+

= = + = +m m
m m

d dp p g
b b b

π ρ πρ π        (6) 

where 2
=

dg
b
π  – generator of cylindrical lattice [5, 12]. 

It is visible that when p0 and generator are integers the 
numbers of cells on the circles of every layer are integers 
too, that is the close packed circular nanotube takes place. 
Thus the number pm varies on the value of generator at 
transition from one cylinder to another: pm = p0 + mg. 

The generator g is a number determined by the 
sizes of unit cell. This implies that the layer structures 
capable to ensure the integer generator by their parameters 
b and d, can form perfect enough circular nanotubes only 
(for example, the generators of chrysotile and carbon 

"armchair" nanotube are equal to 5 with high accuracy). In 
Fig. 5 the examples of cross sections of circular lattices 
with various values of generator are given. 

 
 
 
 
 
 
 
 
 
 
  a 
 
 
      Δzm 

 
       d       Δz 

 
Fig. 4. The longitudinal section of monoclinic nanotube lattice 

 

  
a) b) 

 

Fig. 5. The cross-sections of circular lattices  
with g = 4 (a) and g = 5 (b) 
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3. Chiral Nanotube 

In the case of singlewall chiral nanotube equating 
of coordinate ynνj to the length of circle arch in cross 
section (Fig. 6) according to (2) gives: 

=n jy ν ρϕ  → 

→ ( ) ( )1 cos sin = + − + n j j c j cb y an xνϕ ν ε ε
ρ

     (7) 

The expressions (2) and (7) determine z- and φ-
coordinates of atoms, respectively, on a cylindrical surface 
with radius ρ. Thus the ρ-coordinate of atom is determined 
by condition = +j jzρ ρ . 

To form the regular singlewall chiral lattice it is 
necessary that the "end" of a layer was correctly combined 
with its "beginning", that is there should be an integer p of 
parameters b on a turn of site line (along vector 

r
b  of a 

plan layer), and the step of this line (along vector ra  of a 
plan layer) should be equal to an integer s of parameters a. 
It means that (numbers of unit cells start from zero): 

 , , ,0,

, , ,0,

2 +

+

− =
 =

n p j n s j

n p j n s jz z

ϕ π ϕ
  (8) 

The substitution of (2) and (7) in (8) gives: 

tg =c
as
bp

ε  ( ) ( )2 21
2

= +as bpρ
π

       (9) 

Thus, addition of two integers p and s to 
parameters of plane layer completely determines the 
singlewall chiral nanotube structure. By analogy with 
indexes introduced for carbon nanotubes [10], let’s name 
these integers as chiral indexes of singlewall nanotube  

(p, s). It is necessary to emphasize that these indexes are 
expressed in terms of Bravais cells. Taking that into 
account  

( ) ( )2 2
sin =

+
c

as

as bp
ε  and 

( ) ( )2 2
cos =

+
c

bp

as bp
ε  

the coordinates of singlewall chiral nanotube atoms can be 
written down as: 

( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2

2 2

2 2

1
2

2




= + +

 + − + =

+


+ + +
=

+

j j

j j
n j

j j
n j

as bp z

bp b y as an x

as bp

as b y bp an x
z

as bp

ν

ν

ρ
π

ν
ϕ π

ν

.     (10) 

Let’s consider a possibility of existence of 
multiwall close packed chiral nanotube with radiuses of 
layers, forming an arithmetic progression. From (1) and 
(9) it follows that the problem turns into existence of the 
integer solutions of equation 

( ) ( )2 2
0

1
2

+ = +m mas bp mdρ
π

         (11) 

concerning variables pm and sm – the chiral indexes of m-
th layer. It is obvious that generally there are no such 
solutions. Hence, multiwall close packed nanotube is 
possible only if the values pm and sm in (11) under 
condition of (1) become integer owing to small distortions 
of layer structure. Whittaker pointed this problem in the 
50-th of the last century, writing that the layers of a 
multiwall chiral lattice should have small distortions [4]. 
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Fig. 6. The projecting and parameters of the chiral nanotube 
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There is another possibility that the condition (1) 
with integers pm and sm does nоt implement exactly. Let’s 
assume that the layers, as it is widely spread among layer 
crystals, inherit orientation of each other, that is have 
identical or rather close chiral angles. In this case it is 
possible to propose the recurrent procedure allowing 
determination parameters of nanotube layers from 
parameters of internal layer. Let’s assume internal layer 
has chiral indexes (p0, s0), determining its initial radius ρ0 
and chiral angle εс0. Then the chiral indexes of m-th layer 
can be determined from εс0 and radius of the previous 
layer ρm-1 as the nearest integer values of variables  

( )1
0

2
cos− +

= m
m c

d
p

b
π ρ

ε  

and ( )1
0

2
sin− +

= m
m c

d
s

a
π ρ

ε        (12) 

and then the chiral angle of layer and its radius – from: 

tg = m
cm

m

as
bp

ε  ( ) ( )2 21
2

= +m m mas bpρ
π

 

In this model the chiral indexes (pm, sm) of all 
layers are univalently determined by indexes of internal 
layer (p0, s0), therefore the last can be considered as chiral 
indexes of multiwall nanotube. It is obvious that owing to 
this procedure the radiuses of multiwall chiral nanotube’s 
layers deviate from progression (1), and their chiral angles 
εcm have some variations too (Fig. 7). The proposed 
procedure of chiral indexes determination can be used 
both in the nanotubes structural analysis and for 
calculation of their physical characteristics: band 
structure, phonon spectrum and so on. 
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Fig. 7. The dependence of chiral angle εcm  

(degrees) on the number of layer 

It follows from (12) that, in view of variations 
associated with rounding off, the number of cells on the 
turn of helix (first chiral index) can be written down as: 

0 0cos≈ +m cp p mg ε . 
Hence, if the value gcosεc0 – integer, the number of 

cells on the turn of helix of every layer is integer too (p0, 
as well as earlier, is supposed integer), that is a perfect 
enough chiral nanotube can be formed. The analysis of 
lattice parameters b and d of plane layer compounds 
shows that, for example, the generators g of WS2, MoS2 
and SnS2 have values 7.11, 7.08 and 5.08, respectively. 
From experimental data it is known that the chiral type of 
structure prevails among the corresponding nanotubes and 
correction to cosine of chiral angle typical value (5–7º) 
results in much better conformity to integers. 

It is possible to write down from (10) the 
coordinates of multiwall chiral nanotube atoms as: 

( ) ( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

2 2

2 2

2 2

1
2

2




= + +

 + − + = +

+


+ + +
= + ∆

+

mj m m j

m j m j
mn j m

m m

m j m j
mn j m

m m

as bp z

bp b y as an x

as bp

as b y bp an x
z z

as bp

ν

ν

ρ
π

ν
ϕ π ε

ν

  (13) 

parameters εm and Δzm were defined above. The proposed 
model of multiwall chiral nanotube is not the only 
possible and complete. The point is that calculations of 
basal reflexes profiles for some structures at small s0 
shows the presence of superperiod, associated with step 
character of sm variation, which is not observed in the 
experiment. However it seems obvious that at the 
presence of interlayer splits the system of cylindrical 
layers can not be strictly coaxial. Thus, it is possible as 
development of model by displacement of axes of layers 
up to their contact, and realization of close packing by the 
linear defects. 

4. Roll Nanotube 

There is, on the face of it imperceptible, but 
essential similarity between coaxial and spiral structures: 
after displacing a coaxial structure layers respectively to 
each other along the radial cut on thickness of layer d the 
spiral structure is formed (Fig. 8). This implies that the 
number of cells on spiral nanotube turn should vary on the 
value of generator at transition from turn to turn, as in the 
case of coaxial nanotube at transition from layer to layer. 

The crystallographic "directions", corresponding to 
direction 

r
b  of a roll nanotube layer (Fig. 9), are the three-

dimensional spiral-helical lines, which kind depends on 
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the model of layer. The model of strong layer assumes 
that it can not have distortions, and the dependence of 
coordinate z of a spiral-helical line’s point on the length of 
its plan projection L has linear character: z = Ltgεc. Then 
the chiral angle εc is parameter of lattice, but the 
longitudinal interlayer shift is indefinite. If the layer is 
capable to distortions (model of elastic layer [7]), the 
longitudinal interlayer shift can be constant [12] and be 
used as parameter of lattice. Then dependence z(L) 
becomes nonlinear and chiral angle becomes indefinite. 
Let's consider model of strong layer, as available 
experimental data do not give examples of elastic model. 

 
 

 
 

Fig. 8. The mutual transformation of coaxial  
and spiral structures 

 
An unlimited Archimedes spiral with step d looks 

like: 

= Φρ τ     
2

=
d

τ
π

  (14) 

where ρ and Ф – polar coordinates.  
It follows from (14) that the radiuses of spiral turns 

form an arithmetic progression that is the spiral structures 
are close packed by definition. The length of spiral as a 
function of polar angle: 

( )2 2 2

0
1 1 ln 1

2

Φ  = + Φ Φ = Φ + Φ + Φ + + Φ∫   
L d τ

τ  

In the case of real nanotubes Φ – is large enough 
value. Hence, it is possible to neglect the unit under 
radical and the logarithmic addendum, which is the part of 
a percent from the first. Then: 

 
2

2
Φ

≈L τ       (15) 

Let's develop a layer of unlimited roll nanotube on 
a plane (Fig. 10) keeping orientation (angle εc) of its 
crystallographic directions relative to the nanotube axis. 
From Fig. 10 it is visible that at constant parameters a, b, 
d, and εc all crystallographic equivalent unlimited roll 
lattices are determined by displacement the layer 
lengthways y’ on a distance 0 ≤ Δb < b (is shown in Fig. 
10 by shaped line). Any limited (that is having finite 
internal and external radiuses) roll lattice at the specified 
constant parameters is a part of one of this unlimited 

lattices. Parameter Δb, named by azimuthal shift, 
determines the azimuthal shift polytype modification of 
roll nanotube. 

Thus, the beginning of limited roll lattice is moved 
along axis y’ on the distance Δb plus an integer number ν0 
of b-parameters. Then in the system {y’, z’} atoms have 
coordinates: ( )0′ = + + ∆ +j jy b b yν ν ν , ′ = +nj jz an x  – in a 
layer’s plane and zj – lengthways the normal. The 
transformation of coordinates from system {y’, z’} to 
system {y, z} gives: 

( ) ( )
( ) ( )

0

0

cos sin

sin cos

  = + + ∆ + − + 


 = + + ∆ + + +  

n j j c j c

n j j c j c

y b b y an x

z b b y an x

ν

ν

ν ν ε ε

ν ν ε ε
 

Projecting layer on the roll surface, that is 
equating ynνj to the value L from (15) and taking into 
account (14), we have: 

( ) ( ){ }
( ) ( ){ }

( ) ( )

0

0

0

2 cos sin

2 cos sin

sin cos

  = + + ∆ + − + + 

  Φ = + + ∆ + − +  

  = + + ∆ + + + 

n j j c j c j

n j j c j c

n j j c j c

b b y an x z

b b y an x

z b b y an x

ν

ν

ν

ρ τ ν ν ε ε

ν ν ε ε
τ

ν ν ε ε

(16) 

– the cylindrical coordinates of roll nanotube 
atoms. 

The starting point of a roll lattice corresponds to 
(16) under condition of equality of values n, ν, xj, yj and zj 
to zero: 

( )

( )

( )

0 0

0
0 0

0 0

2 cos

2 cos

sin

 = + ∆

Φ = = + ∆

 = + ∆


c

c

c

b b

b b

z b b

ρ τ ν ε

ρ
ν ε

τ τ
ν ε

         (17) 

Let's move the origin of coordinates in this point. 
Then (16) transforms into: 

( ) ( )

( ) ( ){ }
( ) ( )

2
0

2
0 0

2 cos sin

1 2 cos sin

sin cos

  = + + − + +  
  = + + − + −  

 = + + +


n j j c j c j

n j j c j c

n j j c j c

b y an x z

b y an x

z b y an x

ν

ν

ν

ρ ρ τ ν ε ε

ϕ ρ τ ν ε ε ρ
τ

ν ε ε

(18) 

– the final expression for coordinates of limited 
chiral roll nanotube atoms, where φnvj = Фnvj – Ф0. 

The term "chiral" is used because here angle εc has 
the same meaning as in case of coaxial chiral nanotubes - 
orientation of one of the layer’s crystallographic directions 
relative to the nanotube axis. Unlike the coaxial chiral 
nanotubes, in this case a chiral angle εc determines 
simultaneously both rotary and longitudinal shift 
(monoclinic) polytype modifications, as it sets both the 
turn of layer relative to direction of nanotube’s axis and 
the interlayer shift. In case Δb = 0 and εc = 0 the polytype 
modification is called orthogonal. 
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Fig. 9. The projecting and parameters of the roll nanotube 
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Fig. 10. The roll layer developed on a plane 

 
     nanotube axis 
       z            M2 
 
 
     M1 
 

      M0                    y’ 
                y’2 

      Δz1,0 

 
        y’1 
   εс 

              y10  y1     y20    y2          y 
 

Fig. 11. The spiral-helical line developed on a plane 
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Let’s divide a roll lattice into the turns. In Fig. 11 
the limited three-dimensional spiral-helical line y’, 
developed on a plane {y, z}, is shown, Mm – initial lines of 
roll nanotube turns (as m-th is named the turn, the starting 
radius of which corresponds to this value of m). The 
length ΔL of the limited plan spiral, according to (15) and 
(17) looks like: 

( )
2

2 2 0
0 0 0

2
2 2 2

 ∆ = − = Φ − Φ = + = + 
 

L L L ρτ τϕ τϕ
ϕ ρ ϕ

τ
(19) 

at φ = 2πm it is possible to obtain coordinates of crossing 
points of y- and y’-axes with m-th turn’s initial line: 

2
02= ∆ = +m my L m dmπρ π  

( )2
c 0 c' cos 2 cos= = +m my y m dmε πρ π ε     (20) 

Hence (Fig. 11), y-coordinate of starting point of 
the m-th turn 

( )2 2
0 c 0 c' cos 2 cos= = +m my y m dmε πρ π ε  

Equating this to expression (19) we obtain the 
azimuthal 

( )2
0 0 0 0

1 2= + −m myϕ ρ τ ρ
τ

     (21) 

and from (20) –  

( )2
0 0' sin 2 sin cos= = +m m c c cz y m dmε πρ π ε ε      (22) 

longitudinal coordinates of starting points of the spiral’s 
turns, and also the longitudinal interlayer shift in these 
points 

( )0 1,0 0 02 2 1 sin cos+∆ = − = + +  m m m c cz z z d mπρ π ε ε  (23) 
It is necessary to notice, the less is relation d/ρ0, the 

less is longitudinal interlayer shift dependence on the 
layer number m. 

Let's calculate the length of the m-th turn. From (20): 
( )1 0 c' ' ' 2 2 1 cos+∆ = − = + +  m m my y y d mπρ π ε  

Then the number of parameters b, going in the  
m-th turn, 

0 0
c c

' 2 22 cos cos∆    = = + + = + +   
   

m
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y d d gp m mg
b b b b b

πρ πρπ π
ε ε 

0 0
c c

' 2 2cos cos
2

   = = + + = + +   
   

d d gp m mg
b b b b b

πρ πρ
ε ε                   (24) 

The generator g, previously introduced, appears in 
the right part of (24). In a practically important case of 
small εc (24) transforms in: 

0
0

2
2 2

≈ + + = + +m
g gp mg p mg

b
πρ , 0

0
2

=p
b

πρ  

that is at transition from turn to turn the number of sites on 
a turn changes on the value of generator as for circular 
lattices. If p0 is integer the numbers pm are integers or 
semi-integers depending on the evenness or oddness of 
the generator, accordingly. Hence, in such roll lattices 
with even generator each turn starts from site; in the case 

of odd generator the even turns starts from site, but odd 
ones – from interstitial. In particular, the unlimited and so-
called "multiple" lattices, in which initial radius ρ0 is equal 
to an integer number of parameters d, are the same  
(Fig. 12). 

In the case of small εc expressions (21)-(23) 
transform into 0 2=m mϕ π , ( )2

0 02≈ +m cz m dmπρ π ε , 

( )0 02 2 1∆ ≈ + +  m cz d mπρ π ε , respectively, and the 
initial radiuses of turns correspond to (1). Each turn of the 
multiple structure with even generator, and also an even 
turn of the structure with odd generator start from the site, 
therefore coordinates of their atoms can be determined 
from (18) in approach of small εc by replacement ρ0 → ρm 
and addition of the value zm0 from (22) to z-coordinate. 
The azimuthal angle of atom φmnvj thus measured from the 
beginning of appropriate turn is: 

( )

( ){ }
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2

2

2
0

2

1 2

2

  ≈ + + − + +  
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
 = + + + + +

mn j m j j c j

mn j m j j c m

mn j j c j

b y an x z

b y an x

z an m dm b y x

ν

ν

ν

ρ ρ τ ν ε

ϕ ρ τ ν ε ρ
τ

πρ π ν ε

  (25) 

In the case of even generator index ν = 0-(pm-1). 
There are pm-1/2 whole unit cells or pm+1/2 sites 
belonging to this turn in the case of even turns of structure 
with odd generator. Hence, index ν vary in limits  
ν = 0-(pm-1/2).  

 

  
a) b) 

 
Fig. 12. The cross-sections of the multiple roll lattices  

with g = 4 (a) and g = 5 (b) 
In the case of odd turns of structure with odd 

generator each turn starts from interstitial, which means 
addition of value 1/2 to the index ν in (25): 
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. 
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Here the pm-1/2 of whole unit cells take place too. 
However the number of sites belonging to this turn is equal 
to pm-1/2 too, as the "last" site of odd turn does not belong 
to it, but is the "first" for the following (even) turn. This 
means that index ν vary in limits ν = 0-(pm-3/2) on the odd 
turn. The case of the odd generator and semi-integer  
p0 = 2πρ0/b is the very same as the case of even generator. 
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КРИСТАЛОГРАФІЯ КОАКСІАЛЬНИХ І 

СПІРАЛЬНИХ НАНОТРУБОК ДОВІЛЬНОГО 
СКЛАДУ 

 
Анотація. Отримано циліндричні координати атомів 

багатошарових ахіральних, хіральних та спіральних нано-
трубок довільного хімічного складу внаслідок проектування 
структури плоского аналогу на відповідну поверхню. Для опису 
структури нанотрубок використано коаксіальні та спіральні 
циліндричні решітки, комірки Браве та індекси хіральності, 
виражені в цих комірках. Запропоновано модель багато-
шарової хіральної нанотрубки з нещільним пакуванням шарів. 

 
Ключові слова: нанотрубка, хіральний, спіральний, рулон. 
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