ЕЛЕКТРОФІЗИКА

УДК: 533.9, 524.1

Дойков Д. Н.¹, Храпатый С. В.²

¹Одесский национальный морской университет ²Киевский национальный университет им. Т. Г. Шевченко E.mail: doikov@mail.bg

Эволюция электронной функции распределения по энергиям в запыленной плазме, облучаемой жесткими излучениями.

Резюме. Работа посвящена изучению разреженной низкотемпературной плазмы (далее НТП) с конденсированной дисперсной фазой (далее КДФ) при характерных низких термодинамических температурах (далее НТТ) Т = 50 – 100К для двух смесей. Первая - углеродно-кислородная смесь (далее С-О-зона), вторая гелиево-железная смесь (далее Fe-He-смесь). Для достаточно интенсивных потоков заряженных частиц – продуктов ядерного распада внутри рассматриваемых систем (0.1 – 0.6МеВ) вычислены электронные функции распределения по энергиям f(E) вторичных Оже электронов. По результатам расчетов доказано принципиальное отсутствие функциональной зависимости у f(E). Она носит диаграммный характер и сильно зависит от химического состава смеси, точнее от атомных номеров элементов. Показаны последствия облучения НТП с КДФ-плазмы потоками электронов и позитронов, связь между ионизационными потерями от электронов, позитронов и гистограммами - f(E). На основании полученных результатов сделаны выводы относительно возможностей комбинирования методов Оже- и у- спектроскопии в современных прикладных мультидисциплинарных приложениях. Полученные гистограммы использованы для определения способов поддержания газовой составляющей плазмы в ионизованном состоянии за счет превалирования реакций зарядового обмена над рекомбинационными процессами многозарядных ионов, возникающих в результате Оже-процессов.

Ключевые слова: конденсированная дисперсная фаза, низкотемпературная плазма в магнитном поле, Оже-процессы в плазме и твердых телах.

Введение. Присутствие частиц КДФ в НТП, также как и тяжелых ионов приводит к изменению энергетического и зарядового баланса в ней [1]. Если рассматриваемую систему облучать жесткими излучениями в виде электронов и позитронов с энергиями 0.6 МеВ, то возникает специфическое состояние НТП с КДФ. Ионизационные потери на частицах КДФ были рассмотрены в предыдущей работе. В настоящей статье будем рассматривать взаимодействие быстрых внешних потоков электронов и позитронов с газовой составляющей плазмы и одновременно учитывать только фотоэлектроны, инжектируемые пылевыми частицами. Взаимодействие быстрых частиц с атомами газа и твердого тела происходят по следующей схеме. Быстрые частицы, имея длину волны де-Бройля порядка или меньше размеров атомных К-оболочек, создают именно Квакансию. При таких условиях ионизирующие частицы максимально быстро теряют энергию и термализуются. У всех атомов периодической таблицы Менделеева после бериллия запасенная энергия ионизации К-вакансии расходуется частично на энергию каскадов, разрешенных правилами отбора с верхних уровней, а остальная – на срыв Оже-электронов с верхних атомных уровней [3]. В интересующей нас холодной плазме единственным источником поддержания НТП с КДФ является ионизация вещества продуктами радиоактивного распада – высокоэнергичными частицами [3]. Метод, использующий формирование Оже-электронов в результате ионизации в виде образования К-, реже L-вакансий атомных уровней называется Оже-спектроскопией [2, 4]. Он и являет-ся основным рассматриваемым вопросом настоящей среды.

1. Позитронная спектроскопия НТП с КДФ. В последние тридцать лет опыты с использованием потоков позитронов в основном использовались при изучении поверхностных свойств твердых тел, при разработке чувствительных к ним датчиков космических лучей. Одновременно интенсивно проводились опыты на биологических тканях с использованием, излучающего позитроны, радиоактивного фтора, которые закончились созданием современных ПЭТ (позитронных эмиссионных томографов). Диагностическая ценность позитронов во всех приведенных случаях состояла в том, что из-за ядерного происхождения эти частицы производят комбинированное воздействие на среду. Вопервых, они испытывают ионизационные потери по указанному выше механизму. Во-вторых производят аннигиляцию либо на 2 γ -кванта (E = 0.511 MэB) при достижении тепловых скоростей, либо на один γ -квант (E = 1.022 МэВ), при взаимодействии с К-электронами атомов. Собственно, первый механизм (однофотонная аннигиляция) лежит в основе работы ПЭТ. Второй механизм в сочетании с первым может быть использован при спектроскопии НТП с КДФ. Основные результаты и соотношения по позитронной спектроскопии. Позитронная спектроскопия НТП с КДФ была подробно рассмотрена в работах [2], [5]. Ясно, что он включает в себя Оже-эффекты. Позитроны перед аннигиляцией испытывают многократные столкновения с К-оболочками атомов, потом, когда их энергия становится равной энергии атомного К-уровня – аннигилируют с К-электроном. При этом, как и случае с обычной ионизацией, происходит образование конечной К-вакансии. Для лабораторной плазмы данный вид успектроскопии будет рассмотрен в следующей статье.

2. Оже-спектроскопия НТП с КДФ. Суть данного вида диагностики изложена выше в [2]. Здесь же представим решение задачи для конкретного химического состава НТП. Для указанных ниже атомов представим результаты расчетов продуктивности их квантовых уровней в формировании Оже – электронного спектра, выражаемого в дальнейшем функцией (точнее гистограммой) распределения Оже-электронов по энергиям. Следует прокомментировать методику расчетов, проведенных первым автором настоящей статьи в работах [2, 6]. Начнем с физической схемы взаимодействия электронной и позитронных компонент с соответствующей плазмой по схеме:

$$A + e^{-}(e^{+}) \to A^{(k+1)+} + (k+1)e^{-}_{Auger}$$
(1)

Здесь $A^{(k+1)+}$ -- степень ионизации иона-остатка после ионизации атома A, каскадного заполнения К-вакансии по правилам отбора квантовых переходов:

 $2p \rightarrow 1s, 3d \rightarrow 2p \rightarrow 1s, 4f \rightarrow 3d \rightarrow 2p \rightarrow 1s$. Остальные разрешенные переходы нами не рассматривались из-за их значительно меньшей вероятности. Действующее число атомов бралось равным 10¹⁸см⁻². В этих условиях электроны (позитроны) испытывают в рамках такой ячейки около ста соударений с образованием К-вакансии. Это же подсказывает формула Бете-Блоха. Для Ожеспектроскопии важно знать, что такой подход справедлив только для элементов, с атомными номерами, большими 4 (за бериллием). Для остальных легких элементов (H, He, Li, B) каскады и Оже- переходы в континуум правилами отбора квантовой механики запрещены. Здесь может быть только обычная ионизация, не дающая существенного вклада в f(E). Она происходит при низких кинетических энергиях электронов. Позитроны при этих условиях уже не существуют. Другое дело, сами Оже электроны уже являются ионизующими агентами. Однако это уже отдельная задача статистической физики, выходящая за рамки настоящей статьи. Отдельно можно отметить, что при достаточно высокой плотности вещества или действующего числа атомов, как это может при нормальных условиях, такие среды излучают характерное ультрафиолетовое и оптическое нетепловое излучения, наблюдавшееся со спутников во время хорошо известной техногенной катастрофы на Чернобыльской АЭС, падения больших количеств радиоактивной метеорной пыли. При использовании Оже спектроскопии удобно также анализировать молекулярные спектры. Их возбуждает низкоэнергетическое крыло приводимой ниже на рисунках функции - f(E). Для наглядности и полноты интерпретации будем приводить как табличные, так и отобранные графические данные. Подробные формулы, полученные первым автором можно найти в работах [2, 5].

3. Результаты расчетов f(E) для C-O – плазмы. На приводимых ниже гистограммных изображениях однозначной функциональной зависимости не просматривается. Это связано с тем, что при использовании многокомпонентных атмосфер разные уровни атомов могут иметь близкие значения энергии как Оже-электронов, так и атомных каскадов. Практическое использование полученных данных возможно только гистограммном либо табличном виде. Энергетическая структура f(E) говорит о следующем:

- 1. В НТП с КДФ Оже-компонента f(E) приводит к наличию больших градиентов энергии между нею и холодным, равновесным (максвелловским) компонентами;
- 2. Разогрев КДФ происходит путем ионизационных потерь Оже-электронной компоненты на L, М уровнях и взаимодействием с твердотельными свободными электронами;
- 3. Внутри частиц появляются большие градиенты температур, приводящие к интенсивным тепловым потокам в центральную их часть КДФ.

Рассмотрим несколько случаев таких, в которых у всех атомов случайным образом происходит образование К-вакансий в результате движения высокоэнергичных частиц.

ElengM1									1639	2152	2673	3300	3468	3718	3944	4094	4289	4511	4727	4823
NumM1									359	2385	2009	4435	3457	2094	1675	1118	809	970	1083	1166
ElengL3							1092	1293	1548	2004	2452	2991	3120	3323	3498	3594	3733	3896	4049	4080
NumL3							810	3332	8643	5600	5172	1294	1218	1895	1479	1364	1437	1438	1493	1600
ElengL2						915,5	1092	1292	1548	2002	2450	2988	3116	3317	3491	3585	3722	3883	4034	4063
NumL2						3398	8645	6272	548	831	1001	1317	1426	322	488	723	838	984	1082	1234
ElengL1						883,1	1053,5	1247	1498	1940	2375	2907	3021	3215	3383	3442	3623	3758	3903	3920
NumL1		9974	9940	9066	9818	6342	544	391	438	812	1172	167	205	261	340	607	706	1005	1249	1571
NumK		26	60	94	182	260	1	5	12	46	102	1	0	2	9	17	27	47	73	114
EbM3												34	33	38	43	48	53	59	66	73
EbM2												35	33	39	44	49	55	61	68	75
EbM1								11	14	20	29	48	56	64	72	80	89	98	107	117
EbL3						38	58	80	104	168	249	357	404	459	518	580	645	713	785	860
EbL2						39	58	81	104	170	251	360	408	465	525	589	656	726	800	877
EbL1		16,5	20,3	28,5	48,5	71	97	126	154	232	326	441	503	567	633	732	755	851	931	1020
Aug		254	365	491	787	954	1150	1373	1652	2172	2701	3348	3524	3782	4016	4174	4378	4609	4834	4940
Ion		288	403	538	870	1075	1308	1564	1844	2476	3206	4041	4494	4970	5470	5995	6544	7117	7715	8338
m(O-C)	7,80E-02	2,80E-01	4,70E-06	6,20E-01	1,80E-02	1,90E-04	4,90E-03	3,00E-05	2,80E-04	1,20E-04	5,40E-05	2,30E-05	5,60E-07	5,30E-06	4,50E-07	1,20E-05	6,60E-06	7,20E-04	1,30E-04	2,30E-04
Elem	He	υ	z	0	Ne	Na	Mg	Al	Si	s	Ar	Ca	Sc	Ξ	>	ۍ	Mn	Fe	ථ	Ņ
At. mass	4	12	14	16	20	23	24	27	28	32	40	40	45	48	51	52	55	56	59	58
El. Num.	7	9	2	~	10	11	12	13	14	16	18	20	21	52	23	24	25	26	27	28

Таблица 1. Сводная таблица спектроскопических данных для различных элементов

Рис. 1. Распределение десятичного логарифма нормированного распределения электронов lg (N) от десятичного логарифма энергии lg (E) для a) О-С-зоны и б) Fe-He-зоны

4. О-С-зона. В первой рассматриваемой среде имеем атомы углерода, кислорода и неона. В табл.1 химический состав учитывает специфику задачи и предоставлен в относительных единицах к полной массе вещества в занимаемом объеме пространства. Заголовки столбцов Ion - энергия ионизации, Aug энергия Оже-электрона; EbL1, EbL2, EbL3, EbM1, EbM2, EbM3 - энергия связи термов на L, M - уровнях; NmK - количество Оже-электронов, которые покинули уровень К; NmL1 - уровень L1 и т.д., ElengL1 – энергия Оже-электронов L1 – уровня и т.д.

Избранную среду можно считать углеродно-кислородно-неоновой в которой остальные элементы являются примесями. Несмотря на их малый вклад в энергобаланс видно, что они наполняют среду Оже-электронами широкого спектра энергий. Значения количеств Оже-электронов, покинувших соответствующий уровень, приводятся из расчёта на 10⁴ атомов. Чем выше уровень, тем больше энергия электрона (из энергии ионизации вычитается энергия связи уровня).

Подробный формализм представленных здесь расчетов содержится в [2, 6]. Из проведенных в настоящей статье результатов видно, что основным преимуществом изложенного метода Оже-спектроскопии – возможность вызывать и, если необходимо, наблюдать нетепловые излучения в различных объектах и делать выводы о процентном соотношении элементов с малым атомным номером к элементам группы железа, когда остальные методы дистанционных измерений ничего не подобного не позволяют сделать. В рассматриваемых нами средах температуры очень низкие (50–100 K), поэтому среда хорошо диагностируется предложенным методом. Диаграммный рис.1а. позволяет выявить главный компонент распределения F(E) кислородно-углеродной среде. В отличие от Fe-Ne-зоны здесь превалируют разрешенные $2p \rightarrow 1s$ каскады. А кванты, порожденные каскадами, хорошо разрешаются спектроскопическим оборудованием, поскольку, согласно табл. 1 и 2 их энергии различаются для разных элементов на десятки и сотни электрон-вольт. Конечно, электронная составляющая газообразной части НТП имеет большую часть запасенной энергии ионизованного состояния и после выброса Оже-электронов в окружающую среду образуются как минимум двухзарядные ионы. Здесь механизм следующий. Налетающая высокоэнергичная частица в сотни КеВ создает К-вакансию и с интервалом в 10⁻⁸ сек инжектируется у атомов углерода и кислорода только один электрон.

В результате имеем ионы C^{++} и O^{++} , а $2p \rightarrow 1s$ переход дает каскадный квант. В дальнейшем им надо комбинировать. Скорость такой рекомбинации в НТП сильно зависит от концентрации атомов НТП. Часто, в разреженных средах с низкой электронной концентрацией, время между парными столкновениями с электронами меньших кинетических энергий уступает времени парных столкновений между атомами. Тогда плазма самоподдерживается. Происходит перезарядка с нейтральными атомами. В этом состоит одна из причин поддержания лабораторной плазмы, плазмы ионосферы Земли.

Интересным является противоположный случай, когда легких элементов мало, а элементы с атомным номером вблизи железа много. Назовем такую среду Fe-He-зоной. По аналогии с предыдущей таблицей и рисунком представим ее в виде распределения химических элементов и продуцируемого ими распределения Оже-электронов по энергиям. В таких зона пространства спектр Оже электронов и энергий квантов каскадов лежит в жестких УФ- и мягких рентгеновских лучах. Таким образом наличие хотя бы малой присадки в среде с даже низкой интенсивностью быстрых электронов и позитронов продуцирует значительный спектр этих излучений.

В табл. 2 содержания химических элементов нормирована по числу частиц 10^8 . В столбцах: I – энергия ионизации, Aug – энергия Оже-электрона; EbL1, EbL2, EbL3, EbM1, EbM2, EbM3 - энергия связи термов на L, M - уровнях; NmK – количество Оже-электронов, которые покинули уровень K; NmL1 – уровень L1. Расчеты Оже-переходов с вышеуказанных уровней надо понимать например для атома углерода так, из 10^4 атомов углерода у 26 атомов образуется по 1 Оже-электрону. В обеих таблицах числа Оже-электронов размещены по указанным выше уровням.

Потоки жестких частиц в виде протонов, электронов и позитронов являются способом модулирования коллективных колебаний намагниченной плазмы. Такие коллективные колебания удобно регистрируются в радио диапазоне и инфразвуке и интенсивно развиваются. Как мы видим в такой плазме электронный компонент сильно зависит от Оже-процессов. На этом обстоятельстве основан один из критериев применения Оже-спектроскопии.

Fe-He-зона. В заданной зоне средние концентрации те же. Однако элементы ${}^{56}_{28}Ni$, ${}^{57}_{27}Co$, ${}^{44}_{22}Ti$ радиоактивны и расположены в порядке возрастания периодов полураспада. Элементы H, He в Оже-процессах участия не принимают.

Анализ результатов и выводы. Современные средства дистанционной диагностики НТР с КДФ включают в себя Оже-, позитронную спектроскопию. Основные результаты в этом направлении были получены при изучении КДФ

El. Num.	At.mass	Elem	m(Fe/He)	Ion	Aug	EbL1	EbL2	EbL3	EbM1	EbM2	EbM3	NumK	NumL1
28	56	Ni	0.75										
27	57	Со	0.034										
22	44	Ti	1.50E-03										
1	1	Н	2.30E-06										
2	4	He	1.40E-01										
6	12	С	3.60E-07	288	254	16.5						26	9974
7	14	N	1.50E-06	403	365	20.3						60	9940
8	16	0	9.70E-06	538	491	28.5						94	9906
10	20	Ne	1.00E-05	870	787	48.5						182	9818
11	23	NalK	6.00E-07	1075	954	70.9	38.5	38				260	6342
12	24	Mg	1.20E-05	1308	1150	96.5	57.8	57.6				1	544
13	27	Al	2.10E-05	1564	1373	126	81	80	10.6			5	391
14	28	Si	1.60E-04	1844	1652	154	104	104	13.5			12	438
16	32	S	1.20E-04	2476	2172	232	170	168	20.2			46	812
18	40	Ar	1.20E-04	3206	2701	326	251	249	29.2			102	1172
20	40	Ca	1.30E-03	4041	3348	441	360	357	48	34.7	34.3	1	167
21	45	Sc	2.30E-07	4494	3524	503	408	404	56	33	33	0	205
22	48	Ti	8.60E-04	4970	3782	567	465	459	64	39	38	2	261
23	51	V	2.10E-05	5470	4016	633	525	518	72	44	43	6	340
24	52	Cr	1.30E-03	5995	4174	732	589	580	80	49	48	17	607
25	55	Mn	1.00E-05	6544	4378	755	656	645	89	55	53	27	706
26	56	Fe	2.30E-03	7117	4609	851	726	713	98	61	59	47	1005
27	59	Co	3.20E-03	7715	4834	931	800	785	107	68	66	73	1249
28	58	Ni	3.70E-02	8338	4940	1020	877	860	117	75	73	114	1571

Таблица 2 Химический состав Fe-He-зоны, ее радиационные и кинетические характеристики слоя

нано-размеров в виде твердых частиц в НТП после получения надежных источников жестких частиц – радиоактивных изотопов. Эти методы позволяют создавать внутри КДФ мягкий рентген, по которому определялись структурные компоненты частиц

В данной работе было получено следующее:

- 1. Доказано правильность использования методы, при их правильном использовании годятся и для изучения НТП с КДФ. Для этого необходимо наличие либо внутренних источников радиоактивности, либо их внешних потоков.
- 2. Источником возбуждения и поддержания плазмы является Ожеэлектроны.
- 3. По спектрам, получаемым с помощью Оже-спектрографа, мы, с достаточной точностью делаем выводы относительно структуры газовой компоненты

Продолжение таблицы 2.

Elem	N1	Co	Fe	Mn	Cr	V	Ti	Sc	Са	Ār	S	Si	Al	Mg	NalK	Ne	0	N	С	Elem
antM1	8338	7715	7117	6544	5995	5470	4970	4494	4041	3206	2476	1844	1564	1308	1075	870	538	403	288	QuantKe n
aneM1	1571	1249	1005	706	607	340	261	205	167	1172	812	438	391	544	6342	9818	9906	9940	9974	NumL1
mM2	7318	6784	6266	5789	5263	4837	4403	3991	3600	2880	2244	1690	1438	1211.5	1004 1	821.5	509.5	382.7	271.5	QuantL1 en
antM2	3920	3903	3758	3623	3442	3383	3215	3021	2907	2375	1940	1498	1247	1053.5	883.1	738.5	462.5	344.7	237.5	ElengL1
engM2	1234	1082	984	838	723	488	322	1426	1317	1001	831	548	6272	8645	3398					NumL2
imM3	7461	6915	6391	5888	5406	4945	4505	4086	3681	2955	2306	1740	1483	1250.2	1036 5					QuantL2
intM3	4063	4034	3883	3722	3585	3491	3317	3116	2988	2450	2002	1548	1292	1092.2	915.5					ElengL2
sngM3	1600	1493	1438	1437	1364	1479	1895	1218	1294	5172	5600	8643	3332	810						NumL3
(bN1	7478	6930	6404	5899	5415	4952	4511	4090	3684	2957	2308	1740	1484	1250.4						QuantL3
INmu	4080	4049	3896	3733	3594	3498	3323	3120	2991	2452	2004	1548	1293	1092.4						ElengL3
anun I engN1	1166	1083	970	809	1118	1675	2094	3457	4435	2009	2385	359								NumM1

Elem	QuantM1	ElengM1	NumM2	QuantM2	ElengM2	NumM3	QuntM3	ElengM3	EbN1	NumN1	QuantN1	ElengN1
Si	1830.54	1638.54										
S	2455.8	2151.8	326									
Ar	3176.8	2671.8	544	505	2701							
Ca	3993	3300	1713	693	3313.3	785	693	3313.7	34.3	288		
Sc	4438	3468	2509	970	3491	958	970	3491	33	227	970	3491
Ti	4906	3718	3959	1188	3743	1160	1188	3744	38	278	1188	3744
V	5398	3944	4056	1454	3972	1595	1454	3973	43	1595	1454	3973
Cr	5915	4094	3777	1821	4125	2070	1821	4126	48	304	1821	4126
Mn	6455	4289	1538	2166	4323	3121	2166	4325	53	1252	2166	4325
Fe	7019	4511	1598	2508	4548	2007	2508	4550	59	1729	2508	4550
Co	7608	4727	1462	2881	4766	1513	2881	4768	66	1379	2881	4768
Ni	8221	4823	1411	3398	4865	1366	3398	4867	73	1084	3398	4867

- 4. Позитронная спектроскопия дает возможность дистанционного определения долевой составляющей КДФ в такой плазме.
- 5. Получены энергетические распределения Оже-электронов для С-О-и Fe-He-сред.

Здесь не обсуждалось подробно радиационные спектры С-О-и Fe-He-сред. Однако указывали на их каскадный и рекомбинационный характер. Исходные

данные по этому экспериментальному материалу были получены при построении табл. 1. и 2., а также в [2] и полностью не обсуждались здесь. Эти спектроскопические параметры, однако, опубликовать в следующей нашей работе. После чего по схеме построения таблиц 1 и 2; рисунков 1 и 2 предпримем построение синтетических эмиссионных спектров НТП с КДФ. Вызываемые такими процессами нагрев частиц КДФ был рассмотрен ранее в [6].

Литература:

- 1. Брагинский С.И. Явления переноса в плазме // Вопросы теории плазмы. 1963. Вып.1. С. 183-272.
- 2. Дойков Д.Н., Андриевский С.М., Ющенко А.В. Емісія газу і пилу в холодних середовищах із підвищеним умістом радіоактивного ізотопу тітану ⁴⁴₂₂Ti. // Журнал фізичних досліджень. 2018. Вип. 22. С. 2901.
- 3. *P. Sigmund*, Particle Penetration and Radiation Effects. /Springer, Berlin-Heidelberg-New York, 2006.
- J.S. Kaastra, R. Mewe. X-Ray Emission from Thin Plasmas. // Astrophysical Journal Supplement Series. – 1993 – V. 97. – 443- 472.
- D. Doikov, A. Yushchenko, Y. Jeong Diagnostics of Diffuse Two-Phase Matter Using Techniques of Positron Annihilation Spectroscopy in Gamma-Ray and Optical Spectra // Journal of Astronomy and Space Sciences. – 2019 -36(3), 1-5.
- Дойков Д.Н. Коллективные явления в запыленной плазме с магнитным полем, облучаемой жесткими излучениями // Физика аэродисперсных систем. – 2019 – Вып.57. – 121-135.

Doykov D.N., Khrapatyi S.V.

Evolution of the electron energy distribution function in a dusty plasma irradiated by hard radiation.

Summary

The work is devoted to the study of rarefied low-temperature plasma (hereinafter referred to as LTP) with a condensed dispersed phase (hereinafter referred to as CDF) at characteristic low thermodynamic temperatures (hereinafter referred to as NTT) $T = 50^{\circ}$ K - 100°K for two mixtures. The first is a carbon-oxygen mixture (hereinafter the C-O zone), the second is a helium-iron mixture (hereinafter the Fe-He mixture). For sufficiently intense fluxes of charged particles – products of nuclear decay inside the systems under consideration (0.1MeV – 0.6MeV), the electron energy distribution functions f(E) of secondary Auger electrons were calculated. Based on the calculation results, the fundamental absence of a functional dependence of f(E) is proved. It is of a diagrammatic nature and strongly depends on the chemical composition of the mixture, more precisely, on the atomic numbers of the elements. The effects of irradiation of LTP with a CDF plasma by electron and positron flows, the relationship between ionization losses from electrons, positrons and histograms are shown - f(E). Based on the results obtained, conclusions are drawn regarding the possibilities of combining Auger and γ spectroscopy methods in modern applied multi-disciplinary applications. The obtained histograms were used to determine how to maintain the gas component of the plasma in the ionized state due to the prevalence of charge exchange reactions over the recombination processes of multiply charged ions resulting from Auger processes.

Key Words: condensed dispersed phase, low-temperature plasma, Auger processes in plasma and solids.

Дойков Д.М., Храпатий С.В. Еволюція електронної функції розподілу по енергіях в запиленій плазмі, що опромінюється жорстким випромінюванням.

АНОТАЦІЯ

Робота присвячена вивченню розрідженій низькотемпературної плазми (далі НТП) з конденсованої дисперсної фазою (далі КДФ) для характерних низьких термодинамічних температурах (далі HTT) $T = 50^{\circ} K - 100^{\circ} K$ для двох сумішей. Перша - вуглецевокиснева суміш (далі С-О-зона), друга гелієво-залізна суміш (далі Fe-He-суміш). Для досить інтенсивних потоків заряджених частинок-продуктів ядерного розпаду всередині розглянутих систем (0.1МеВ-0.6МеВ) розраховані обчислені електронні функції розпо*ділу по енергіях f(E) вторинних Оже-електронів. За результатами розрахунків доведе*но принципову відсутність функціональної залежності у f(E). Вона носить діаграмні характер і сильно залежить від хімічного складу суміші, точніше від атомних номерів елементів. Показані наслідки опромінення НТП з КДФ-плазми потоками електронів і позитронів, зв'язок між іонізаційними втратами від електронів, позитронів і гістограмами - f(E). На підставі отриманих результатів зроблено висновки щодо можливостей комбінування методів Оже - і у - спектроскопії в сучасних прикладних багатодисииплінарних додатках. Отримані гістограми використані для визначення способів підтримки газової складової плазми в іонізованому стані за рахунок превалювання реакцій зарядового обміну над рекомбінаційними процесами багатозарядних іонів, що виникають в результаті Оже-процесів.

Ключові слова: конденсована дисперсна фаза, низькотемпературна плазма, Ожепроцеси в плазмі та твердих тілах.