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In this paper the principal relations of a thermoelastic solid model for the local gradient approach
in thermomechanics are presented. Within the framework of such an approach the stationary stressed-
strained state of a stretched isotropic thermoelastic layer is examined. On this basis using the
common meaning of elasticity modules the size effects of Young’s modulus, Poisson’s ratio and
bulk modulus are studied. The isotropic quality of elasticity modules size effects is confirmed. It is
shown that in the considered model the shear modulus does not depend on the specific size
(thickness) of the layer. The numerical results are presented as graphs.

Keywords: size effects, elasticity modules, local gradient approach.

Introduction. In the last decades in scientific literature considerable attention is paid
to the construction of mathematical models and study of physicomechanical processes
in the deformable solids taking into account the effect of local, including interface, he-
terogeneity. Such an interest is caused in particular by the wide use of thin films and
fibres, and also nanomaterials in engineering practice [1-3]. Techniques for working on
the nanoscale have become essential to electronic engineering and nanoengineered
materials began to appear in consumer products. It is known, that device elements of
the nanoscale size (traditionally defined as less than 100 nanometers) feature the increa-
sing ratio of surface to bulk volume and the influence of surface energy becomes signi-
ficant on the nanoscale. When studying the nanomaterial properties a special attention
is paid to investigation of the mechanical properties, including dependences of the elas-
ticity modules on a characteristic size [2, 3].

There are nonlocal [4, 5] and local gradient [6, 7] approaches to construction of
locally heterogeneous models of solid mechanics. Within the framework of the first
approach the dependence between stresses and deformations is adopted, in the general
case, as integral correlation on spatial coordinates and it represents conditions that stres-
ses in the considered point of a body depend on deformations both herein, and in neigh-
boring points. On the basis of nonlocal models a wide complex of researches of the de-
formable solids has been performed and presented in literature, taking into account scale
and damage effects, interface phenomena etc. It should be noted that this approach, as
well as other phenomenological approaches, meets significant difficulties when consi-
dering the influence of the nonmechanical processes, including thermal ones on body
deformation.The other mentioned approach, which allows us to take into account
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heterogeneity when describing the state of a physically small element, is the local gra-
dient approach in thermomechanics [6-9]. The dependence between stresses and strain
tensors within a model of the local gradient approach in the elasticity theory can be
presented in a nonlocal form [6]. Within the framework of this approach the number of
models are built and it is shown on the example of model problems that this approach
allows us to describe deformation of bodies taking into account the interface phenomena,
scale effects, including that of tensile strength, and also to investigate the influence of
temperature, admixtures, environment etc on them [7-9].

The paper considers the principal relations of a thermoelastic solid model, the
stationary stressed-strained state of stretched isotropic thermoelastic layer and does
examine the stress-strain dependence and the proportionality coefficients (elasticity
modules) dependence on layer thickness.

1. Basic relations of local gradient thermoelasticity

Local gradient approach is based on the principles of nonequilibrium thermodynamics
and nonlinear mechanics [6]. According to the approach the local state parameters space
is expanded by chemical potential and its gradient allows us to describe varying particle
interaction conditions in the different body regions. The local gradient approach model
of one-component thermoelastic body includes in the space of local state the strain ten-
sor ¢, temperature 7, chemical potential H and its gradient VH . Conjugated parameters
are stress tensor &, entropy S, density of mass p and vector of elastic mass replace-
ment 7, respectively. For linear approach the state equations of the model of local

gradient thermomechanics for an isotropic solid can be written as
S-S.=a,e—a;n+a,0, p—p:=—aze—a,m—a,0,

t, :—aggﬁn, 6= 2aeé+[aeee+aehn—atee]f. (1)

Here subscript «+» represents the value of the parameters in the initial state which is
considered to be the state of load-free infinite isotropic media with material identical to

the material of the body; 6=T-T,, n=H — H+, ?nzﬁH—ﬁH*, e=¢—0 are the

disturbances of state parameters; de, dee, Aehy Ares Agg, Ani, Ay ArE CONStants; e=e: I , 1 1s
identity tensor.

For the model of local gradient thermomechanics the key set of equations descri-
bing the steady state of a body taking as solving functions the displacement vector i,
disturbances of temperature 0 and chemical potential n is

a, Vi +(a, +a,, )ﬁ(? 17:) +a,Vn-a,V0=0,
V20=0, aggvzn—ahhn—aehe—a,hezO. (2)
If instead of # as the solving function the stress tensor G is used, the set is

V-6=0, ?x[(3aee +2ae)6—(aeecs+2aeaehn—2aeatee)f]x§ =0,
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V0=0, Vzn—K%n—Kgc—ngzo, 3)
2
where i _—[ wh — 3 J Ki= Gen K3 = 1 [am 3y j
Agq 3a,,+2a, (3aee+ 2a ) Agq 3a,+2a,
c=6:1

We shall use the last set to investigate the relation between mechanical load of
a body and deformations in a layer loaded at infinity and at the surface.

2. Stressed-strained state of the layer

Let us consider an isotropic thermoelastic layer (domain | x|</ in the Cartesian coordi-
nates {x, y, z}). At infinity y — *oo the layer is loaded by forces of intensity p, >0.

Suppose that at the surfaces x ==/ there are the normal to surface mechanical load p,,
the values of chemical potential n, and temperature 0, . The equations (3), written for
nonzero components of stresses, temperature and chemical potential are

do, _, d’c, d’c. d’c , d™

=0, = z , = bm ,
dx dx? dx? dx? dx?
d’0 d2
—=0, —-x K c—-Kk20=0, 4
72 a2 nﬂ 0 4)

where b,, =4a aeh/ (a,, +2a,)
The boundary condltlons and integral load conditions we write in the form

e|x +1 =0, n|x +1 =Na> ﬁ'(}'iz =(+p,.0.0),
I I
IG dx=p,, jcdx 0, Ixsydsz, Ixszdxzo. (%)
-1 -1 -1
Here 7 is the external normal vector.
The problem solution is

(=1 (Ch(éx) 1] 0(x)=0,. o,(x)=p
a Cl (&Z) > a X X

130 uG) "

&x
o, (%)~ py_c()_ZC; h(e) el

+ +KM,+ K 6 2
(px py) . nna 0 , CIZI—D(I—th(il)J, D:bm&
g gl

Here &2= Ky 2¢b 2,y = 2
ch and th are hyperbolical cosine and tangent.

m G2

b
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These formulas describe the state of the layer, conditioned by the external force
and temperature loading and the difference of chemical potential at the surface of the
layer to compare to its values in an infinite homogeneous media. If the characteristic
size of the body is considerably greater than the size of nearsurface heterogeneity re-
gion (§/>>1) then in the free of external load body (p.=p,=0) internal areas are
practically unstressed, and heterogeneity is localized in the narrow nearsurface regions.
The uniform temperature affects the size of stresses in the body not changing the picture
of their distribution.

The stressed state described with formulas (6) causes the layer deformation. For
determining strain components on the basis of the last equation (1) we write

~ 1. 1 a,,
e=—06——"—
2a 3a,, +2a, 2a

e

enM— atee:|i'

This relation alongside with solution (6) yields strain in the directions of the
stress applying

py —dgMy t ateea +

e, =

1 a, +a, a,,
3 B Dy —
a, +2a,

a, 2a,
L Aenk[ 3a,, +2a, ch&x N 2a,, th&l
¢ a, +2a, chél a,,+2a, &l

1 a a, +a ay th&l
e, =——|——%p +—%€ € p —q +a, 0 +-SE - —=|]. (7
y 3aee N 2(le |: 2(1e Px a, py enMa teVa C[ [ &l j:| ( )

Obtained relations (7) contain the constituents of deformation caused by the ex-
ternal power loading (p., p,) as well as nonmechanical action (1,, 0,). For examining
the deformation caused by mechanical load only we consider

e He (x) [e (x)]p ~0:p, 4 e;f :[eyil_[ey]p)(:();py:o. (®)

Here it is taken into account that strain e, is variable and it allows to consider its integral
characteristic. On the basis of (7), (8) we write expressions

1 a, +a a
ef _ ee e _ “ee y(g] ,
e 3aee+2ae{ a, Px 2aepy+(]7x+py) (é )}
1 a a, +a
T AR RN *

aee+2ae . l_cl (E-’l)

for deformation caused by action of p, and p,. Here ‘P(il ): 4 ¢ ( g l)
a, ]
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3. Size effect of elasticity modules

Let us consider the layer under mechanical load in the direction of Y-axis (p, =0, p, > 0).
In this case strain components ¢/ and e;f are

efcf _;(_aﬁjuy(é[)},y ,

- 3a,+2a,\ 2a,
1 a, +a
ef _ ee e
ed = +W¥(&l . 10
Y 3aee+2ae£ a, (é )jpy (10

The ratio of the applied stress to the fractional expanding (or contracting) of the
sample length due to axial tension (or compression) is Young’s modulus £ and the ratio
of lateral strain (perpendicular to the applied stress) to the longitudinal strain (parallel
to applied stress) is Poisson’s ratio v, in this case

s Py
S E

from (10) we get

ed =

b

-1
E—&=(3aee+2ae){aee+ae+‘I’(§l)} ,

- e;f a,
B PR e i (11)
- e;f - 2a, a, '

Note that neglecting interconnection in Eq. (4) that results in D=0 we get classical
relations
(3a,, +2a,)a, a

Ef ="+~ vj=—-E 12
0 a,, +a, 0 2(aee+ae) (12)

that coincide with expressions of £ and v through Lame constants A, 1. Relations (11)
thus describe the size effect of elasticity modules for considered state. For such effects
the description of the interconnectivity of set (4) is essential because the equality to
zero either of the coefficients b, or K, gives coupling parameter D turning zero. Note
that uniform temperature does not influence the received relations.

To clarify whether size effect of elasticity modules presented in (11) is implied
by geometry and conditions of specific problem or is a more general case let us consi-
der another stressed state of the layer.

Let us consider the layer under mechanical load in the direction of X-axis

(px=0, p,>0). In this case for strains eﬁf and e;f ~ we get from (9)

e;f _ 1 [aee+ae + T(al)Jan

3a,+2a,\ a,
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- 3a,,+2a,\ 2a,

¢ —;(— See +‘P(<:l))px- (13)

Further we obtain

-1
E:&—(3aee+2a6){ae"+ae +‘P(E,,l)} ,

e/ - a,
o [t g [ St g e i (14)
e/ | 2a, a, '

Comparing (11) and (14) one can see that for different load conditions we obtaine
the same type of the dependence of elasticity modules on the layer thickness. Thus the
model of thermoelastic body built for local gradient approach allows us to describe the
size effects of Young's modulus and Poisson’s ratio. In this case the isotropic quality of
the elasticity modules size effects is proved. Using formulas [10]

vE E E
A=, p=G=——r, K=—r—
(1+v)(1-2v)’ " 2(1+v)’ 3(1-2v)’

on the basis of (14) we shall write expressions for Lame constants A, p, shear G and
bulk K modules often used alongside with Young’s modulus and Poisson’s ratio

n=G=a,,
7»=[a —da aee+2ae I_Cl(al)Jl:l+3aee+2ae I_Cl(él)i|_l
ee € Zae Cl (&I) 4ae Cl (E_,l) P
-1
K:(aee +gaeJ|:l+3aee+2ae l_cl(él)i| ‘
3 4ae C.sl (E_,l)

In the considered model the shear module does not show the size effect.
One should note that in thick layers the values of Young’s modulus and Pois-
son’s ratio (11) tend to limits

-1
a, +a, +aee+2ae D
a 4a, 1-D|°

e e

E= (3aee + Zae){

-1
G| Bee _ a,,+2a, D | a,+a, N a,+2a, D
2a, 4a, 1-D a 4a, 1-D |’

e e e

respectively. Assuming D = 0 we obtain relation (12) in the case of reducing the model
relations to the classical ones.
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Let us examine dependence of reduced Young’s modulus and Poisson’s ratio

-1
E=E, [1+Lw(gz)j :
a

ee +a€

2
v :vo(l— a“ lp(gz)j/(uae:‘j . ‘P(Z;I)J,

on the body size &/, the model constants ratio a./ a.. and the coupling parameter D.

Specified values of Young’s modulus E, (solid line, left scale) and Poisson’s ratio
v, (dashed line, right scale) for D =0,1, k= a./a.. = 0,4; 0,6; 0,8 (curves 1, 2, 3) decre-
ase with body size increase. This is demonstrated in Fig. 1.

Specified values of Young’s modulus £, (solid line, left scale) and Poisson’s ra-
tio v, (dashed line, right scale) for D =0,1, /=5, 10, 20 (curves 1, 2, 3) decrease with
parameter k = a,/ a.. change from 0,2 to 1,0 as demonstrated in Fig. 2.

With increase of parameter D the size effects become more evident as shown in
Fig. 3 for /=5, 10, 20 (curves 1, 2, 3), a./ a.. = 0,6.

E/E, v/vg
0,97 3 0,93
il
/]
0,961~ // .............. 0.87
0,95 0,80
5 15 25 35 45 gl

Fig. 1. Elasticity modules £, v versus layer thickness

E/E,F.

0,97

0,96

0,95 0,80
0,2 0,5 0,8 Aol Aee

Fig. 2. Elasticity modules E, v versus parameters a,/ a,, ratio
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E/E, v/vg

0,9 0,67

0,8 10,33
0 0,125 0,250 D
Fig. 3. Elasticity modules E, v versus parameter D

Conclusions. Within the framework of local gradient approach in thermomechanics
the dependence of the elasticity modules on the characteristic body size is investigated.
The basic relations of local gradients of thermoelasticity are used to investigate the sta-
tionary state of stretched isotropic thermoelastic layer. Considering different stressed-
strained states and common definition of the elasticity modules the Young’s modulus
and Poisson’s ratio are examined. The isotropic quality of elasticity modules size effects
is proved. It is shown that in the considered model the shear modulus does not depend
on specific size (thickness) of the layer and the elasticity modules tend to constant value
with the characteristic body size increase. The change of these parameters is conside-
rable for the layers whose size is comparable to the characteristic size of nearsurface
inhomogeneous region. The obtained relations may be used as a starting point in con-
struction of the theory of nanomaterials mechanics.
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Mpo po3mipHMi eheKT MexaHiYHMX XapaKTeEPUCTUK TEPMONPYKHUX Tin

Tapac HaripHui, KocTaHTUH YepBiHka

YV oaniii pobomi nagedeno ocroemi cnig8ioHOWEHHA MOOELi MEPMONPYICHOLO MINA 3a JOKATLHO
2padienmnozo nioxody y mepmomexaniyi. Y pamkax maxozo nioxoody 0ocuiodiceno cmayionapruil
HANPYHCEHO-0ehOPMOSAHUL CIMAH PO3MASHYMO20 [30MPONHO20 mepmonpyruchozo wapy. Ha yii
OCHOBI, BUKOPUCTOBYIOUU 3a20bHe O3HAYEHHS MOOYI8 NPYICHOCMI, GUSYEHO POIMIDHI eexmu
mooyas FOuea, koegpiyicnma Ilyaccona ma mMoOyis 6cecmopoHHbo20 cmucky. Bemanosneno izo-
MPONHUL Xapaxmep po3mipHo2o eghekmy mooyuie npysucnocmi. [lokazano, wo y pamxax posenioy-
8aHOI MOOeNi MOOYIb 3CY8Y He 3aNexHCUMb i0 XapaKmepHo2o po3mipy (moswunu) wapy. Pesyns-
mamu YUcio8UxX 00CAIOANCEHb NOOAHO V 8U2A0I 2paAGIKie.

O pa3mepHOM 3cpheKkTe MexaHMYeCKUX XapaKTepPUCTUK TePMOYNpYyrux Ten

Tapac HarnpHbin, KoHcTaHTuH YepBuHka

B oannoii pabome npusedenvt 0cHOBHBIE COONMHOWEHUSA MOOETU MEPMOYNPY2020 Med NPU TOKATbHO
2PAOUEHMHOM HOOX00€e 8 MepMOMexaHuKe. B pamkax maxoeo nooxooa uccie008aHo CmayuoHapHoe
HANPSICEHHO-0eYOPMUPOBAHHOE COCMOSHUE DACMAHYNO20 USOMPONHOZ0 MEPMOYNPY2020 COsL.
Ha smoii ocrose, ucnonw3ys ooujee onpeoenerue Mooyieil YApy2oChiu, UsyueHvl pasmepHvle g gexnovl
mooyas FOunea, kospduyuenma Ilyaccona u MoOYIs 6CeCMOPOHHELO CHCAMUA. YCMAaHOBNEH U30-
MPONHbLIL Xapakmep pasmepro2o dggexma mooynei ynpyeocmu. Ilokazano, umo 6 pamkax pac-
CMAMPUBAEMOU MOOENU MOOYb COBUSA He 3ABUCUN OM XAPAKMePHO20 pasmepa (Moauunbl) Closl.
Peszynomamvl uucioewix uccie006anuii npedcmasiensl 8 suoe epapuKos.

Otpumano 14.07.09
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