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Bifurcation dynamics of pipeline with liquid
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We investigate dynamics of pipeline with liquid with one fixed end and free another one in a vici-
nity of the so-called critical velocity of liquid flow. It was shown that classical representation
about critical velocity should be supplemented by new interpretations. We investigate bifurcation
modes of pipeline behavior and show that there are new alternative positions of dynamic equilib-
rium of pipeline conveying liquid, which enables new stable modes of pipeline behavior in a vici-
nity of critical velocities and when liquid velocity exceeds its critical values.
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Introduction. Objective of the present article consists in investigation of loss of stabi-
lity of the first normal mode of oscillations of the fixed-end pipeline with liquid in
a vicinity of the first critical velocity and system behavior for velocity of flows, which
exceeds critical value of velocity. It is necessary to note that well-known result, obtai-
ned by V. Feodosiev [1], was based on one-mode problem statement, which neglects
the Coriolis forces. Expression for critical velocity was derived from the criterion that
frequency degenerates to zero. In this case centrifugal forces are in balance with elastic
forces. Really this critical velocity corresponds to loss of stability of rectilinear shape
of pipeline. Investigation shows that there is new dynamical equilibrium state for
pipeline, which we call alternative one, in vicinity of which further development of
oscillations occurs. If we consider two-modes model, eigenfrequency of oscillations of
the first normal mode dies not coincide with its partial frequency, on the basis of which
critical velocity was specified in [1]. For correction of the first critical velocity and
investigation of system behavior for velocities, which exceed the critical one, we shall
consider three systems, namely, the one-mode system (similar to [1]), the two-modes
system without the Coriolis forces and the two-modes system with considering the
Coriolis forces.

1. Investigated object

We consider pipeline with conveying liquid. Pipeline is considered within the model of
a beam with one fixed end and another end is free. We consider denotations of the
article [2], where p and p are linear densities of liquid and beam material, £J is beam
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stiffness, F is square of beam cross-section, P is internal pressure of liquid, V is liquid

velocity, which is supposed to be given. If we use the of method modal decomposition
N

for displacements of pipeline points u(x,t) = ZA[ (x)c; (¢) (here A4;(x) are normal modes
i=1

of oscillations) we obtain the following discrete model for pipeline with liquid [2, 3]
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Here N, ,d jk,,,dyk,, Uk,,B”,B” are quadratures of 4;(x), K is frequency parame-

ter. This system was used further for numerical investigation of processes, and its
linear approximation was used for stability analysis.
Fig. 1 shows dependency of the first eigenvalue A; on ratio of liquid velocity to its
critical value (dimensionless velocity) for one-mode model (analog of the result [1]).
For dimensionless velocity of liquid less than 1 the first frequency (here it is par-
tial frequency) A; has only imagine part (dashed line), i. e., only oscillatory process

occurs. After passing the critical value 1 (V = V,{lp ) bifurcation of oscillations occurs, A,
becomes real, so motion of pipeline becomes aperiodic with respect to the first normal
mode of oscillations, rectilinear state of pipeline becomes to be unstable.

If we consider two-modes models of the pipeline and neglect nonlinear part of
equations and Coriolis forces, then two first equations can be reduced to the matrix

”

q
form A4-]
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c
}zB-{ 1}. Eigenvalues are determined for the matrix A~ -B. In this
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Fig. 1. Dependency of A, on dimensionless velocity of liquid
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Fig. 2. Dependency of eugenvalues A; on dimension velocity
for two-modes model without Coriolis forces

case dependency of eigenvalues A; and A, on dimensionless velocity of liquid is shown

in Fig. 2.
Figure shows that the first bifurcation occurs for insignificantly lower velocity

V= 0,9931/,; . However two additional bifurcation points appear, for V' = 1,7Vk1p , after
which process again becomes periodic, and for V' = 2,23Vk1p , which corresponds loss of

stability with respect to the second normal mode (the second critical velocity).
For two-modes model of pipeline with liquid, which consider the Coriolis forces
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we reduce the motion equations to the matrix form 4-| * |=B- and find eigen-
1 Vi
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values for the matrixes A" - B. Fig. 3 shows dependence of A, on dimensionless velocity
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Fig. 3. Dependency of eugenvalues A; on dimension velocity
for two-modes model with considering the Coriolis forces
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of liquid. The presence of the Coriolis forces results in considerable displacement to
the right of two bifurcation points from their positions, shown in Fig. 2. Moreover,

even after the second critical velocity V = 2,66Vk1p imaginary part of A, is nonzero, i. €.,

process has oscillatory character. So, in the interval V' =2,25+ 2,66Vk1p we have pure

oscillatory process for both modes of motion, which was not predicted before using
models without the Coriolis forces.

For validation of these qualitative results we consider numerical solution of the
problem of pipeline dynamics within the framework of the nonlinear model (1), which
takes into account 12 normal modes of oscillations as well as the Coriolis forces. In

Fig.3 V = 0,9V,{lp corresponds to a, V = I,SV,{IP corresponds to b, V = 2,56V,{lp corres-

pondstoc, V = 2,7Vk1p corresponds to d.

After passing the first bifurcation point the initial rectilinear equilibrium state of
pipeline becomes unstable. However owing to system nonlinearity dynamical system
passes to alternative stable equilibrium position and performs oscillations in its vicinity
(Fig. 4b). Here the fist normal mode performs oscillations relative to alternative equi-
librium position, while the second normal mode performs oscillation in a vicinity of
the rectilinear state. Since bifurcation happened relative to the first normal mode, there-
fore we analyze further only amplitude of the first normal mode. In this case we specify
the shape of alternative equilibrium state as u(x) = 4,(x)-C,, (V) , where normal mode

S(k!

is determined as 4 (x) =U (kx) —%V(klx) for cantilever beam; here S, 7, U, V
1

are the Krylov functions) [3], C,, (V) amplitude of the first normal mode of pipeline in

the position of alternative equilibrium depending on liquid velocity. We look for
C,, (V) on the basis of one-mode system. So, we obtain the following nonlinear equa-

tion, which neglects the Coriolis forces

) ToV?
() +¢ (t)[—pTBil +EJB;, + PFB;, J+

1 1
+c} (t)[EJ dfy g+ EEFdeU + ;p Vi, ) -0.

For alternative equilibrium state ¢/(#) =0, so we get
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Fig. 4. Amplitudes of two first normal modes for multidimensional
nonlinear model, ¢,(f) — dashed line, ¢,(f) — solid line
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Puc. 5. Dependence of three values of amplitudes
for equilibrium positions on dimensionless velocity

Roots of this cubic equation gives us values of C, (V). Fig. 5 shows graphs of
three roots C,, (V) depending on dimensionless liquid velocity. Upper and lower

branches are symmetrical, middle position corresponds to rectilinear shape, which is
unstable in the case when liquid velocity exceeds value of the critical velocity of flow.

Fig. 6 shows dependence of dynamic equilibrium states of pipeline for different
dimensionless velocities of liquid flows, which values are shown from the right of every
curvilinear shapes of pipelines. So, this investigation shows that stable flow of liquid in
pipeline can be realized for velocities, which exceed critical velocity of liquid flow,
determined according to [1], but in this case pipeline will perform oscillations in a vici-
nity of new alternative dynamical position.
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Fig. 6. Alternative dynamical equilibrium positions of pipeline
for different dimensionless velocities of liquid flow
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Conclusion. We investigate behavior of pipeline conveying liquid in a vicinity of criti-
cal velocity of liquid flow and for velocities, which exceed critical velocity. Investiga-
tion showed that influence of the Coriolis forces is decisive for formation of the bifur-
cation modes of motion of the system. We found alternative positions of dynamic
equilibrium states, in vicinity of which pipeline will perform stable oscillations for
velocities exceeding critical value of liquid velocity. Results of qualitative analysis
were confirmed by numerical examples, obtained on the basis of nonlinear multidimen-
sional model. The obtained results proved that for liquid velocities greater than its
critical value, determined in [2], stable motion is possible, but it will occur not in a
vicinity of rectilinear shape of pipeline, but with respect to new alternative equilibrium
position, which depends on liquid velocity.
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BicdypkauinHa anHamika TpybonpoBoay 3 pianHoLO
Oner JInmapyeHko, Onekcin TiMOXiH

Jlocnioocyemovest Ounamika mpy6onposooy 3 piOuHo 3 0OHUM 3AKPINACHUM MA THUUM BLIbHUM
KIHYsAMU 6 OKONI, MaK 36aHOi, Kpumuunoi weudxocmi meuii piounu. [loxkazano, wo xiacuume
VABNIEHHS NPO KPUMUYHY WEUOKICMb Mae Oymu donosHene Ho8010 inmepnpemayicio. [ocnioiceno
Oipyprayitini pexcumu nosediHku mpyoonpoeoody ma NOKA3AHO ICHYBAHHS HOBUX AWIbMEPHAMUG-
HUX HOJIOJICEHb OUHAMIYHOI pigHO8a2U mMPYyOOnposody 3 PIOUHO, wo meye, AKi OONYCKarmy HOBL
CIMILKI pexcumu nosediHku mpybonposody 6 OKONi KPUMU4HUX weuoKocmell i Onsi weUoKocmell,
SAKI nepesepuLyioms KpUMu4Hi 3HA4eHHsI.

BudypkaumoHHasa gMHaMuKa Tpy6onpoBoaa ¢ XUAKOCTbIO

Oner JlnmapyeHko, Anekcent TUMOXUH

Hccnedyemes ounamuxa mpybonpogooa ¢ HeuOKoCmvto ¢ OOHUM 3AKPENJICHHbIM U OpyeuM c80000-
HbIM KOHYOM 6 OKDECMHOCHU MAK HA3bIBAEMOU KDUMUYECKOU CKOPOCU MEYeHUsi HCUOKOCU.
Tokazano, umo Kaiaccuueckoe npeocmasienue 0 KpUmuieckoi CKOpoCniu OOJINCHO Obinb OONOJI-
HeHo HogoU unmepnpemayuetl. Hcciedoeansvl OugyprayuorHole pexcumvl nogeoenus: mpyoonpo-
6004 U NOKA3AHO CYUWECMBOBAHUE HOBBIX ATTbMEPHAMUBHBIX NONLONCEHUL OUHAMULECKO20 PABHOGE-
cusi mpybonpogooa ¢ npomekarowell HCUOKOCMbio, KOMopble OONYCKAKM HOBble YCMOUHUBbLE
PedCUMbl NOBeAeHUsL MPYBONPO80AA 8 OKPECHHOCIU KDUMUYECKUX CKOPOCHeEN U Ol CKOpocmel,
NPeBOCXO0SUWUX KPUMUIECKUE SHAYEHUSL.

Mpeacrasieno 10kTopom TexHidynux Hayk S1. T siunsiom Otpumano 22.11.12
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