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Angular motion of cylindrical reservoir on pendulum suspension, partially filled with ideal liquid,
under external harmonic force is considered for different frequencies of external loading. It is
shown that resonant frequencies of combined motion considerably differ from partial frequencies
of liquid sloshing and oscillations of pendulum. Some peculiarities of the system behavior in
different ranges of frequencies of disturbance are discussed.
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Introduction. Problems of dynamics liquid in reservoir on pendulum suspension is
one of classical problems of fluid — structure interaction. Investigation of sloshing
liquid in reservoir, which performs angular motion, represents complicated problem
due to awkwardness of problem statement. Especially complicated is the problem of
combined motion of reservoir on pendulum suspension and liquid with a free surface.
Analysis showed that due to combined character of motion of system components
normal frequencies of this system differ from partial frequencies. Therefore, for
confirmation of variation of system resonant properties we investigate system behavior
in different frequency ranges.

1. Object of investigation

We consider motion of the system cylindrical reservoir — liquid on pendulum suspen-
sion under external harmonic loading. Initially system is at a rest state in equilibrium
position. Liquid is supposed to be ideal, incompressible, homogeneous, reservoir walls
are supposed to be absolutely rigid. For more complete description of the system real
properties, we take into account viscous properties of liquid according to technique
of generalize dissipation, suggested by G. N. Mikishev [1]. Suspension point is immo-
vable. If we select reference frame with origin at suspension point, reservoir can per-
form only angular motion. We consider the Cauchy problem for this system, therefore,
the system has transient stage of motion and later it tends to steady mode of motion.
General scheme of the system is given in Fig. 1.
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Fig. 1. General scheme of the system reservoir — liquid on pendulum suspension

2. Mathematical model

For construction of mathematical model we used the approach, described in publication
[2]. Model was constructed on the basis of the Hamilton-Ostrogradskiy variational
principle. According to this approach problem statement should be considered as
aggregate of kinematical boundary conditions (constraints) and variational principle,
which includes motion equations and dynamical boundary conditions. For description
of motion of bounded liquid volume we shall introduce the following denotations: 1 is
the domain, occupied by liquid, S is the free surface of liquid, X is moistening surface
of reservoir. Let us introduce potential of velocity as

d=0y+E-F+d-Q, (1)
here ¢ is potential velocity of liquid, ¢, is potential velocity of liquid wavy motion, €

is the vector of translational motion of the reservoir, @ is the vector of angular velocity

of the reservoir, Q is the Stokes-Zhukovskiy velocity potential. System motion occurs
under the presence of the following kinematical constraints

Ap=0, AQ=0 in T,

o
% :é-ﬁ+6)-8—Q , % =§-ﬁ+63-6—Q +6—€, (2)

It is noteworthy that due to selection of origin of reference frame at the point of pen-
dulum suspension of the reservoir and since suspension point is immovable, translatio-
nal motions in the considered problem are absent and it is possible to describe motion
of the re dimension. Elements of these matrix and vector are determined as quadratures
from normal modes of oscillations y; and the Stokes-Zhukovskiy vector potential,
which is determined analytically for cylindrical reservoir [3].
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The system of equations (5) is linear relative to the second derivatives
of unknowns; this enables transformation of the system to the Cauchy normal form and
performing integration of it by time using the Runge-Kutta method.

2. System behavior depending on frequency of loading

We considered motion of the cylindrical reservoir of R=1 m on pendulum suspension
with /=R length. A part of the obtained results were compared qualitatively with

laboratory equipment, therefore we used the Reynolds number k, =46 for analogy

with laboratory sample on determination of viscosity factor according to the approach
of publication [3].

Significant property of combined motion of the system reservoir — liquid con-
sists in changing of its resonant properties. Partial frequencies for angular oscillations
physical pendulum and the first (antisymmetric) normal mode of liquid oscillations are
®; = 2,55 and o, = 4,14, correspondingly (frequencies are given in 1/sec). The corres-

ponding normal frequencies for combined oscillations of the system become cof= 2,28

and 0); =17,19. There variation is considerable, especially for liquid. For confirmation
of this changes in resonant properties of the system we investigated system behavior
for frequencies of external loading in close vicinity of every of these system frequen-
cies. So, we expect that for combined modes of system motion partial frequencies will
not be resonant, however system will manifest resonant properties for loading with
frequencies, which correspond to combined modes of motion. It is necessary to note

that resonance manifests sharply for cof, while for frequency 0); it is practically

impossible to hit the resonant domain. Investigations showed this is caused by high
fidelity of resonant curve in vicinity of this resonance. Let us show how these
properties are realized practically for the accepted system reservoir — liquid.

For external loading on frequency cof= 2,28 it is practically impossible to get

numerical results because of sharp manifestation of increase of amplitudes of the first
normal mode of liquid and angular oscillations. So, this can be considered as
confirmation of the presence of resonance on this frequency.

If we consider external loading with frequency lower than this resonant frequency
® = 2, system behavior shows tendency to steady mode of motion. Fig. 2 shows varia-
tion in time of the first axisymmetric normal mode of oscillations. It is know that ampli-
tude of this mode can be considered as degree of manifestation of nonlinearity in the
system and it is responsible for significant property of nonlinear surface waves, which
consists in exceeding of wave crest height over depth of wave foot. Graph in Fig. 2
shows shift of values of amplitude in positive direction, which is just correspond to
providing of this nonlinear properties. On the stage of transient mode of system motion
nonlinearities are stronger that on motion of the system on the stage of motion by iner-
tia. At the same time we see also decrease of amplitudes of oscillations caused by the
presence of viscosity and considerable manifestation of modulation of oscillations. So,
this mode of motion can be named as steady mode of oscillations only conventionally.
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Fig. 2. Variation in time of amplitude the first axisymmetric normal mode
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Fig. 3. Variation in time of amplitude of angle of inclination of pendulum
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Fig. 4. Variation in time of amplitude the first antisymmetric normal mode

In Fig. 3 we show variation in time of angle of inclination of pendulum for
frequency of external loading @ = 2,1. It is significant to note that angle of inclination
practically does not decrease in time, but law of its variations shows strong modulation.

If we investigate system behavior on the first partial frequency ® = 2,55, we can see
that now resonant properties manifest. Fig. 4 shows variation in time of amplitude the first
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antisymmetric normal mode. The presence of modulation and influence of high-frequency
normal modes are seen in the graph. Fig. 5 shows variation in time of amplitude the first
axisymmetric normal mode. Law of variation of amplitude of this mode differs considerably
from Fig, 2, but systematic shift of graph in positive direction and modulation take place also.

If we investigate behavior of the system on the first partial frequency of liquid
oscillation ® = 4,14, we see in variation of amplitude of the first antisymmetric normal
mode (Fig. 6) that after short transient mode system passes into quasi-steady mode
of motion. Analysis of variation on time of the first axisymmetric normal mode (Fig. 7)
shows that nonlinear effects mostly present on transient stage of motion and steadily
disappeared in time. So, no resonant effects present on oscillations on partial frequency,
which corresponds to the first normal mode of liquid.

Let us consider now system behavior on loading with frequency ® = 7,19.
Graphs in Fig. 8 and Fig. 9 show variation in time of amplitude the first antisymmetric
and axisymmetric normal modes correspondingly. As it is seen from figures after com-
paratively short transient stage system passes into quasi-steady mode of motion, when
the amplitude of the first antisymmetric normal mode performs practically stable oscilla-
tions, while the amplitude of the first axisymmetric normal mode is small (low nonli-
near effects) and its law of changing in time has strong modulation. At the same time
amplitudes of the first axisymmetric normal mode has systematic shift, which corresponds
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Fig. 8. Variation in time of amplitude the first antisymmetric normal mode
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Fig. 9. Variation in time of amplitude the first axisymmetric normal mode

amplitudes of the first axisymmetric normal mode has systematic shift, which corresponds
to non-symmetry of wave profile, which is registered in experiments. Therefore, in
a vicinity of the second normal frequency of combined oscillations resonant effects are
not manifested. This can be caused by high fidelity of resonant curves in this domain.
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Conclusions. Investigation of combined motion of cylindrical reservoir, partially filled
with liquid, on pendulum suspension under external harmonic loading showed some
significant peculiarities of system behavior. First of all combined oscillations have
normal frequencies, which considerably differ from partial frequencies of oscillations.
On resonant frequency, which corresponds to domination of angular oscillations
of pendulum, resonance manifests sharply. For resonant frequency, which corresponds
to domination of sloshing oscillations, resonance effects practically do not manifest,
probably because of high fidelity of resonant curves in close vicinity of this normal
frequency. For all other frequencies including partial frequencies of system oscillations
no resonant effect are observed. Liquid oscillations tend to quasi-steady mode of mo-
tion with weak decrease of oscillations due to effect of liquid viscosity and strong
effect of modulation of oscillations. At the same time the higher is frequency of loa-
ding, the weaker is effect of modulation of oscillations. Therefore, under the presence
of viscosity for frequencies of loading, which exceed partial frequency of sloshing
according to the first normal mode, system tends to steady mode of motion.
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Oco6nuBoOCTi pyxy cuctemm pesepByap — piguHa
Ha MasiTHUKOBOMY NiABici Nia Ai€t0 30BHiLUHLOI FAPMOHIYHOT CUNK

Oner JlumapyeHko, KatepnHa CeMmeHoBUY

Jlns pi3HUX uacmom 308HIUHBO2O 30Y0HCEHHS OOCHLONCYEMBCA KYMOBULL PYX YUTIHOPUUHOZO
pesepsyapa Ha MAsmHUKOBOMY NIO8ICi, YacmKo8o 3anosHeno2o piounoio. Iloxaszano, wo peso-
HAHCHI YACMOmu 3a CYMICHO20 PyXy CYMmMEBO GIOPIZHAIOMbCS 610 NAPYIAILHUX YACTHOM KOTUBAHb
PIOUHU ™A MAsIMHUKOBUX Koausanvb. O02080pIoOmMbCs 0esiKi 0COOIUBOCHI NOGEOTHKU CUCMeMU
6 PI3HUX Olana3oHax 3MIHU YACMOM 30YO0HCEeHHSL.

Oco6eHHOCTU ABUNXEHUSA CUCTEMDI pe3epByap — XMOKOCTb

Ha MassTHUKOBOM NoAaBece noa AeUCTBUEM

BHELIHEW rapMOHUYECKON CUTbI

Oner JlumapyeHko, EkatepuHa CemeHoBMY
JI1st pasHvlx wacmom GHewHe20 8030YIHCOEHUsE UCCTEOVEMCsl Yell080e OBUNCEHUE YACTUYHO 3aN0]l-
HEHHO20 HCUOKOCBIO YUIUHOPUYECKO20 pe3ep8yapa Ha MAsmHukosom noodsece. Tlokaszano, umo
DE30HAHCHbIE YACTOMbL NPU COBMECIHOM OBUIICEHUU CYUYECMBEHHO OMAUYAIOMCS OM Napyu-
ANLHBIX YACMOM KONOAHULL HCUOKOCIU U MASSMHUKOBbIX Konebanuil. QbCyucoaomest HeKomopuvle

0CODEHHOCMU NOBEOEHUsL CUCTHEMbL 68 PA3HbIX OUANA30HAX UBMEHEHUs. YaCTnom 6035)/()!0061—[1/{}1.
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