

ISSN 1561-5359 «Штучний інтелект» 2013 № 4 81

2P

УДК 004.414.23

S.V. Potiyenko
V.M. Glushkov Institute of Cybernetics of NAS of Ukraine
Ukraine, 03680 MSP, c. Kiev, Academician Glushkov ave., 40

Symbolic Modeling of Basic Protocols Systems
with Arbitrary Number of Agents

С.В. Потиенко
Институт кибернетики имени В.М. Глушкова НАН Украины, г. Киев
Украина, 03680 МСП, г. Киев, пр. Академика Глушкова, 40

Символьное моделирование систем базовых протоколов
с произвольным количеством агентов

С.В. Потієнко
Інститут кібернетики імені В.М. Глушкова НАН України
Україна, 03680 МСП, м. Київ, пр. Академіка Глушкова, 40

Символьне моделювання систем базових протоколів
з довільною кількістю агентів

A method of symbolic modeling of formal models is considered in the paper. Object of analysis is a domain
of multi-component concurrent systems specified in basic protocols language. A problem of dynamic
creation and stopping of agents during state-space exploration is considered. Corresponding algorithm has
been suggested as an extension of existing forward and backward predicate transformers. It provides ability
to introduce arbitrary number of concurrent processes in verification and test generation.
Key words: symbolic modeling, state-space, concurrent systems.

В статье рассматривается метод символьного моделирования формальных моделей. Объектом анализа
является домен многокомпонентных параллельных систем, описанных в языке базовых протоколов.
Рассмотрена проблема динамического создания и останова агентов во время обхода пространства
состояний. Предложен соответствующий алгоритм как расширение существующих прямого и
обратного предикатных трансформеров. Он дает возможность вводить произвольное количество
параллельных процессов при верификации и генерации тестов.
Ключевые слова: символьное моделирование, пространство состояний, параллельные системы.

В статті розглянуто метод символьного моделювання формальних моделей. Об’єктом аналізу є домен
багатокомпонентних паралельних систем, записаних у мові базових протоколів. Розглянуто проблему
динамічного створення та зупинки агентів під час обходу простору станів. Запропоновано
відповідний алгоритм як розширення існуючих прямого та зворотного предикатних трансформерів.
Він дає можливість вводити довільну кількість паралельних процесів при верифікації та генерації тестів.
Ключові слова: символьне моделювання, простір станів, паралельні системи.

Introduction

This work is done in a scope of a problem of errors detection in multi-component soft-
ware and hardware systems. Typically, in multi-process software, processes and threads work
concurrently, can fork and terminate, use shared memory, send and receive signals. In hardware
distributed systems, different components can be switched on and off (or appear and disap-
pear in telecommunication domain) and also communicate using various data channels.

Potiyenko S.V.
.

«Искусственный интеллект» 2013 № 4 82

2P

Experience of industrial projects shows that significant defects appear at design and coding
stages and could be missed during testing stage. So, development of abstract models with
further verification and test generation is an actual task.

We consider models of multi-component systems specified in a basic protocols langua-
ge [2]. Every model contains environment with agents which work concurrently asynchro-
nously and interact between each other by reading and changing attributes. Agents can be
created and stopped dynamically. Concrete state of the environment consists of a set of values
of environment attributes, values of attributes of all operating agents and a set of agent names.
In symbolic modeling we define symbolic state, or simply state, as a set of concrete states
and specify it by formula of first order logic with multisort predicate calculus. Transitions are
specified by basic protocols.

Basic protocols system

Basic protocol is defined as a Hoare triple)),(),(),((xrxrPxrx   [1] and
expresses the following fact: if a state of the environment satisfies precondition then the pro-
cess P may be performed and the state is modified according to postcondition  (here x – a
list of (typed) parameters, r – a list of attribute expressions mentioned below). Pre- and
postconditions are first order logic formulas, postcondition can also contain assignment
operators and operators for creation and stopping agents. Attribute expression is an attribute
name of simple type (enumerated or numeric) or a functional expression r1(e1, e2, …),
where r1 is a functional attribute (uninterpreted function) or an array name, e1, e2, … are
expressions of corresponding types of arguments.

Environment and agents

As it’s described above environment state E consists of first order logic formula D
and a set of agent names T. Denote it as a pair:

 DTE ,
Attributes of the environment and any operating agents can be accessed in formula D

but we haven’t defined a set of agent names T. Agents are separated by types Ti called agent
types. Every agent type Ti is considered as dynamic enumerated type. Initially, its domain
contains a set of agent names ei

1, ei
2, …, ei

n which are created in initial state. Domain can
be empty if no agents are created. We can refine definition of pair E as:

 DeeTeeTE mn ,},,{},,{ 22
12

11
11 

We will use conjunction operation of environment state with formula F. It’s defined as:
 FDTFDT ,,

Predicate transformers

There is a partial transformation SS : on complete set S of states of considered
model. A function of state transformation under the action of basic protocol is called
forward predicate transformer:

),( EptE
Here E, E' – environment states before and after execution of basic protocol with

precondition  and postcondition  .
 21),(EEEpt 

 Symbolic modeling of basic protocols systems with arbitrary number of agents

«Штучний інтелект» 2013 № 4 83

2P

Where Ei is a new pair describing transformed environment state. Disjunction of Ei
appears as a result of identification of arguments of functional expressions [4, 6].

There is another function of state transformation which restores environment state
modified by forward predicate transformer under the action of given basic protocol. This
function is called backward predicate transformer [5]:

),,(1 EptE  
Let’s consider environment transformations while creating and stopping agents during

modeling. Obviously, when an agent is created by some basic protocol a domain of its agent
type Ti is extended by new element ei

n+1 – generated name of new agent. When agent is
stopped all occurrences of its attributes in environment state formula D should be substituted
by new bounded variables. But there are two approaches to control agent type domain:
1. The name ei

n+1 of stopped agent is removed from domain of its agent type Ti. But it’s
obscure how to transform formula D from environment state with attributes having this
name as a value (like r = ei

n+1) and functional expressions with this name occurring in
arguments (like f(ei

n+1)). Should such occurrences be removed from formula D or should
it be reckoned as a try to access to values that are out of bounds? Anyway, such
approach is unable to save any information about stopped agents.

2. Agent type domains are not changed. Here all occurrences of stopped agent name ei
n+1

in formula D stay valid. But there rises another problem of infinite growth of agent
type domains.

Taking into account needs of industrial projects we have chosen the second approach

where information about all operated agents can be saved. Let’s now extend predicate
transformers for create and stop operators.

Operators create and stop

Postcondition),(xr can contain a number of create operators in the following form:





);,(
);,(

);,(:
);,(:

11

221

111






kk

kk

uTcreate
uTcreate

uTcreater
uTcreater

where ri are attributes which change their values to newly generated agent names, Ti –
agent types, ui – values of special control flow attribute for each created agent.

Operator stop(x) can appear only once in postcondition. It stops agent with name x
which is, typically, a parameter of basic protocol.

Initial environment state

Introducing create and stop operators implies a need of initial state refinement. First,
we should generate constraint that, initially, all attributes of agent types can obtain values
which are names of initial agents only. This constraint should be saved during performing
create operators. For each simple attribute a of agent type },,{ 1

i
n

i
i eeT  we should add

constraint))()((1
i
n

i eaea   to initial formula conjunctively.

Potiyenko S.V.
.

«Искусственный интеллект» 2013 № 4 84

2P

Consider uninterpreted functions as attributes in a form of f: (Ti, I)  Tj. Here I is
any simple type excepting agent types. For each such an attribute we add the following
constraint:

)))),(()),((())())(((:,:(11
j

m
ji

n
i

i eyxfeyxfexexIyTx   .

This restriction is evidently extended for functions with arbitrary number of arguments.

Processing create operators in forward predicate transformer
Consider agent type },,{ 1

i
n

i
i eeT  and operator create(Ti, u).

After performing this operator we should generate new constraints for uninterpreted
functions where new arguments are created. Consider attribute f: (Ti, I)  Tj (here I is any
simple type excepting agent types). New constraint is (denote it as R):

))),(()),(()),()((:(11111   
j

m
i
n

j
m

i
n

ji
n eyefeyefeyefIyR .

Here i
ne 1 is a new generated name. Notice, that we have added all dynamically created

agent names ,, 21
j

m
j

m ee  of type Tj to allowed values of functional expressions in the form
of),(1 yef i

n .
Agent type Ti should be extended and constraint R added to formula D:

   RDeeeTDeeT i
n

i
n

i
i

uTcreatei
n

i
i

i ,},,,{,},,{ 11
),(

1  ,



 





ReryyDeeeT
rDeeT

i
nk

i
n

i
n

i
i

uTcreater
k

i
n

i
i

ik

)()(,},,,{

)(,},,{

111

),(:
1




.

Operators create should be processed in the order they appear in the text of postcon-
dition  . It should be done before assignments and formula processing.

If some basic protocol is tried to be applied and it contains parameters of dynamic agent
types then all values from domains of these types should be allowed including names of dyna-
mically created agents.

Processing stop operator in forward predicate transformer
Operator stop(x) can appear only once in postcondition and means stopping of agent

x. All functional expressions which correspond to attributes of this agent should be
substituted by new bounded variables in the environment state formula (like attributes
changed by assignments or formula in postcondition but without arguments identification
[4]). Any other functional expressions stay untouched even if they contain the name of
stopped agent in arguments. Agent type Ti of stopped agent is not changed also:

  
 DeeeTDeeeT i

n
i
n

i
i

estopi
n

i
n

i
i

i
n ,},,,,{,},,,,{ 11

)(
11

1  .
Here D is the formula D after substitutions mentioned above.

Symbolic modeling and test generation
Generally, forward predicate transformer is used in symbolic modeling to explore

state-space of a model. The result of exploration is a set of traces leading to formulated goals.
We call this process forward trace generation.

 Symbolic modeling of basic protocols systems with arbitrary number of agents

«Штучний інтелект» 2013 № 4 85

2P

Each trace contains symbolic states of the model which are specified by formulas and
should be refined before test generation [7, 8]. In this task of refinement we use backward
predicate transformer for reverse passing existing trace from reached goal to initial state. It
means that we start modeling from goal state where the number of agents is concrete, their
attributes (including control flow) are defined and domains of agent types are known (all
names generated in forward mode are presented). Therefore, we suggest to start from
algorithm for concrete and defined number of agents on each step of modeling.

Processing stop operator in backward predicate transformer
In opposite of forward predicate transformer, operator stop(x) in backward should

create new agent. But it doesn’t affect agent types because agent type Ti of stopped agent is
not changed in forward. Environment state formula D isn’t changed also because all
attributes of stopped agent (which are substituted with bounded variables in forward) will
be restored in further backward trace generation.

  


DeeeTDeeeT i
n

i
n

i
iestop

i
n

i
n

i
i i

n
,},,,,{,},,,,{ 11)(11

1
 .

Processing create operator in backward predicate
transformer in scope of existing trace

Operator create(Ti, u) extends agent type with created agent and adds restrictions to
formula D in forward predicate transformer. We need to make reverse actions in backward.

First, created agent should be detected. Its special control flow attribute necessarily
should have the value u. As we consider backward predicate transformer in scope of existing
trace created name can be extracted from this trace. Let it be i

ne 1 .
Second, the name i

ne 1 of created agent should be removed from domain of agent type Ti.
Third, the formula should be cleaned from obsolete functional expressions. It’s done

by their substitution with bounded variables (analogously to attributes changed by assign-
ments or formula in postcondition but without arguments identification [4, 5]). Functional
expression is reckoned as obsolete if at least one of its arguments is equal to created agent
name i

ne 1 . All such functions should be found in formula D and substituted with bounded
variables. We don’t care about attributes having concrete value i

ne 1 because they can obtain
this value by assignments or postcondition formula in protocols applied after agent creation
in forward trace generation. So they were changed in that protocols and, in backward trace ge-
neration, have been substituted by bounded variables earlier. Denote an obtained formula as D:

  


DeeeTDeeeeT i
n

i
n

i
ieuTcreater

i
n

i
n

i
n

i
i i

nik
,},,,,{,},,,,,{ 21:),(]:[211

1
 .

Backward trace generation with hidden agents
Usage of backward trace generation is not restricted by test generation purposes. It

can be used for reachability checking which is done without preceding forward trace
generation, i.e. without existing traces and states.

It implies a problem of unknown number of dynamic agents (generated by operator
create) in a state which backward trace generation starts from. Dynamic agents which are
not mentioned in this state are called hidden. The problem lies in basic protocols where
hidden agents can operate. Such basic protocols can increase a number of operating agents
infinitely because new hidden agent can be instantiated from a parameter each time.

Potiyenko S.V.
.

«Искусственный интеллект» 2013 № 4 86

2P

There is a challenge for future work to create algorithms for sensible trace generation
with hidden agents. In practical usage, the number of hidden agents is bounded by known
concrete value in initial state. In this case the problem of infinite growth of agents is absent
and described above algorithms can be used with the only remark: while processing create
operator in backward predicate transformer, agent to be stopped should be chosen non-
deterministically from combined set of operating and hidden agents (above, it was taken
from a trace).

Examples

We use forward predicate transformer in the following examples.

Environment Basic protocol bp1 Basic protocol bp2
Enumerated types:
V:{v1,v2,v3};
Agent types: T, S;
Attributes: a:T;
Initial agents:
T:{t1,t2}, S:{s1};
Initial control flow
attributes: T(t1,idle),
T(t2,idle),
S(s1,idle);

Precondition:
S(s1,idle)

Postcondition:
S(s1,idle) 
create(T, idle)

Precondition:
S(s1,idle) 
(a = t1)  (a = t2)

Postcondition:
S(s1,end)

Table 1. Example 1.

The question: is bp2 reachable?
First, we add to initial state the following constraint R: (a = t1  a = t2).
Basic protocol bp2 cannot be applied in the initial state because of added constraint.

After bp1 application agent type T is extended by new generated name tn. But the attribute
a has not been changed and initial constraint R remained. Consequently, bp2 is not
applicable again. Despite of any number of bp1 applications, constraint R is always actual.

The answer: bp2 is not reachable.

Let’s modify the example – add some attribute b of agent type T inside the same
agent type T:

Agent types: T(b: T), S;
The following constraint R0 should be added to initial state:

(a = t1  a = t2)  (t1.b = t1  t1.b = t2)  (t2.b = t1  t2.b = t2)
After bp1 application (create new T-agent) this constraint remained and new

constraint R1 should be added for attributes of created agent tn:
tn.b = t1  tn.b = t2  tn.b = tn

To consider uninterpreted functions let’s add global attribute f:
Attributes: a:T, f:(V,T)T;

The following constraint R0 should be saved in initial state:
(x:V) ((f(x,t1) = t1  f(x,t1) = t2)  (f(x,t2) = t1  f(x,t2) = t2)) 
(a = t1  a = t2)  (t1.b = t1  t1.b = t2)  (t2.b = t1  t2.b = t2),

or it can be written as:

(t:T, x:V) ((t = t1  t = t2)  (f(x,t) = t1  f(x,t) = t2)) 
(a = t1  a = t2)  (t1.b = t1  t1.b = t2)  (t2.b = t1  t2.b = t2).

 Symbolic modeling of basic protocols systems with arbitrary number of agents

«Штучний інтелект» 2013 № 4 87

2P

After bp1 application (create new T-agent with name tn) new constraint R1 should be
added:

(x:V) (f(x,tn) = t1  f(x,tn) = t2  f(x,tn) = tn) 
(tn.b = t1  tn.b = t2  tn.b = tn)

Now, consider operator stop. When some agent is stopped all its attributes should be
substituted by bounded variables (like it’s done with changed attributes in postcondition
but without argument identification).

Environment Basic protocol bp1 Basic protocol bp2
Enumerated types:
V:{v1,v2,v3};
Agent types: T, S;
Attributes: a:T, f:TV;
Initial agents:
T:{t1,t2}, S:{s1};
Initial control flow
attributes: T(t1,idle),
T(t2,idle),
S(s1,idle);

Precondition:
S(s1,idle)

Postcondition:
S(s1,created) 
create(T, idle)

Precondition:
S(s1,created) 
(a = t1)  (a = t2)

Postcondition:
S(s1,end) 
f(a) := v3

 Protocol bp11 Protocol bps

Precondition:
S(s1,idle)

Postcondition:
S(s1,created) 
a := create(T, idle)

(n:T)
Precondition:
T(n,idle)

Postcondition:
T(n,idle) 
stop(n)

Table 2. Example 2.

The question is: when is bp2 applicable?
As we consider agent types as dynamic enumerated types we extend them with new

elements while performing create operators. But we wouldn't remove created elements
from agent types after stop operators.

The answer is: bp2 will always be applicable after first creation of T-agent (protocols
bp1 or bp11). We can save information about stopped agents in attributes of functional
types which is useful for users but problematic of searching visited states. After each
creation of T-agent by protocol bp1 protocol bp2 can generate more branches.

Conclusions
 Language of basic protocols has been chosen as a formal representation of analyzed
models for symbolic modeling. An algorithm for support of dynamic creation and stopping
of agents has been developed on a base of existing forward and backward predicate
transformers [4, 5, 6]. It provides ability to deal with unknown number of concurrent
processes in verification and test generation tasks.

References
1. Hoare C. A. R. An axiomatic basis for computer programming // Communications of the ACM. – 1969. –

Vol. 12(10). – P. 576–585.
2. A. Letichevsky, J. Kapitonova, V. Volkov, A. Letichevsky Jr., S. Baranov, V. Kotlyarov, T. Weigert.

Specification of systems using basic protocols // Cybernetics and System Analysis. – 2005. – N 4. – P.
3–21. (in Russian)

Potiyenko S.V.
.

«Искусственный интеллект» 2013 № 4 88

2P

3. Amir Pnueli, Ofer Strichman. Reduced Functional Consistency of Uninterpreted Functions // Electronic
Notes in Theoretical Computer Science (ENTCS). – 2006. – Vol. 144. – Issue 2. – P. 53–65.

4. Potiyenko S. Methods of forward and backward symbolic modeling of systems specified by basic
protocols // Problems in Programming. – 2008. – № 4. – P. 39–45. (in Russian)

5. Godlevsky A., Potiyenko S. Backward transformation of formulas in symbolic modeling: from the result
to the source formula // Problems in Programming. – 2010. – N 2–3. – P. 363–368. (in Russian)

6. Letichevsky A., Godlevsky A., Letychevskyy O.(jr.), Potiyenko S., Peschanenko V. Properties of VRS
predicate transformer // Cybernetics and System Analysis. – 2010. – Volume 46. – P. 521–532. (in
Russian)

7. A. Kolchin, A. Letichevsky, V. Peschanenko, P. Drobintsev, V. Kotlyarov. An approach to test scenarios
concretization in scope of test automation technology of industrial software projects // Modeling and
Analysis of Information Systems. Yaroslavskiy National University named after P.G. Demidov. – 2012.
– N 6. – P. 79–91.

8. A. Kolchin, V. Kotlyarov, P. Drobintsev. A method of test scenarios generation in insertion modeling
environment // Control Systems and Computers. – 2012. – N 6. – P. 43-48.

RESUME

S.P. Potiyenko
Symbolic Modeling of Basic Protocols Systems
with Arbitrary Number of Agents

The paper considers a method of symbolic modeling of multi-component concurrent
systems specified in basic protocols language. Such systems contain environment with
agents which work concurrently asynchronously and interact between each other via
shared memory. Agents can be created and stopped dynamically. Symbolic state of the
system covers a set of concrete states and is specified by formula of first order logic with
multisort predicate calculus. Transitions of the system are specified by basic protocols.

An algorithm for support of dynamic creation and stopping of agents has been
developed on a base of existing forward and backward predicate transformers which are
functions for symbolic states transformation. It has been specified for verification and test
generation purposes. It provides ability to analyze systems with arbitrary number of
concurrent processes.

Статья поступила в редакцию 04.04.2013.

