ISSN 2710 - 1673. Artificial Intelligence. 2021. Neo 2

- - S - e

UDC: 004.93 DOI: https://doi.org/10.15407/jai2021.02.088

SOFTWARE ARCHITECTURE OF THE QUESTION-ANSWERING
SUBSYSTEM WITH ELEMENTS OF SELF-LEARNING

A. Hlybovets!, A. Tsaruk?
1.2 National University of Kyiv-Mohyla Academy
Skovorody str, 2, Kyiv, 04070

!https:// orcid.org / 0000-0003-4282-481X

Abstract. Within the framework of this paper, the analysis of software systems of question-answering type and their
basic architectures has been carried out.

With the development of machine learning technologies, creation of natural language processing (NLP) engines, as
well as the rising popularity of virtual personal assistant programs that use the capabilities of speech synthesis (text-to-speech),
there is a growing need in developing question-answering systems which can provide personalized answers to users' questions.
All modern cloud providers proposed frameworks for organization of question answering systems but still we have a problem
with personalized dialogs. Personalization is very important, it can put forward additional demands to a question-answering
system’s capabilities to take this information into account while processing users’ questions.

Traditionally, a question-answering system (QAS) is developed in the form of an application that contains a knowledge
base and a user interface, which provides a user with answers to questions, and a means of interaction with an expert. In this
article we analyze modern approaches to architecture development and try to build system from the building blocks that
already exist on the market. Main criteria for the NLP modules were: support of the Ukrainian language, natural language
understanding, functions of automatic definition of entities (attributes), ability to construct a dialogue flow, quality and
completeness of documentation, API capabilities and integration with external systems, possibilities of external knowledge
bases integration

After provided analyses article propose the detailed architecture of the question-answering subsystem with elements
of self-learning in the Ukrainian language. In the work you can find detailed description of main semantic components of the
system (architecture components).

Keywords: question-answering systems, chatbots, Google Dialogflow, self learning, software architecture.

APXITEKTYPA IPOI'PAMHOI'O 3ACTOCYHKY IIUTAJIBHO-
BIIIOBIJAJBHOI NIJCUCTEMM 3 EJEMEHTAMU CAMOHABYAHHS

A.M. Tin6osenn!, A.II. Iapyk?

1.2 HamioHampHMH yHiBepcuteT «KneBo-MoOTWISHChKA aKaIeMis
Byn. CkoBopoauy, 2, M. Kuis, 04070

! https:// orcid.org / 0000-0003-4282-481X

AHoTanis. Y paMkax JaHoi poOOTH NMPOBEJECHO aHaJ3 MPOrpaMHUX CHCTEM 3alnTaJbHO-BIIIOBIAHOTO TUIY Ta iX
0a30BHX apXiTEKTYp.

3 PO3BHUTKOM TEXHOJIOTiH MAIIMHHOTO HaBYaHHs, CTBOPEHHSIM MeXaHi3MiB 00poOku npupoaHoi moBH (NLP), a Takox
3POCTaHHSM IIOIYJISIPHOCTI BipTyaJbHUX MEPCOHAIBHUX IMOMIYHHUKIB, SIKI BUKOPUCTOBYIOTh MOMJIMBOCTI CHHTE3Y MOBJICHHS
(TIepeTBOpEHHsI TEKCTY B MOBIIEHHS), 3pOCTa€ 1MOTpeda B po3poOIli MUTaIbHO-BIIIOBIATBHUX CHCTEM, SIKI MOXYTH BECTH
MIEPCOHAJI30BaHUH [iaJioT 3 KOPUCTYyBadeM. YCi cydacHI XMapHi MpoBaiiiepy 3amponoHyBaiu GppeiiMBOpKH I MOOYI0BH
MU TaJIbHO-BIMOBITATLHUX CUCTEM, ajie MH BCE IIIe MAEMO MTPOOIIEMY 3 ePCOHATI30BaHUMH JialoraMH Ha OCHOBI 0a3 3HaHb.
[lepconamizarist qyxe BaKIMBa, BOHA MOXXE BHCYBATH JOJATKOBI BUMOTH IO apXiTEKTYPH CHCTEMH IMPH BEJICHHI IiaJioTy 3
KOPHCTYBaueM.

Tpaaumiitno cucremy 3anmuTaHb-BiqnoBiae (QAS) po3poOnsioTs Y BUDNIAAI IPOTpaMy, IO MICTUTh 0a3y 3HaHb Ta
iHTepdeiic kKoprucTyBaya, IO HAJAE KOPUCTYBAUYEBI BiJIMOBII Ha 3aNMTaHHSA, i 3aci0 B3aeMoJiil 3 ekcriepToM. Y Iiili CTaTTi MU
aHaJI3yEMO CyJacHI IiIXOH 10 pO3pOOKH apXiTEeKTypH Ta HaMaraeMocst oOy/ayBaTH CUCTEMY 3 OJIOKIB, SIKi BKE ICHYIOTh Ha

88

ISSN 2710 - 1673. Artificial Intelligence. 2021. Neo 2

S3Ee2ET

- e -

puHKY. OCHOBHUMH KpHUTepisiMu 1Tpu o0paHHi MoayaiB NLP Oynu: miarpumMka ykpaiHCBKOT MOBH, PO3yMiHHS IIPUPOAHOI MOBH,
(byHKUIT aBTOMaTHYHOTO BM3HAYEHHsI CyTHOCTEH (aTpuOyTiB), 31aTHICTH NMOOY/IOBU AiaJOrOBOrO MOTOKY, SIKICTh 1 TIOBHOTA
JoKyMeHTallii, MoxxiuBocTi API Ta iHTerparis i3 30BHIIIHIME CHCTEMaMH, MOXKJIMBOCTI iHTerpailii 30BHIIIHIX 0a3 3HAHB.
[Ticnst mpoBeieHOTO aHalli3y B CTATTI NPOMOHYETHCS JeTalbHa apXiTeKTypa MUTaIbHO-BIAMNOBIIANBHOT MiICHCTEMH 3
eJIEMEHTaMH CaMOHABYaHHS YKPaiHCHKOIO MOBOIO. Y poOOTI BHM 3HaiijieTe NETalbHUH OMHUC OCHOBHMX CEMaHTHYHHX

KOMIIOHEHTIB CHCTEMH (KOMITOHEHTIB apXiTEeKTYpH).

KurouoBi cioBa: muraipHO BiAmoBimanbHI cucteMu, 4ar-060t, Google Dialogflow, camonaBuaHHS, apXiTeKTypa

HPOrPaMHOTO 3aCTOCYHKY.

Introduction

In nowadays world, there is no area of life
that could be possible without the daily use of
information technologies and the Internet.
Knowledge and information are stored in digital
formats, print media are being almost completely
replaced by the capabilities of information systems.
Due to the increase in data, it is becoming
increasingly difficult to find relevant answers to our
guestions in the ocean of information. This is
changing both the needs of users for information
retrieval capabilities, and the ways to meet those
needs. In particular, this applies to such a class of
information systems as question-answering systems.
The first systems of this kind were developed as
natural language shells for expert systems applied in
specific areas. Modern automated question-
answering systems are designed to work with much
broader subject areas, and are being now actively
used in commercial, social, educational and other

fields [1].
With the development of machine
learning technologies, creation of natural

language processing (NLP) engines, as well as
the rising popularity of virtual personal assistant
programs that use the capabilities of speech
synthesis (text-to-speech), there is a growing
need in developing question-answering systems
which can provide personalized answers to users'
questions. This is because an answer to a certain
question often depends on additional contextual
data or on additional information about, for
example, the author of the question etc. Such
information can be personalized, which puts
forward additional demands to a question-
answering system’s capabilities to take this
information into account while processing users’

questions.
Approaches to the development of
information systems are also undergoing

significant changes. With the development of
cloud technologies, the need for self-

89

administration of infrastructures has been
eliminated, and such solutions as PaaS (platform
as a service) and SaaS (software as a service)
have started to appear. Complex monolithic
architectures of information systems are
beginning to be replaced by such approaches as
microservices development, the use of serverless
technologies and ready-made services used as
components in the software development [2].

That is why the research of the
development of architecture of a question-
answering system with elements of self-learning
is important and relevant.

Development of the architecture of a
guestion-answering subsystem with
elements of self-learning

The basic architecture of highly
specialized question-answering systems s
shown in Figure 1.

Traditionally, a question-answering
system (QAS) is developed in the form of an
application that contains a knowledge base and a
user interface, which provides a user with
answers to questions, and a means of interaction
with an expert. In order to decompose the system
into separate components, let us define the
following main external components: a user
interface, an engine for processing and
understanding natural language, knowledge base
and algorithms for finding answers. The main
part of a question-answering system, which will
carry out the integration of components, will be
called an integration subsystem.

Developing a graphical user interface can
be a separate task. However, we decided to use a
ready-made solution. The advantages of such
approach are a large number of available ready-
made solutions with effective integration tools

ISSN 2710 - 1673. Artificial Intelligence. 2021. Neo 2

S3Ee2ET

- e -

question

arswer

&

User Question-answering

system

.f"r
@ % semgs
-

knowledze base expert

Fig. 1. The basic architecture of highly specialized question-answering systems

which make it possible to cut down the
development time by adding new graphical
interfaces with minimal changes.

Since the system is designed for building a
dialogue, and the number of users is not limited,
we have chosen an ideal tool for messaging — a
chatbot. Most of messaging systems also provide
advanced ways of integration with external
systems. This approach allows to easily realize
new integrations into the system by adding a
controller and conducting a message transfer to
a specialized processor. The general architecture
of this approach to integration is shown in Fig.2.

/” question-answering system

processing

User

Figure 2. Architecture of integration of a question-
answering system with messaging systems

It is clear that a natural language
understanding engine is one of the Kkey
components of the question-answering system. It
performs the task of processing a user's question,
namely identification of an intention (goals,
objectives) behind a wuser's question and
definition of certain contextual entities
(attributes) of the question.

The tasks of processing and understanding
natural language (Natural Language Processing

90

- NLP, Natural Language Understanding - NLU)
are complex tasks in machine learning [3]. Large
cloud solution providers, such as Microsoft,
IBM, Google, Amazon, have been constantly
working to develop and improve their own
products of this kind [4, 5, 6, 7]. We analyzed
products they offer and selected candidates for
the engine position. The evaluation criteria were:
1. Support of the Ukrainian language.
2. Natural language understanding.
3. Functions of automatic definition of
entities (attributes).
4. Ability to construct a dialogue flow.
5. Quality and completeness
documentation.
6. API capabilities and integration with
external systems.
7. Possibilities of external knowledge bases
integration.

There were examined the following
software products: Watson Assistant from IBM,
QnA Maker and Bot Framework from
Microsoft, DialogFlow from Google and
Amazon Lex from Amazon. The table 2.1 gives
the results of the comparative analysis of these
products. Depending on a criterion, the
assessment was conducted either using a five-
point rating scale (1-5) or a two-point one
(yes/no).

We considered Watson Assistant and
DialogFlow to be the best candidates. However,
only DialogFlow provides opportunities for
understanding the Ukrainian language, and that
determined the final choice.

The scheme of integration with the engines
of processing and understanding natural
language is shown in Figure 3. As can be seen
from the figure, a question-answering system

of

ISSN 2710 - 1673. Artificial Intelligence. 2021. Neo 2

S3Ee2ET

- e -

receives questions from a user via Telegram,
sends it to the DialogFlow engine, which
searches for answers and sends them back to the
user.

Table 2.1. The results of the comparative analysis

Amazon
Lex

Watson
Assistant

QnA

Criterion Maker

DialogFlow

Support of the
Ukrainian
language
Natural language
understanding
Definition of
entities
Constructing a
dialogue flow
Documentation 5 2 4 3
API capabilities 4 3 4 4
Internal
knowledge base

no no yes no

yes yes yes yes

yes no yes yes

yes no yes yes

no no no* no

* available in a beta version in the English language

(subsystem of integration R

=
=
o

answer \ | question

GOOGLE CLO!JD PLATFORM

\ v
"e
‘ JALOGFLOW

answer search >,

-

Fig. 3. The scheme of integration with the engines of
processing and understanding natural language

Knowledge base and algorithms for

finding answers

This component of the system is designed
to find and determine answers to questions from
users. One of the objectives of the paper was to
introduce elements of self-learning, therefore, in
order to implement this component of the
system, applying just a third-party solution
would not be enough.

Developing solutions for the system to
perform its task to construct a dialogue flow with
a user, we have identified the following
components of the dialogue:

Context-independent questions, an answer
to which can be formulated by default every time
such a question is asked. An example of such a
question could be «Komu BinOyBaeTbcsi BCTym B

91

HaVKMA?» ("When are the NaUKMA entrance
exams?') Answers to such questions can be obtained
from the knowledge base or another place where the
information is stored by a key or another identifier.

e (Context-dependent questions, an answer to

which may depend on the information
available in the system and the current
context. For example, if an applicant is
communicating with the system that
provides information on admission to
Bachelor’s programs, the system can
clarify the question received «fki €
cnerianpHOCTI?» ("What are the study
programs?"), by asking a user «Skuit
dakynerer Tebe mikaBuTh?» ("Which
faculty are you interested in?") and, after
the clarification, it provides a list of study
programs for a particular faculty, such as
the Faculty of Informatics. In this case, a
usual question-answering system will
reproduce such a dialogue every time a
user asks the same question. When
implementing the self-learning function,
the system can identify a user and "know"
what he is interested in, so when a user
asks «Haragaii, sIKi € cCHeIiaJbHOCTI?»
("Remind me, what are the study
programs?"), after a while, the system will
immediately give this user a list of study
programs of the Faculty of Informatics.
However, 1if a wuser asks «ki €
cHeuiagbHOCTI Ha (akyabTeTi TyMmaHi-
tapHux Hayk?» ("What are the study
programs at the Faculty of Humanities?"),
the system will take into account the
specific meaning of the essence of
"faculty" present in the user’s question.
Generic elements of a dialogue that do not
require a search on the knowledge base,
and are used to logically build a dialogue.
These can be elements of a "small talk",
such as greetings and farewells, short
phrases that complete a thread like "yes",
"no", "of course" and so on. Such answers
can be attributes of a dialogue and stored
together with the dialogue itself.

Creation of dialogue scripts is supported
by the DialogFlow system, it was given the task

ISSN 2710 - 1673. Artificial Intelligence. 2021. Neo 2

S3Ee2ET

- e -

to organize main possible directions of how a
conversation with a user can develop. There one
can also store generic elements of the dialogue,
as well as consider the system as a possible place
for storing context-independent data and
working with them. It is also possible to use the
graphical interface of the system, API calls, SDK
libraries to configure dialogues.

The DialogFlow system is also meant to
work with context-dependent user questions.
This makes it possible to build typical dialogues,
where the system "leads" a user according to a
certain scenario. For example, a system that
allows a user to place an order in an online store,
by communicating with the chatbot, can provide
to a user a description of a particular product,
and upon receiving the question «A ska miHa?»
("And what is the price?") the system will inform
the price of this particular product. However,
support for these contexts can have some
limitations. For instance, in DialogFlow the
context lifespan automatically expires in 15
minutes, or after five conversational turns [3].
These limitations are nonessential for the
development of standardized user dialogue
scenarios, but considering self-learning tasks of
a question-answering system, this means that a
system based on them will at best have "short"
memory, or no such characteristics at all.
Another limitation of the DialogFlow is the
inability to derive rules based on certain data.

Therefore, the module of intellectual
processing of questions was taken out in a
separate subsystem. This, in its turn, led to the
necessity to solve the task of DialogFlow
integration with a specific external system for
processing messages from users. Such
integration is provisioned in DialogFlow and is
called "Fulfillment". The integration can be done
in two possible ways:

1. Sending a request to an external system
(webhook)

2. Using Google Cloud Functions

Since DialogFlow is a Google product that
is realized as one of Google Cloud Platform's
services, a serverless technology from the same
platform, Google Cloud Functions, was chosen

92

as the basis for the implementation of this
module. Cloud Functions supports coding in
such programming languages as JavaScript,
Python, Go, Java [3]. The choice was driven by
the following factors:

e Dbuilt-in ability for integration of
DialogFlow with Cloud Functions;
the trigger model based on the
occurrence of the event that fully
meets the needs of the task
(processing an event "a message
from a user");

the use of a single cloud platform
which increases productivity;
simplicity and rapid deployment of
the solution.

Therefore, with this approach, the
integration subsystem will be able to direct
questions from a user to DialogFlow. Next, the
NLP engine will be able to determine the essence
of a question, as well as additional contextual
entities present in the question. If the question
cannot be processed in DialogFlow, this
information will be sent to the part of the
software application that is run in Cloud
Functions. Hereinafter we will call this
subsystem Fulfillment Cloud Functions. This
subsystem will be able to receive or analyze both
information obtained from DialogFlow and
additional information, such as information
about a user or data of previous conversations,
including the one from external services and
databases, and to make a response based on this
information. Thus, this subsystem can
complement and expand the current context of
the dialogue, and generate an answer to a user,
or generate certain events for DialogFlow, which
will allow to control the dialogue in DialogFlow.
Additionally, with the help of the Fulfillment
Cloud Functions subsystem it will be possible,
for instance, to obtain data from external
knowledge bases, or dynamic information from
external sources. After processing a request from
DialogFlow, the subsystem will send a response
to this request back to DialogFlow, which in turn
will send a response to a user to the integration
subsystem.

ISSN 2710 - 1673. Artificial Intelligence. 2021. Neo 2

S3Ee2ET

- e -

If necessary, a module for managing
DialogFlow via API can be developed and added
to an integration subsystem; let's call it
DialogFlow API Admin.

A part of the architecture of the question-
answering system related to the Google Cloud
Platform is shown in Figure 4.

subsystem of

questit_:;y settings

FALOGFLOW AP
ADMIN
A

answer

' HOQGLE £1L.0UD PLATFORM S0BHILLHI
CHUCTEMMH

Y1 BA3N 3HAHb

External services

uestion

q
b o
answer @ ~1-

DIALOGFLOW

p. "y

Figure 4. Organizing work and interaction of Google
Cloud Platform components

Upon selection of individual components,
the general view of the QAS architecture will
be as shown in Figure 5.

user] (* subsystem of integration

Q]

w N

[O] A B
o W

~A@” y ;

answer | question

$OOMBLE CLOUD PLATFORM

question
)
answer,

Figure 5. The general view of the architecture of a QAS
upon selection of individual components

So far, we have only mentioned the details
of the integration subsystem design, considering
it rather as a certain whole object. Now we are
going to explain its architecture and main
functions in more detail.

Let's start with the functionality. It is worth
noting the following:

1. Integration with the Telegram messaging
system. Receiving questions from users from
Telegram and sending answers to users to
Telegram.

93

2. Processing of received messages with
questions. A message is not only a text
entered by a user, but also some additional
data, like a user or a conversation ID, some
information about a user etc. Such data can
be processed by the system with the aim to
save service information necessary for the
operation of the system. Besides that,
messages may contain data that cannot be
processed by the question-answering system
(i.e., images), and should be ignored, or, on
the other hand, contain control commands
designed to control the settings of the system
itself. Therefore, we have also included in
the processing of messages processing of
questions and sending them to the NLU
engine, processing and execution of
commands for the subsystem, and processing
of additional message data.

3. Integration with the engine of processing
and understanding natural language. It
includes sending questions from users and
getting answers from the engine. It must be
noted that in addition to the answer itself, the
integration subsystem must also receive
from DialogFlow additional information
about the context of the dialogue,
identification of a user's intention, the entity
data that was singled out by the engine from
the original question. In order that a QAS
could perform its self-learning function, the
integration subsystem must conduct the
processing and be responsible for storing this
data for later use, in particular in the
Fulfillment Cloud Functions subsystem.

As it can be seen from the functionality
description, such integration subsystem will be
able to store certain data, namely, information
about a user and DialogFlow data, which can be
later used in the Fulfillment Cloud Functions
subsystem. The data has a "key-value" format,
and the values can be either of simple types (i.e.,
numeric, string, logical), or consist of sets of
values of simple types. Therefore, to effectively
store such data, it is recommended to choose a
"key-value" or document-oriented database.

After analyzing the database ratings [8],
we chose Amazon DynamoDB.

ISSN 2710 - 1673. Artificial Intelligence. 2021. Neo 2

S3Ee2ET

- e -

In order to store data in the integration
subsystem, it is desirable to use a multilevel
architecture model [4]. To simplify the
architecture scheme, we introduced User Service
for services responsible for storing user data, and
Context Service for services responsible for
storing contextual data received from
DialogFlow.

For the integration with the engines of
processing and understanding natural language,
we have chosen to develop our own services —
DialogFlow Service, IBM Watson Service and
QnA Maker Service, respectively. Transparent
organization of work with any service should
ensure an additional provider — NLU Service
Provider, which will act as a facade and redirect
requests to a certain service, depending on the
current settings. DialogFlow Service will receive
users’ questions from the Text Processor through
the provider and send them for processing to
DialogFlow. After receiving the result from
DialogFlow, the service will send context data to
the Context Service for further storage, and send
the answer to the user to the Telegram Service so
it can be sent to Telegram. The detailed
architecture of the integration subsystem is
shown in Figure 6.

N -
integration subsystem l/

DB
01009 %@
(& SRR -

o

Figure 6. The architecture of the integration subsystem

-

And finally, on the basis of our research, it
is possible to present a detailed architecture of
the question-answering subsystem with
elements of self-learning. This architecture is
shown in Figure 7.

In this case, the integration subsystem, the
Fulfillment Cloud Functions subsystem, and the
Context API subsystem are software
applications that must be realized directly in the
process of development of this architecture.

94

subsystem of integration Database

6|lc o5 +|{@
éé'\ii:-! ’ ' /x' ex Ao
: / /'

GOOGLE CLOUD PLATFORM

€0

Figure 7. The detailed architecture of the question-
answering subsystem with elements of self-learning

The developed architecture provides
integration with other external systems through
the Fulfillment Cloud Functions subsystem. At
the same time, such integration is not critical for
the operation of the key features of the system,
and allows to further expand its capabilities.

e
e

o

Conclusions

This work has analyzed basic approaches
to the development of software system
architecture that ensures the effective operation
of the question-answering system with elements
of self-learning in the Ukrainian language.
Based on the research, there have been selected
software products (Google DiaglowFlow,
Google Cloud Platform, Telegram, Amazon
DynamoDB) that can be used as components in
a modern question-answering system and ensure
its optimal performance, taking into account the
proposed methods of integration.

References

1. Ali Mohammed Nabil Allam, Mohamed Hassan
Haggag. The Question Answering Systems: A
Survey. International Journal of Research and
Reviews in Information Sciences. 2012. 2. No3.
pp.10-21.

2. Wilhelm Hasselbring. Component-based software
engineering. International Journal of Software
Engineering and Knowledge Engineering. May 2002.

3. Google DialogFlow. Google Cloud Platform.
[Electronic resource]. Available at:
https://cloud.google.com/dialogflow/docs/

4. Amazon Web Services. [Electronic
Available at: https://docs.aws.amazon.com/

resource].

5. Fourault Sebastien. "The Ultimate Guide To
Designing A Chatbot Tech Stack" 2017. [Electronic
resource]. Available at:

https://cloud.google.com/dialogflow/docs/
https://docs.aws.amazon.com/

ISSN 2710 - 1673. Artificial Intelligence. 2021. Neo 2

- - S - e

https://chatbotsmagazine.com/the-ultimate-guide-to-
designing-a-chatbot-tech- stack-333eceb431da

Mark Richards. Software Architecture Patterns.
O'Reilly Media, Inc. 2015.

The Complete Guide to Chatbots in 2018. Sprout
Social. [Electronic resource]. Available at:
https://sproutsocial.com/insights/topics/chatbots

DB-Engines Ranking. [Electronic resource].
Available at: https://db-engines.com/en/ranking

Received 17.10.2021
Accepted 26.11.2021

95

https://db-engines.com/en/ranking

