
ISSN 2710 – 1673. Artificial Intelligence. 2021. № 2

88

 UDС: 004.93 DOI: https://doi.org/10.15407/jai2021.02.088

SOFTWARE ARCHITECTURE OF THE QUESTION-ANSWERING

SUBSYSTEM WITH ELEMENTS OF SELF-LEARNING

A. Hlybovets1, A. Tsaruk2
1, 2 National University of Kyiv-Mohyla Academy

 Skovorody str, 2, Kyiv, 04070

1 https:// orcid.org / 0000-0003-4282-481Х

Abstract. Within the framework of this paper, the analysis of software systems of question-answering type and their

basic architectures has been carried out.

With the development of machine learning technologies, creation of natural language processing (NLP) engines, as

well as the rising popularity of virtual personal assistant programs that use the capabilities of speech synthesis (text-to-speech),

there is a growing need in developing question-answering systems which can provide personalized answers to users' questions.

All modern cloud providers proposed frameworks for organization of question answering systems but still we have a problem

with personalized dialogs. Personalization is very important, it can put forward additional demands to a question-answering

system’s capabilities to take this information into account while processing users’ questions.

Traditionally, a question-answering system (QAS) is developed in the form of an application that contains a knowledge

base and a user interface, which provides a user with answers to questions, and a means of interaction with an expert. In this

article we analyze modern approaches to architecture development and try to build system from the building blocks that

already exist on the market. Main criteria for the NLP modules were: support of the Ukrainian language, natural language

understanding, functions of automatic definition of entities (attributes), ability to construct a dialogue flow, quality and

completeness of documentation, API capabilities and integration with external systems, possibilities of external knowledge

bases integration

After provided analyses article propose the detailed architecture of the question-answering subsystem with elements

of self-learning in the Ukrainian language. In the work you can find detailed description of main semantic components of the

system (architecture components).

Keywords: question-answering systems, chatbots, Google Dialogflow, self learning, software architecture.

АРХІТЕКТУРА ПРОГРАМНОГО ЗАСТОСУНКУ ПИТАЛЬНО-

ВІДПОВІДАЛЬНОЇ ПІДСИСТЕМИ З ЕЛЕМЕНТАМИ САМОНАВЧАННЯ

А.М. Глибовець1, А.П. Царук2
1, 2 Національний університет «Києво-Могилянська академія»

 вул. Сковороди, 2, м. Київ, 04070

1 https:// orcid.org / 0000-0003-4282-481Х

Анотація. У рамках даної роботи проведено аналіз програмних систем запитально-відповідного типу та їх

базових архітектур.

З розвитком технологій машинного навчання, створенням механізмів обробки природної мови (NLP), а також

зростанням популярності віртуальних персональних помічників, які використовують можливості синтезу мовлення

(перетворення тексту в мовлення), зростає потреба в розробці питально-відповідальних систем, які можуть вести

персоналізований діалог з користувачем. Усі сучасні хмарні провайдери запропонували фреймворки для побудови

питально-відповідальних систем, але ми все ще маємо проблему з персоналізованими діалогами на основі баз знань.

Персоналізація дуже важлива, вона може висувати додаткові вимоги до архітектури системи при веденні діалогу з

користувачем.

Традиційно систему запитань-відповідей (QAS) розробляють у вигляді програми, що містить базу знань та

інтерфейс користувача, що надає користувачеві відповіді на запитання, і засіб взаємодії з експертом. У цій статті ми

аналізуємо сучасні підходи до розробки архітектури та намагаємося побудувати систему з блоків, які вже існують на

ISSN 2710 – 1673. Artificial Intelligence. 2021. № 2

89

ринку. Основними критеріями при обранні модулів NLP були: підтримка української мови, розуміння природної мови,

функції автоматичного визначення сутностей (атрибутів), здатність побудови діалогового потоку, якість і повнота

документації, можливості API та інтеграція із зовнішніми системами, можливості інтеграції зовнішніх баз знань.

Після проведеного аналізу в статті пропонується детальна архітектура питально-відповідальної підсистеми з

елементами самонавчання українською мовою. У роботі ви знайдете детальний опис основних семантичних

компонентів системи (компонентів архітектури).

Ключові слова: питально відповідальні системи, чат-бот, Google Dialogflow, самонавчання, архітектура

програмного застосунку.

Introduction

In nowadays world, there is no area of life

that could be possible without the daily use of

information technologies and the Internet.

Knowledge and information are stored in digital

formats, print media are being almost completely

replaced by the capabilities of information systems.

Due to the increase in data, it is becoming

increasingly difficult to find relevant answers to our

questions in the ocean of information. This is

changing both the needs of users for information

retrieval capabilities, and the ways to meet those

needs. In particular, this applies to such a class of

information systems as question-answering systems.

The first systems of this kind were developed as

natural language shells for expert systems applied in

specific areas. Modern automated question-

answering systems are designed to work with much

broader subject areas, and are being now actively

used in commercial, social, educational and other

fields [1].

 With the development of machine

learning technologies, creation of natural

language processing (NLP) engines, as well as

the rising popularity of virtual personal assistant

programs that use the capabilities of speech

synthesis (text-to-speech), there is a growing

need in developing question-answering systems

which can provide personalized answers to users'

questions. This is because an answer to a certain

question often depends on additional contextual

data or on additional information about, for

example, the author of the question etc. Such

information can be personalized, which puts

forward additional demands to a question-

answering system’s capabilities to take this

information into account while processing users’

questions.

Approaches to the development of

information systems are also undergoing

significant changes. With the development of

cloud technologies, the need for self-

administration of infrastructures has been

eliminated, and such solutions as PaaS (platform

as a service) and SaaS (software as a service)

have started to appear. Complex monolithic

architectures of information systems are

beginning to be replaced by such approaches as

microservices development, the use of serverless

technologies and ready-made services used as

components in the software development [2].

That is why the research of the

development of architecture of a question-

answering system with elements of self-learning

is important and relevant.

Development of the architecture of a

question-answering subsystem with

elements of self-learning

The basic architecture of highly

specialized question-answering systems is

shown in Figure 1.

Traditionally, a question-answering

system (QAS) is developed in the form of an

application that contains a knowledge base and a

user interface, which provides a user with

answers to questions, and a means of interaction

with an expert. In order to decompose the system

into separate components, let us define the

following main external components: a user

interface, an engine for processing and

understanding natural language, knowledge base

and algorithms for finding answers. The main

part of a question-answering system, which will

carry out the integration of components, will be

called an integration subsystem.

Developing a graphical user interface can

be a separate task. However, we decided to use a

ready-made solution. The advantages of such

approach are a large number of available ready-

made solutions with effective integration tools

ISSN 2710 – 1673. Artificial Intelligence. 2021. № 2

90

Fig. 1. The basic architecture of highly specialized question-answering systems

which make it possible to cut down the

development time by adding new graphical

interfaces with minimal changes.

Since the system is designed for building a

dialogue, and the number of users is not limited,

we have chosen an ideal tool for messaging – a

chatbot. Most of messaging systems also provide

advanced ways of integration with external

systems. This approach allows to easily realize

new integrations into the system by adding a

controller and conducting a message transfer to

a specialized processor. The general architecture

of this approach to integration is shown in Fig.2.

Figure 2. Architecture of integration of a question-

answering system with messaging systems

It is clear that a natural language

understanding engine is one of the key

components of the question-answering system. It

performs the task of processing a user's question,

namely identification of an intention (goals,

objectives) behind a user's question and

definition of certain contextual entities

(attributes) of the question.

The tasks of processing and understanding

natural language (Natural Language Processing

- NLP, Natural Language Understanding - NLU)

are complex tasks in machine learning [3]. Large

cloud solution providers, such as Microsoft,

IBM, Google, Amazon, have been constantly

working to develop and improve their own

products of this kind [4, 5, 6, 7]. We analyzed

products they offer and selected candidates for

the engine position. The evaluation criteria were:

1. Support of the Ukrainian language.

2. Natural language understanding.

3. Functions of automatic definition of

entities (attributes).

4. Ability to construct a dialogue flow.

5. Quality and completeness of

documentation.

6. API capabilities and integration with

external systems.

7. Possibilities of external knowledge bases

integration.

There were examined the following

software products: Watson Assistant from IBM,

QnA Maker and Bot Framework from

Microsoft, DialogFlow from Google and

Amazon Lex from Amazon. The table 2.1 gives

the results of the comparative analysis of these

products. Depending on a criterion, the

assessment was conducted either using a five-

point rating scale (1-5) or a two-point one

(yes/no).

We considered Watson Assistant and

DialogFlow to be the best candidates. However,

only DialogFlow provides opportunities for

understanding the Ukrainian language, and that

determined the final choice.

The scheme of integration with the engines

of processing and understanding natural

language is shown in Figure 3. As can be seen

from the figure, a question-answering system

ISSN 2710 – 1673. Artificial Intelligence. 2021. № 2

91

receives questions from a user via Telegram,

sends it to the DialogFlow engine, which

searches for answers and sends them back to the

user.

Table 2.1. The results of the comparative analysis

Criterion
Watson

Assistant

QnA

Maker
DialogFlow

Amazon

Lex

Support of the
Ukrainian

language

no no yes no

Natural language
understanding

yes yes yes yes

Definition of

entities
yes no yes yes

Constructing a
dialogue flow

yes no yes yes

Documentation 5 2 4 3

API capabilities 4 3 4 4

Internal

knowledge base
no no no* no

* available in a beta version in the English language

Fig. 3. The scheme of integration with the engines of

processing and understanding natural language

Knowledge base and algorithms for

finding answers

This component of the system is designed

to find and determine answers to questions from

users. One of the objectives of the paper was to

introduce elements of self-learning, therefore, in

order to implement this component of the

system, applying just a third-party solution

would not be enough.

Developing solutions for the system to

perform its task to construct a dialogue flow with

a user, we have identified the following

components of the dialogue:

Context-independent questions, an answer
to which can be formulated by default every time

such a question is asked. An example of such a

question could be «Коли відбувається вступ в

НаУКМА?» ("When are the NaUKMA entrance

exams?") Answers to such questions can be obtained

from the knowledge base or another place where the

information is stored by a key or another identifier.

• Context-dependent questions, an answer to

which may depend on the information

available in the system and the current

context. For example, if an applicant is

communicating with the system that

provides information on admission to

Bachelor’s programs, the system can

clarify the question received «Які є

спеціальності?» ("What are the study

programs?"), by asking a user «Який

факультет тебе цікавить?» ("Which

faculty are you interested in?") and, after

the clarification, it provides a list of study

programs for a particular faculty, such as

the Faculty of Informatics. In this case, a

usual question-answering system will

reproduce such a dialogue every time a

user asks the same question. When

implementing the self-learning function,

the system can identify a user and "know"

what he is interested in, so when a user

asks «Нагадай, які є спеціальності?»

("Remind me, what are the study

programs?"), after a while, the system will

immediately give this user a list of study

programs of the Faculty of Informatics.

However, if a user asks «Які є

спеціальності на факультеті гумані-

тарних наук?» ("What are the study

programs at the Faculty of Humanities?"),

the system will take into account the

specific meaning of the essence of

"faculty" present in the user’s question.

• Generic elements of a dialogue that do not

require a search on the knowledge base,

and are used to logically build a dialogue.

These can be elements of a "small talk",

such as greetings and farewells, short

phrases that complete a thread like "yes",

"no", "of course" and so on. Such answers

can be attributes of a dialogue and stored

together with the dialogue itself.

Creation of dialogue scripts is supported

by the DialogFlow system, it was given the task

ISSN 2710 – 1673. Artificial Intelligence. 2021. № 2

92

to organize main possible directions of how a

conversation with a user can develop. There one

can also store generic elements of the dialogue,

as well as consider the system as a possible place

for storing context-independent data and

working with them. It is also possible to use the

graphical interface of the system, API calls, SDK

libraries to configure dialogues.

The DialogFlow system is also meant to

work with context-dependent user questions.

This makes it possible to build typical dialogues,

where the system "leads" a user according to a

certain scenario. For example, a system that

allows a user to place an order in an online store,

by communicating with the chatbot, can provide

to a user a description of a particular product,

and upon receiving the question «А яка ціна?»

("And what is the price?") the system will inform

the price of this particular product. However,

support for these contexts can have some

limitations. For instance, in DialogFlow the

context lifespan automatically expires in 15

minutes, or after five conversational turns [3].

These limitations are nonessential for the

development of standardized user dialogue

scenarios, but considering self-learning tasks of

a question-answering system, this means that a

system based on them will at best have "short"

memory, or no such characteristics at all.

Another limitation of the DialogFlow is the

inability to derive rules based on certain data.

Therefore, the module of intellectual

processing of questions was taken out in a

separate subsystem. This, in its turn, led to the

necessity to solve the task of DialogFlow

integration with a specific external system for

processing messages from users. Such

integration is provisioned in DialogFlow and is

called "Fulfillment". The integration can be done

in two possible ways:

1. Sending a request to an external system

(webhook)

2. Using Google Cloud Functions

Since DialogFlow is a Google product that

is realized as one of Google Cloud Platform's

services, a serverless technology from the same

platform, Google Cloud Functions, was chosen

as the basis for the implementation of this

module. Cloud Functions supports coding in

such programming languages as JavaScript,

Python, Go, Java [3]. The choice was driven by

the following factors:

• built-in ability for integration of

DialogFlow with Cloud Functions;

• the trigger model based on the

occurrence of the event that fully

meets the needs of the task

(processing an event "a message

from a user");

• the use of a single cloud platform

which increases productivity;

• simplicity and rapid deployment of

the solution.

Therefore, with this approach, the

integration subsystem will be able to direct

questions from a user to DialogFlow. Next, the

NLP engine will be able to determine the essence

of a question, as well as additional contextual

entities present in the question. If the question

cannot be processed in DialogFlow, this

information will be sent to the part of the

software application that is run in Cloud

Functions. Hereinafter we will call this

subsystem Fulfillment Cloud Functions. This

subsystem will be able to receive or analyze both

information obtained from DialogFlow and

additional information, such as information

about a user or data of previous conversations,

including the one from external services and

databases, and to make a response based on this

information. Thus, this subsystem can

complement and expand the current context of

the dialogue, and generate an answer to a user,

or generate certain events for DialogFlow, which

will allow to control the dialogue in DialogFlow.

Additionally, with the help of the Fulfillment

Cloud Functions subsystem it will be possible,

for instance, to obtain data from external

knowledge bases, or dynamic information from

external sources. After processing a request from

DialogFlow, the subsystem will send a response

to this request back to DialogFlow, which in turn

will send a response to a user to the integration

subsystem.

ISSN 2710 – 1673. Artificial Intelligence. 2021. № 2

93

If necessary, a module for managing

DialogFlow via API can be developed and added

to an integration subsystem; let's call it

DialogFlow API Admin.

A part of the architecture of the question-

answering system related to the Google Cloud

Platform is shown in Figure 4.

Figure 4. Organizing work and interaction of Google

Cloud Platform components

Upon selection of individual components,

the general view of the QAS architecture will

be as shown in Figure 5.

Figure 5. The general view of the architecture of a QAS

upon selection of individual components

So far, we have only mentioned the details

of the integration subsystem design, considering

it rather as a certain whole object. Now we are

going to explain its architecture and main

functions in more detail.

Let's start with the functionality. It is worth

noting the following:

1. Integration with the Telegram messaging

system. Receiving questions from users from

Telegram and sending answers to users to

Telegram.

2. Processing of received messages with

questions. A message is not only a text

entered by a user, but also some additional

data, like a user or a conversation ID, some

information about a user etc. Such data can

be processed by the system with the aim to

save service information necessary for the

operation of the system. Besides that,

messages may contain data that cannot be

processed by the question-answering system

(i.e., images), and should be ignored, or, on

the other hand, contain control commands

designed to control the settings of the system

itself. Therefore, we have also included in

the processing of messages processing of

questions and sending them to the NLU

engine, processing and execution of

commands for the subsystem, and processing

of additional message data.

3. Integration with the engine of processing

and understanding natural language. It

includes sending questions from users and

getting answers from the engine. It must be

noted that in addition to the answer itself, the

integration subsystem must also receive

from DialogFlow additional information

about the context of the dialogue,

identification of a user's intention, the entity

data that was singled out by the engine from

the original question. In order that a QAS

could perform its self-learning function, the

integration subsystem must conduct the

processing and be responsible for storing this

data for later use, in particular in the

Fulfillment Cloud Functions subsystem.

As it can be seen from the functionality

description, such integration subsystem will be

able to store certain data, namely, information

about a user and DialogFlow data, which can be

later used in the Fulfillment Cloud Functions

subsystem. The data has a "key-value" format,

and the values can be either of simple types (i.e.,

numeric, string, logical), or consist of sets of

values of simple types. Therefore, to effectively

store such data, it is recommended to choose a

"key-value" or document-oriented database.

After analyzing the database ratings [8],

we chose Amazon DynamoDB.

ISSN 2710 – 1673. Artificial Intelligence. 2021. № 2

94

In order to store data in the integration

subsystem, it is desirable to use a multilevel

architecture model [4]. To simplify the

architecture scheme, we introduced User Service

for services responsible for storing user data, and

Context Service for services responsible for

storing contextual data received from

DialogFlow.

For the integration with the engines of

processing and understanding natural language,

we have chosen to develop our own services –

DialogFlow Service, IBM Watson Service and

QnA Maker Service, respectively. Transparent

organization of work with any service should

ensure an additional provider – NLU Service

Provider, which will act as a facade and redirect

requests to a certain service, depending on the

current settings. DialogFlow Service will receive

users’ questions from the Text Processor through

the provider and send them for processing to

DialogFlow. After receiving the result from

DialogFlow, the service will send context data to

the Context Service for further storage, and send

the answer to the user to the Telegram Service so

it can be sent to Telegram. The detailed

architecture of the integration subsystem is

shown in Figure 6.

Figure 6. The architecture of the integration subsystem

And finally, on the basis of our research, it

is possible to present a detailed architecture of

the question-answering subsystem with

elements of self-learning. This architecture is

shown in Figure 7.

In this case, the integration subsystem, the

Fulfillment Cloud Functions subsystem, and the

Context API subsystem are software

applications that must be realized directly in the

process of development of this architecture.

Figure 7. The detailed architecture of the question-

answering subsystem with elements of self-learning

The developed architecture provides

integration with other external systems through

the Fulfillment Cloud Functions subsystem. At

the same time, such integration is not critical for

the operation of the key features of the system,

and allows to further expand its capabilities.

Conclusions

This work has analyzed basic approaches

to the development of software system

architecture that ensures the effective operation

of the question-answering system with elements

of self-learning in the Ukrainian language.

Based on the research, there have been selected

software products (Google DiaglowFlow,

Google Cloud Platform, Telegram, Amazon

DynamoDB) that can be used as components in

a modern question-answering system and ensure

its optimal performance, taking into account the

proposed methods of integration.

References

1. Ali Mohammed Nabil Allam, Mohamed Hassan

Haggag. The Question Answering Systems: A

Survey. International Journal of Research and

Reviews in Information Sciences. 2012. 2. No3.

pp.10-21.

2. Wilhelm Hasselbring. Component-based software

engineering. International Journal of Software

Engineering and Knowledge Engineering. May 2002.

3. Google DialogFlow. Google Cloud Platform.

[Electronic resource]. Available at:

https://cloud.google.com/dialogflow/docs/

4. Amazon Web Services. [Electronic resource].

Available at: https://docs.aws.amazon.com/

5. Fourault Sebastien. "The Ultimate Guide To

Designing A Chatbot Tech Stack" 2017. [Electronic

resource]. Available at:

https://cloud.google.com/dialogflow/docs/
https://docs.aws.amazon.com/

ISSN 2710 – 1673. Artificial Intelligence. 2021. № 2

95

https://chatbotsmagazine.com/the-ultimate-guide-to-

designing-a-chatbot-tech- stack-333eceb431da

6. Mark Richards. Software Architecture Patterns.

O'Reilly Media, Inc. 2015.

7. The Complete Guide to Chatbots in 2018. Sprout

Social. [Electronic resource]. Available at:

https://sproutsocial.com/insights/topics/chatbots

8. DB-Engines Ranking. [Electronic resource].

Available at: https://db-engines.com/en/ranking

Received 17.10.2021

Accepted 26.11.2021

https://db-engines.com/en/ranking

