именно:

- 1. Формировать кодовое описание заданной длины. Например, для хранения в компактном виде видеоинформации в системах резервного копирования, хранилищах данных, на внешних носителях информационно-вычислительных систем. Здесь кодовым словом $D_{\rm nec} = D_{\rm proc}$ будет машинное слово равномерной длины, принимающая значения от 16 до 64 бит в зависимости от системы.
- 2. Формировать обобщенное кодовое представление, которое предлагается организовывать на базе наращивания кодовой конструкции построчномасштабного представления фрагмента изображения путем добавления к ней части кодовой комбинации, сформированной для элементов координатноструктурного описания.

Это обеспечит следующие возможности:

Во-первых, дополнительно повысить степень сжатия за счет сокращения количества кодовой избыточности, обусловленной наличием незначимых нулевых разрядов в базовой кодовой конструкции

Во-вторых, повысить оперативность обработки фрагментов изображений. Это объясняется тем, что: будет существовать возможность проводить восстановление фрагмента изображения на основе реконструкции обобщенного кодового представления.

В третьих, снизить вычислительную сложность, требующуюся для реализации процессов обработки.

Приходько С.И., Боцул А.В., Волков А.С. (УкрГАЖТ)

АЛГЕБРАИЧЕСКИЕ СВЕРТОЧНЫЕ КОДЫ ПЕРЕМЕЖЕНИЯ

Предлагается метод построения недвоичных алгебраических сверточных кодов перемежения, отличающихся ОТ известных, введением алгебраического дополнительного свойства, учитывающего прямую и обратную перестановку символов между кодовыми словами. Показано, что в результате формирования кодовых алгебраических сверточных кодов перемежения в декодирующем устройстве предусмотрено разбиение группирующихся ошибок на серию случайных, с последующим их исправлением. При этом удается строить сверточные коды с произвольно большими длинами кодового ограничения алгебраическим

методом за фиксированное число шагов и с заранее заданными параметрами, как самого сверточного кода, так и параметров перемежения.

Малиновский М.Л., Аленин Д.А., Коноваленко Н.В. (ООО НПП «Стальэнерго»)

РЕАЛИЗАЦИЯ ЦЕНТРАЛЬНОГО ВЫЧИСЛИТЕЛЬНОГО МОДУЛЯ С ЧЕТЫРЕХЯДЕРНОЙ АРХИТЕКТУРОЙ НА ОСНОВЕ ПЛИС

Технические характеристики и широкий диапазон программируемых возможностей логических интегральных схем (ПЛИС) могут быть успешно разработчиками использованы для создания современных систем железнодорожной автоматики на всех уровнях иерархии: от объектных контроллеров до центральных вычислительных модулей. В первую очередь преимущества ПЛИС-технологий являются востребованными на линиях скоростного движения, где предъявляются повышенные требования быстродействию, надежности и безопасности систем автоматики.

Специалистами компании «Стальэнерго» в рамках создания комплекса программно-технических средств железнодорожной автоматики и телемеханики «СТРЕЛА-10» разработана линейка устройств на ПЛИС. К основе этой линейке относятся концентраторы связи верхнего и нижнего уровней и центральный вычислительный модуль (ЦВМ) с четырехядерной архитектурой. Четыре ядра ЦВМ объединены по схеме резервирования ≪лва дублированных канала».

- В каждом ядре на основе ПЛИС реализована цифровая система, архитектура которой приведена в виде статической структуры (рис. 1) и диаграммы состояний (рис. 2).
- В данной архитектуре предусматривается параллельное выполнение многих процессов, связанных с передачей и обработкой данных, что практически невозможно реализовать на основе микропроцессоров. В результате распараллеливания алгоритмов производительность системы возрастает в десятки раз.
- В докладе раскрывается архитектура, приведена оценка надежности и безопасности ЦВМ, описывается технология автоматизированного проектирования программного обеспечения ЦВМ для систем централизации.

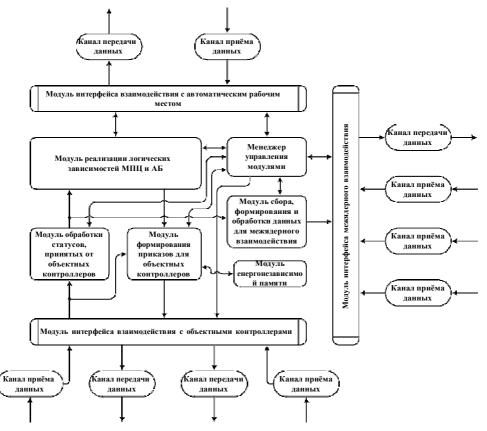


Рис. 1. Структура цифровой системы, реализованной на основе ПЛИС в ЦВМ комплекса «СТРЕЛА-10»

Рис. 2. Диаграмма состояний ЦВМ