УДК 678.5

Рассоха А.Н., Черкашина А.Н., Храмова Т.И.

ВЛИЯНИЕ ПРИРОДЫ МЕЖФАЗНОГО СЛОЯ НА СВОЙСТВА ФУРАНО-ЭПОКСИДНЫХ КОМПОЗИТОВ

Химическая природа и структура межфазного слоя (МФС) в полимерных композиционных материалах (ПКМ) оказывает существенное влияние на комплекс деформационно-прочностных, технологических и эксплуатационных свойств композитов, используемых в различных областях техники и народного хозяйства [1,2].

Представляло интерес исследовать влияние химической природы $M\Phi C$ в композиционном материале, отличного от полимерной матрицы, на свойства ПКМ, а также оценить структурно-геометрические параметры композита с учетом граничных областей полимерного связующего.

В качестве связующего ПКМ выбран фурано-эпоксидный полимер на основе реакционноспособного олигомера Φ АЭД-50(20), отвержденного аминофенольным структурирующим агентом марки Агидол АФ-2 (режим обработки: 20 °C – 24 ч; 60 °C – 2 ч; 80 °C – 4 ч.). Наполнителем (НП) служил кварцевый песок (КП) фракции менее 0,63 мм. Модификаторами поверхности КП выбраны высокомолекулярные соединения из ряда полиацеталей: поливинилбутираль (ПВБ); поливинилбутиральфурфураль (ПВБФ); поливинилформаль (ПВФЭ); поливинилформаль (ПВФЭ); поливинильетилаль (ПВФЭ); поливинилкеталь (ПВК), нанесенные на поверхность частиц наполнителя в процессе совместного помола КП и полиацеталя в шаровой мельнице в течение 3 ч при температуре 20 °C.

Деформационно-прочностные и сорбционные свойства фурано-эпоксидных ПКМ (разрушающее напряжение при изгибе σ_u , сжатии σ_c , ударная вязкость a, относительная деформация сжатия при разрушении ϵ , угол прогиба ϕ , водопоглощение за 24 ч, коэффициенты диффузии, сорбции, проницаемости) определяли по стандартным лабораторным методикам. Коэффициент однородности K_o оценивали по результатам статистического анализа испытаний образцов на изгиб (нормальный закон распределения).

На основании анализа литературных данных [2–7] и собственных экспериментальных и расчетно-теоретических исследований при формировании МФС в фурано-эпоксидных композитах следует выделить следующие факторы, определяющие структуру связующего в граничных областях композиционной системы:

- геометрический (энтропийный), обуславливающий ограничение сегментальной и групповой подвижности цепей макромолекул связующего, что приводит к снижению плотности упаковки. В разной степени проявляется в широком температурном диапазоне;
- адсорбционный (энергетический), зависящий от химической природы наполнителя, в том числе его поверхности поверхностной энергии, определяющей прочность адгезионного контакта между наполнителем и матрицей. Проявляется преимущественно до температуры стеклования; вследствие ориентации цепей макромолекул в МФС плотность связующего на границе раздела фаз несколько увеличивается;

 химический, оказывающий влияние на характер, скорость и направленность процессов структурирования фурано-эпоксидного реакционноспособного олигомера в тонких адсорбционных слоях, что приводит к изменению степени конверсии олигомера, вызывает снижение температуры стеклования и др. В значительной мере проявляется в области высоких степеней наполнения.

Сочетание данных факторов приводит к формированию $M\Phi C$ в фураноэпоксидных композитах со значительной структурной градиентной неоднородностью (рис. 1).

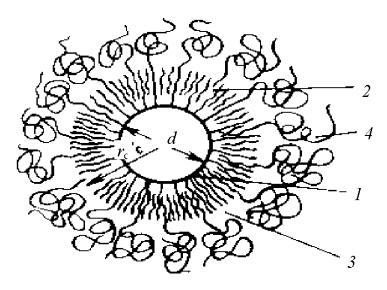


Рисунок 1 — Модель структуры граничного слоя фурано-эпоксидного полимера у поверхности частиц наполнителя в композиционном материале

1 – адсорбционный слой полимера; 2 – ориентированный слой матрицы; 3 – переходной (со структурными дефектами) слой полимера; 4 – связующее в объемной фазе; d – диаметр частицы наполнителя; r_c – радиус ближнй корреляции

Граничный слой у поверхности частицы наполнителя в данной модели выступает в качестве элементарной квазичастицы новой фазы полимерного связующего — фейзона полимерной матрицы, характеризующийся ориентационно-упорядоченной структурированностью и повышенной прочностью [2,7].

В табл. 1 представлены некоторые физико-механические свойства фураноэпоксидных композитов, содержащих исходный и модифицированный полиацеталями наполнитель (КП).

Анализ полученных экспериментальных данных (табл.1) позволяет сделать вывод о существенном влиянии природы МФС слоя на комплекс деформационно-прочностных свойств фурано-эпоксидных композиционных материалов. При этом на 7-22 % увеливается прочность при изгибе, 5-13 % разрушающее напряжение при сжатии, несколько повышается стойкость к воздействию ударных нагрузок, эластичность (угол прогиба) и материал становится структурно более однородным (увеличивается K_o).

Обработка поверхности наполнителя полиацеталями приводит к повышению стойкости фурано-эпоксидных композитов к воздействию эксплуатационных сред, в частности влаги. При этом влагопоглощение за 24 ч. в среднем снижается на 12–25 %, а коэффициенты диффузии, сорбции и проницаемости – на 8–13 %.

Таблица	1	_	Деформационно-прочностные	свойства	фурано-эпоксидных
композитов					

Модификатор	σ_u , МПа	$σ_c$, ΜΠα	a , кДж/м 2	ε,%	ф. град	K_o
_	<u>80</u>	<u>105</u>	<u>3,5</u>	0,55	10,5	0,69
	89	112	2,1	0,33	8,5	0,52
ПВБ	<u>93</u>	<u>115</u>	<u>4,0</u> 3.2	0,59 0,35	12,3	0,78
	97	120	3.2	0,35	10,0	0,60
ПВБФ	<u>98</u>	<u>119</u>	<u>4,5</u>	<u>0,61</u>	12,5 10,0	<u>0,81</u>
	102	125	4,0	0,38	10,0	0,65
ПВФ	<u>88</u>	<u>110</u>	4 <u>,0</u> 3,5	0,59	<u>11,5</u>	<u>0,76</u>
	95	117	3,5	0,35	9,5	0,62
ПВФЭ	<u>90</u>	<u>110</u>	<u>4,0</u>	0,60	<u>11,0</u>	<u>0,74</u>
	95	115	3,3	0,33	9,0	0,59
ПВЭ	<u>89</u>	<u>109</u>	3,9 2,8	0,58	<u>11,3</u>	<u>0,75</u>
	94	115	2,8	0,34	9,5	0,61
ПВК	<u>86</u>	<u>108</u>	3,9 3,0	$\frac{0,58}{0,35}$	11,0 9,3	0,73 0,58
	90	113	3,0	0,35	9,3	0,58

Примечание: содержание КП – числитель – 36 масс. %; знаменатель – 75 масс. %.

Химическая природа модификатора также влияет на анализируемые свойства композитов. Максимальный положительный эффект достигается в случае использования ПВБФ и ПВБ.

В рамках перколяционного подхода [2] при анализе структуры фураноэпоксидных композитов с моно- и полидисперсными наполнителями (рис. 2) целесообразно оценить при известном диаметре d_o (фракция 1) структурногеометрические параметры композиционной системы: средний диаметр сфер d_t с учетом фейзонных слоев (при протекании по перекрывающимся сферам); средний оптимальный размер фейзонного слоя h_i , необходимый для образования первичного кластера (табл. 2–3).

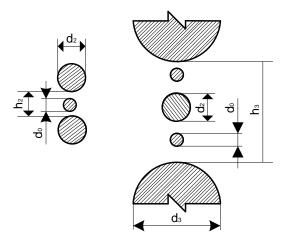


Рисунок 2 — Модель расположения частиц наполнителя с дискретной гранулометрией в структуре фурано-эпоксидных композитов (d_2 — фракция 2, d_3 — фракция 3)

Таблица 2 – О	Структурно-геометрические	параметры	композитов	для монофрак-
ции наполнителя				

Параметр	Значение параметра при диаметре частиц d_o , мкм							
	1	10	20	50	100	200	500	1000
d_t , мкм	1,28	12,8	25,6	64,0	128,0	256,0	640	2560
h_i , мкм	0,14	1,4	2,8	7,0	14,0	28,0	70	140

Таблица 3 — Структурно-геометрические параметры композитов для трехфракционного $H\Pi$

Параметр	Значение параметра для фракции					
	1	2	3			
d_i , мкм	<u>5</u>	<u>46</u>	<u>420</u>			
	25	228	2006			
d_t , MKM	<u>6,4</u> 32,0	<u>58,9</u>	<u>537,6</u>			
•	32,0	291,8	2560			
h_i , мкм	<u>0,7</u>	<u>6,4</u>	<u>58,8</u>			
• .	3,5	32,0	280,8			

Как видно из представленных данных (табл. 2,3), структуру граничных слоев фурано-эпоксидного связующего в композите, а следовательно, и свойства системы в целом, можно целенаправленно регулировать, варьируя гранулометрический состав дисперсной фазы (кварцевого песка), создавая рациональную структуру композиционного материала с комплексом высоких функциональных свойств.

Таким образом, проведенные экспериментальные и расчетно-теоретические исследования структуры и свойств фурано-эпоксидных композитов с модифицированным полиацеталями кварцевым песком, позволяют при разработке композиционных систем получать материалы с заданным уровнем прочностных и эксплуатационных свойств.

Литература

- 1. Корнеев А.Д., Потапов Ю.Б., Соломатов В.И. Эпоксидные полимербетоны. Липецк: ЛГТУ, 2001. 181 с.
- 2. Соломатов В.И., Бобрышев А.Н., Химмлер К.Г. Полимерные композиционные материалы в строительстве / Под ред. В.И. Соломатова.— М.: Стройиздат, 1988.— 312 с.
- 3. Лукошюте И., Левинскас Р., Квикликс А. Образование переходного слоя на наполнителях полимерных композитов // Механика композитных материалов. -2006. Т. 42. № 5. С. 693–700.
- 4. Хозин В.Г., Иващенко Ю.Г., Соломатов В.И. Формирование и роль граничных слоев связующих в полимербетонах // Известия ВУЗов. Строительство. 1995. № 10. С. 47–59.
- 5. Стухляк П.Д., Митник М.М., Орлов В.О. Вплив граничних прошарків на властивості композитних полімерних матеріалів (огляд) // Фізико-хімічна механіка матеріалів.— 2001.0 № 1.— С. 69—75.

- 6. Кулезнев В.Н., Мархасин И.Л., Кондрашов О.Ф. и др. Образование граничного слоя фурфуролацетоновым мономером на твердой поверхности // Коллоидный журнал −1980. Т.ХLII. ~ 1.5 1. С. 49–53.
- 7. Хозин В.Г. Усиление эпоксидных полимеров. Казань: Изд-во ПИК «Дом печати», 2004. 446 с.

УДК 678.5

Рассоха О.М., Черкашина Г.М., Храмова Т.І.

ВПЛИВ ПРИРОДИ МЕЖФАЗНОГО ШАРУ НА ВЛАСТИВОСТІ ФУРАНО-ЕПОКСИДНИХ КОМПОЗИТІВ

У роботі проведені експериментальні й розрахунково-теоретичні дослідження структури й властивостей фурано-епоксидних композитів з модифікованим поліацеталями кварцовим піском. Результати досліджень дозволяють при розробці композиційних систем одержувати матеріали із заданим рівнем прочностних та експлуатаційних властивостей.

Rassokha A.N., Cherkashyna A.N., Chramova T.I.

EFFECT OF THE INTERFACIAL LAYER NATURE ON THE FURAN-EPOXY COMPOSITE PROPERTIES

Effect of the interfacial layer nature on structure and strength properties of the furanepoxy composites is investigated.