Solid solutions of Ti in the binary compounds R_3Ga_2 (R = Y, Er)

Anastasiya KOTSYUBAYLO¹, Anatoliy ZELINSKIY¹*, Yaroslav TOKAYCHUK¹, Roman GLADYSHEVSKII¹

¹ Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya St. 6, 79005 Lviv, Ukraine

* Corresponding author. Tel.: +380-32-2394506; e-mail: a_zelinskiy@franko.lviv.ua

Received December 9, 2013; accepted December 25, 2013; available on-line August 30, 2014

The crystal structures of two samples belonging to the substitutional solid solutions of Ti (1.6 at.% at 600°C) in the binary gallides Y_3Ga_2 and Er_3Ga_2 were refined from X-ray powder diffraction data. Both solid solutions belong to the structure type Gd_3Ga_2 : Pearson symbol *t1*80, space group *14/mcm*, a = 11.6264(11), c = 14.8543(14) Å for $Y_{2.97(1)}Ti_{0.08(2)}Ga_{1.95(1)}$ and a = 11.4577(9), c = 14.6999(12) Å for $Er_3Ti_{0.08(2)}Ga_{1.92(2)}$. In the former case titanium atoms substitute for both Y and Ga atoms (icosahedral and cubic coordination, respectively), whereas in the latter case the titanium atoms exclusively substitute for Ga atoms (cubic coordination).

Rare-earth metals / Titanium / Gallium / X-ray powder diffraction / Solid solution / Crystal structure

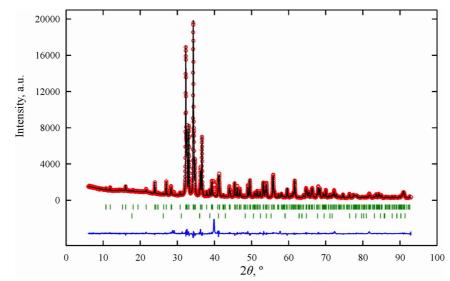
Introduction

Investigations of the systems {Y, Er}–Ti–Ga [1,2], which resulted in the construction of the isothermal sections of the phase diagrams at 800°C, revealed the existence of two compounds in each system, RTi_2Ga_4 and R_4TiGa_3 . The crystal structure of the ternary compounds RTi_2Ga_4 belongs to the type YbMo₂Al₄ (Pearson symbol *t*/14, space group *I*4/*mmm*, *a* = 6.712, *c* = 5.484 Å for *R* = Y [1] and *a* = 6.706, *c* = 5.470 Å for *R* = Er [3]). The crystal structure of the other two compounds remained undetermined. The aim of the present investigation was the synthesis and structural investigation of the " R_4 TiGa₃" phases.

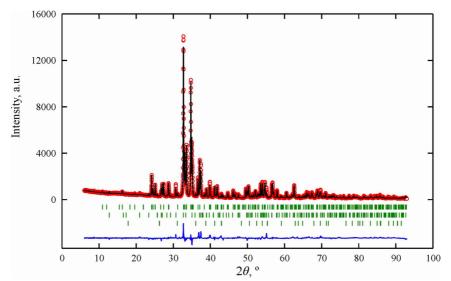
Experimental

Alloys of nominal composition $R_{50}Ti_{12.5}Ga_{37.5}$ (R = Y, Er) were synthesized from high-purity metals ($R \ge 99.9$ wt.%, Ti ≥ 99.7 wt.%, Ga ≥ 99.99 wt.%) by arc melting in a water-cooled copper crucible under a purified argon atmosphere, using a tungsten electrode. To achieve good homogeneity the samples were melted twice. The alloys were then annealed in evacuated silica ampoules at 600°C or 500°C for two months, and subsequently quenched in cold water. The loss during the preparation of the samples was less than 0.5% of the total mass, which was 1 g for each alloy.

X-ray powder diffraction patterns of the samples were obtained at room temperature, on a diffractometer Stoe Stadi P with a linear positionsensitive detector and Cu $K\alpha_1$ -radiation (range 6-93° 2θ , step size 0.015°; alloys annealed at 600°C) or DRON-2.0M with Fe $K\alpha$ -radiation (range 15-140° 2θ , step size 0.05°; alloys annealed at 500°C). The X-ray phase analysis was carried out using the WinXPow program package [4] and the structures were refined by the full-profile Rietveld method using the FullProf Suite program package [5].


Results

The X-ray phase analysis did not confirm the existence of individual ternary compounds of composition R_4 TiGa₃ in the systems {Y, Er}–Ti–Ga, neither at 500 nor at 600°C. Instead, substitutional solid solutions based on the binary compounds R_3 Ga₂ were found.


The binary compounds R_3Ga_2 (R = Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu) were discovered in 1986 [6], a few years after the investigation of the phase diagrams of the systems {Y, Er}–Ti–Ga. Their crystal structures are described by the prototype Gd₃Ga₂ (Pearson symbol *t1*80, space group *I4/mcm*).

The starting atom coordinates for the main phases in the synthesized alloys were taken from the structure of Gd₃Ga₂ [6]. In the final cycles of the refinements the following parameters were allowed to vary: sample shift, scale factors, cell parameters, profile parameters (pseudo-Voigt profile function), atom positional and displacement parameters, and preferred orientation parameters. The isotropic displacement parameters of atoms of the same chemical element were constrained to be equal. The background was defined by linear interpolation between manually The sample Y₅₀Ti_{12.5}Ga_{37.5} assigned points. annealed at 600°C was three-phase and contained, in addition to the main phase $Y_{2.97(1)}Ti_{0.08(2)}Ga_{1.95(1)}$, binary Ti₃Ga [7] and small amounts of an unidentified phase. In the sample Er50Ti12.5Ga37.5 annealed at 600°C, three phases were identified: Er₃Ti_{0.08(2)}Ga_{1.92(2)}, Er₅Ga₃ [8], and Ti₃Ga [7]. For the secondary phases only the scale factors and cell parameters were refined independently, whereas the profile parameters were constrained to those of the main phases, and the structural parameters were fixed to the values reported in the literature. Experimental,

the difference calculated and between the experimental and calculated X-ray powder diffraction patterns of the samples Y₅₀Ti_{12.5}Ga_{37.5} and Er₅₀Ti_{12.5}Ga_{37.5} are shown in Figs. 1,2. Experimental details and crystallographic data are listed in Tables 1,2, and atom coordinates and isotropic displacement parameters for the Gd₃Ga₂-type phases are given in Tables 3,4. The refinements carried out on the samples annealed at 500°C showed the same distribution of atoms in the ternary Gd₃Ga₂-type phases as for the samples annealed at 600°C. The cell 500°C parameters at are: a = 11.5706(16),c = 14.826(2) Å for R = Y and a = 11.4238(11), c = 14.6763(17) Å for R = Er [9].

Fig. 1 Experimental (circles), calculated (continuous line) and difference between experimental and calculated (bottom) X-ray powder diffraction patterns of the sample $Y_{50}Ti_{12.5}Ga_{37.5}$ annealed at 600°C (Cu $K\alpha_1$ -radiation). Vertical bars indicate the positions of reflections from $Y_{2.97(1)}Ti_{0.08(2)}Ga_{1.95(1)}$ and Ti_3Ga . The strongest peak of the unidentified phase is at 39.9° 2 θ .

Fig. 2 Experimental (circles), calculated (continuous line) and difference between experimental and calculated (bottom) X-ray powder diffraction patterns of the sample $\text{Er}_{50}\text{Ti}_{12.5}\text{Ga}_{37.5}$ annealed at 600°C (Cu $K\alpha_1$ -radiation). Vertical bars indicate the positions of reflections from $\text{Er}_3\text{Ti}_{0.08(1)}\text{Ga}_{2.92(1)}$, Er_5Ga_3 , and Ti_3Ga .

Phase		$Y_{2.97(1)}Ti_{0.08(2)}Ga_{1.95(1)}$	Ti₃Ga			
Content, wt.%		93.8(6)	6.2(1)			
Structure type		Gd_3Ga_2	Mg ₃ Cd			
Pearson symbol		<i>t1</i> 80	hP8			
Space group		<i>I4/mcm</i> (#140)	<i>P</i> 6 ₃ / <i>mmc</i> (#194)			
Cell parameters:	<i>a</i> , Å	11.6264(11)	5.7513(6)			
-	<i>a</i> , Å <i>c</i> , Å	14.8543(14)	4.6435(6)			
Cell volume V, $Å^3$		2007.9(3)	133.02(3)			
Number of formula units in the cell Z		16	2			
Density $D_{\rm X}$, g cm ⁻³		5.345	5.329			
Preferred orientation: value / [direction]		0.932(4) / [001]	0.938(11) / [110]			
Reliability factors:	$R_{ m B}$	0.0685	0.114			
-	R_F	0.0484	0.0423			
Profile parameters	U	0.0770	(10)			
	V	0.008	(9)			
	W	0.009	(2)			
Shape parameter		0.696	0.696(8)			
Asymmetry parameters		0.047(9), 0.	0.047(9), 0.0046(14)			
Reliability factors:	$R_{\rm p}$	0.04	0.0474			
-	R_{wp}^{1}	0.08	76			
	χ^2	6.4	1			

Table 1 Experimental details and crystallographic data for the individual phases in the sample $Y_{50}Ti_{12.5}Ga_{37.5}$ annealed at 600°C.

Table 2 Experimental details and crystallographic data for the individual phases in the sample $Er_{50}Ti_{12.5}Ga_{37.5}$ annealed at 600°C.

Phase		Er ₃ Ti _{0.08(2)} Ga _{1.92(2)}	Er ₅ Ga ₃	Ti ₃ Ga		
Content, wt.%		72.0(5)	23.1(2)	4.9(1)		
Structure type		Gd_3Ga_2	Ba ₅ Si ₃	Mg ₃ Cd		
Pearson symbol		<i>tI</i> 80	<i>tP</i> 32	hP8		
Space group		<i>I4/mcm</i> (#140)	P4/ncc (#130)	<i>P</i> 6 ₃ / <i>mmc</i> (#194)		
Cell parameters:	<i>a</i> , Å	11.4577(9)	7.5892(6)	5.7418(6)		
-	<i>c</i> , Å	14.6999(12)	13.8545(12)	4.6415(7)		
Cell volume V , Å ³		1929.8(3)	797.96(11)	132.52(3)		
Formula units per cell Z		16	4	2		
Density $D_{\rm X}$, g cm ⁻³		8.804	8.703	5.349		
Preferred orientation: value / [direction]		0.972(5) / [001]	0.978(6) / [001]	0.999(19) / [110]		
Reliability factors:	$R_{ m B}$	0.0776	0.160	0.0776		
-	R_F	0.0822	0.121	0.0771		
Profile parameters	U	0.029(7)				
-	V	0.005(7)				
	W	0.0117(14)				
Shape parameter		0.727(9)				
Asymmetry parameters		0.066(7), 0.0081(15)				
Reliability factors:	$R_{ m p}$	0.0677				
-	$R_{\rm wp}^{\rm P}$	0.101				
	$\chi^{2^{n}}$	4.65				

Discussion

The two gallides Y_3Ga_2 and Er_3Ga_2 dissolve similar amounts of Ti (1.6 at.% at 600°C). However, the distribution of the Ti atoms in the structures is different. In the structure of $Er_3Ti_{0.08(2)}Ga_{1.92(2)}$ the titanium atoms partly substitute for the smaller Ga atoms in Wyckoff position 4c, forming a statistical mixture 0.33(6)Ti + 0.67(6)Ga. This leads to an increase of the cell parameters as compared to those of binary Er₃Ga₂ (a = 11.385, c = 14.54 Å at 600°C [6]).

Table 3 Atom coordinates and isotropic displacement parameters for $Y_{2.97(1)}Ti_{0.08(2)}Ga_{1.95(1)}$ (structure type Gd_3Ga_2 , *t1*80, *14/mcm*).

Site	Wyckoff position	x	у	Z	$B_{\rm iso}$, Å ²
Y1	32 <i>m</i>	0.06652(14)	0.20356(16)	0.13608(10)	0.55(3)
Y2	8h	0.1693(3)	0.6693(3)	0	0.55(3)
Y3 ^a	8g	0	1/2	0.1464(3)	0.55(3)
Gal	16 <i>l</i>	0.1778(2)	0.6778(2)	0.1995(2)	0.73(6)
Ga2	8h	0.6169(3)	0.1169(3)	0	0.73(6)
Ga3 ^b	4c	0	0	0	0.73(6)
Ga4	4a	0	0	1⁄4	0.73(6)

^a Y3 = 0.94(1)Y + 0.06(1)Ti; ^b Ga3 = 0.19(4)Ti + 0.81(4)Ga.

Table 4 Atom coordinates and isotropic displacement parameters for $Er_3Ti_{0.08(2)}Ga_{1.92(2)}$ (structure type Gd_3Ga_2 , *t1*80, *14/mcm*).

Site	Wyckoff position	X	у	Z	$B_{\rm iso}$, Å ²
Er1	32 <i>m</i>	0.06623(16)	0.20329(17)	0.13621(12)	0.40(4)
Er2	8h	0.1689(3)	0.6689(3)	0	0.40(4)
Er3	8g	0	1/2	0.1462(3)	0.40(4)
Ga1	16 <i>l</i>	0.1788(4)	0.6788(4)	0.2003(4)	0.88(10)
Ga2	8h	0.6172(6)	0.1172(6)	0	0.88(10)
Ga3 ^a	4c	0	0	0	0.88(10)
Ga4	4a	0	0	1⁄4	0.88(10)

^a Ga3 = 0.33(6)Ti + 0.67(6)Ga.

In the structure of $Y_{2.97(1)}Ti_{0.08(2)}Ga_{1.95(1)}$ titanium atoms partly substitute for Ga atoms in Wyckoff position 4*c* (0.19(4)Ti + 0.81(4)Ga). However, Ti atoms also replace the larger Y atoms in Wyckoff position 8*g*, forming a statistical mixture 0.94(1)Y + 0.06(1)Ti. In this case the cell parameters do not change significantly with respect to those of binary Y₃Ga₂ (*a* = 11.62, *c* = 14.86 Å at 600°C [6]).

The content of one unit cell and coordination polyhedra for the structure of Er₃Ti_{0.08(2)}Ga_{1.92(2)} are shown in Fig. 3. The Er sites have the coordination numbers 15 (Er1, Er2) and 13 (Er3). The corresponding polyhedra are: pentagonal prisms of composition GaEr₉ and Er₁₀ (for Er1 and Er2, respectively) with five Ga atoms capping the two base and three side faces, and an icosahedron Ga₆Er₆ with one additional Er atom (for Er3). The Ga sites have the coordination numbers 10 (Ga1, Ga2) and 8 (Ga3, Ga4) and the following polyhedra: square antiprisms Er_8 , without capping atoms (for site Ga4), or with one Ga and one additional Er atom capping the bases (for Ga1 and Ga2), and a cube Er₈ (for Ga3). The partial replacement of Ga atoms by Ti atoms takes place in the site surrounded by an Er₈ cube, which has larger volume than the Er₈ square antiprisms.

In the structure of $Y_{2.97(1)}Ti_{0.08(2)}Ga_{1.95(1)}$ the partial replacement of Y atoms by Ti atoms takes place in the site with lower coordination number, *i.e.* the site surrounded by a Ga₆Er₆ icosahedron.

Conclusions

In the ternary systems {Y, Er}-Ti-Ga at 500 and 600°C substitutional solid solutions of Ti in the binary compounds Y_3Ga_2 and Er_3Ga_2 are formed. In the case of Y_3Ga_2 the titanium atoms substitute for both Y and Ga atoms ($Y_{3-x}Ti_{x+y}Ga_{2-y}$), whereas in Er_3Ga_2 the titanium atoms exclusively replace Ga atoms ($Er_3Ti_yGa_{2-y}$). Substitution takes place in selected sites, which is in agreement with the atom radii.

Acknowledgements

This work was supported by the Ministry of Education and Science of Ukraine under the grant No. 0112U001280 and by the company Material Phases Data System (MPDS, Vitznau, Switzerland).

A. Kotsubaylo *et al.*, Solid solutions of Ti in the binary phases R_3Ga_2 (R = Y, Er)

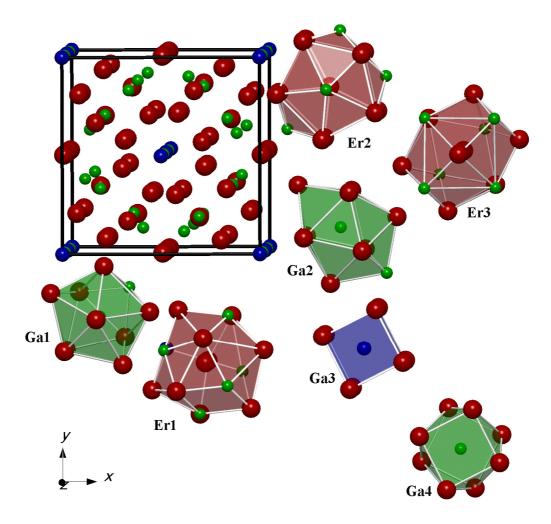


Fig. 3 Unit cell content and coordination polyhedra in the structure of Er₃Ti_{0.08(2)}Ga_{1.92(2)}.

References

- V.Ya. Markiv, T.G. Zhunkivs'ka, N.M. Belyavina, O.O. Lysenko, *Dopov. Akad. Nauk Ukr. RSR, Ser. A* (5) (1983) 81-83.
- [2] V.Ya. Markiv, *Dopov. Akad. Nauk Ukr. RSR*, *Ser. A* (4) (1981) 86-89.
- [3] Yu.M. Gryn', I.S. Gavrylenko, V.Ya. Markiv, Ya.P. Yarmolyuk, *Dopov. Akad. Nauk Ukr. RSR*, *Ser. A* (8) (1980) 73-76.
- [4] *WinXPow. Version 2.21*, Stoe & Cie GmbH, Darmstadt, 2007.
- [5] J. Rodríguez-Carvajal, *Commission on Powder Diffraction (IUCr), Newsletter* 26 (2001) 12-19.

- [6] S.P. Yatsenko, R.E. Gladyshevskii, O.M. Sichevych, V.K. Belsky, A.A. Semyannikov, Yu.N. Grin, Ya.P. Yarmolyuk, J. Less-Common Met. 115 (1986) 17-22.
- [7] J. Zhao, J.D. Corbett, J. Alloys Compd. 210 (1994) 1-7.
- [8] O.K. Belousov, I.I. Kornilov, *Russ. Metall.* (*Engl. Transl.*) 1 (1978) 175-178.
- [9] A.A. Kotsyubaylo, A.V. Zelinskiy, R.E. Gladyshevskii, Coll. Abstr. XII Int. Conf. Cryst. Chem. Intermet. Compd., Lviv, 2013, p. 128.