O. V. Gutik, I. V. Pozdniakova

CONGRUENCES ON THE MONOID OF MONOTONE INJECTIVE PARTIAL SELFMAPS OF $L_{n} \times{ }_{\text {lex }} \mathbb{Z}$ WITH CO-FINITE DOMAINS AND IMAGES

We study congruences on the semigroup $\mathscr{I}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ of monotone injective partial selfmaps of the set of $L_{n} \times{ }_{\text {lex }} \mathbb{Z}$ having co-finite domains and images, where $L_{n} \times{ }_{\text {lex }} \mathbb{Z}$ is the lexicographic product of n-elements chain and the set of integers with the usual linear order. The structure of the sublattice of congruences on $\mathscr{I} \mathcal{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ which contain in the least group congruence is described.

We follow the terminology [6, 7] and [8]. We shall denote the additive group of integers by $\mathbb{Z}(+)$.

An algebraic semigroup S is called inverse if for any element $x \in S$ there exists a unique $x^{-1} \in S$ such that $x x^{-1} x=x$ and $x^{-1} x x^{-1}=x^{-1}$. The element x^{-1} is called the inverse of $x \in S$. If S is an inverse semigroup, then the function inv $: S \rightarrow S$ which assigns to every element x of S its inverse element x^{-1} is called an inversion.

If \mathfrak{C} is an arbitrary congruence on a semigroup S, then we denote by $\Phi_{\mathfrak{C}}: S \rightarrow S / \mathfrak{C}$ the natural homomorphisms from S onto the quotient semigroup S / \mathfrak{C}. A congruence \mathfrak{C} on a semigroup S is called non-trivial if \mathfrak{C} is distinct from universal and identity congruences Δ_{S} on S, and group if the quotient semigroup S / \mathfrak{C} is a group. Every inverse semigroup S admits the least (minimum) group congruence σ :
$a \sigma b$ if and only if there exists $e \in E(S)$ such that $a e=b e$
(see [8, Lemma III.5.2].)
If S is a semigroup, then we shall denote the subset of idempotents of S by $E(S)$. If S is an inverse semigroup, then $E(S)$ is closed under multiplication and we shall refer to $E(S)$ as a band (or the band of S). If the band $E(S)$ is a non-empty subset of S, then the semigroup operation on S determines the following partial order \leq on $E(S): e \leq f$ if and only if $e f=f e=e$. This order is called the natural partial order on $E(S)$. A semilattice is a commutative semigroup of idempotents. A semilattice E is called linearly ordered or a chain if its natural order is a linear order. A maximal chain of a semilattice E is a chain which is properly contained in no other chain of E.

If S is a semigroup, then we shall denote the Green relations on S by $\mathscr{R}, \mathscr{L}, \mathscr{J}, \mathscr{D}$ and \mathscr{H} (see [2, Section 2.1]):

$$
\begin{array}{lll}
a \mathscr{R} b \quad \text { if and only if } & a S^{1}=b S^{1}, \\
a \mathscr{L} b \quad \text { if and only if } & S^{1} a=S^{1} b, \\
a \mathscr{H} b \quad \text { if and only if } & S^{1} a S^{1}=S^{1} b S^{1}, \\
\mathscr{D}=\mathscr{L} \circ \mathscr{R}=\mathscr{R} \circ \mathscr{L}, & \\
\mathscr{H}=\mathscr{L} \cap \mathscr{R} .
\end{array}
$$

A semigroup S is called simple if S contains no proper two-sided ideal, i.e., S has a unique \mathscr{I}-class, and bisimple if S has a unique \mathscr{D}-class.

If $\alpha: X \rightharpoonup Y$ is a partial map, then by dom α and $\operatorname{ran} \alpha$ we denote the domain and the range of α, respectively.

Let \mathscr{I}_{λ} denotes the set of all partial one-to-one transformations of an infinite set X of cardinality λ endowed with the following semigroup operation: $x(\alpha \beta)=(x \alpha) \beta$ if $x \in \operatorname{dom}(\alpha \beta)=\{y \in \operatorname{dom} \alpha \mid y \alpha \in \operatorname{dom} \beta\}$, for $\alpha, \beta \in \mathscr{I}_{\lambda}$. The semigroup \mathscr{I}_{λ} is called the symmetric inverse semigroup over the set X (see [2, Section 1.9]). The symmetric inverse semigroup was introduced by Wagner [1] and it plays a major role in the theory of semigroups. An element $\alpha \in \mathscr{I}_{\lambda}$ is called co-finite, if the sets $\lambda \backslash \operatorname{dom} \alpha$ and $\lambda \backslash \operatorname{ran} \alpha$ are finite.

Let (X, \leq) be a partially ordered set. We shall say that a partial map $\alpha: X \rightharpoonup X$ is monotone if $x \leq y$ implies $(x) \alpha \leq(y) \alpha$ for each $x, y \in X$.

Let \mathbb{Z} be the set of integers with the usual linear order «s». For any positive integer n by L_{n} we denote the set $\{1, \ldots, n\}$ with the usual linear order «s». On the Cartesian product $L_{n} \times \mathbb{Z}$ we define the lexicographic order, i.e.,

$$
(i, m) \leq(j, n) \quad \text { if and only if } \quad(i<j) \quad \text { or } \quad(i=j \quad \text { and } m \leq n)
$$

Later the set $L_{n} \times \mathbb{Z}$ with the lexicographic order we denote by $L_{n} \times{ }_{\text {lex }} \mathbb{Z}$. Also, it is obvious that the set $\mathbb{Z} \times L_{n}$ with the lexicographic order is order isomorphic to (\mathbb{Z}, \leq).

By $\mathscr{I} \mathscr{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ we denote a semigroup of injective partial monotone selfmaps of $L_{n} \times{ }_{\text {lex }} \mathbb{Z}$ with co-finite domains and images. Obviously, $\mathscr{I} \mathscr{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ is an inverse submonoid of the semigroup \mathscr{I}_{ω} and $\mathscr{I} \mathscr{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ is a countable semigroup. Also, by $\mathscr{I O}_{\infty}(\mathbb{Z})$ we denote a semigroup of injective partial monotone selfmaps of \mathbb{Z} with co-finite domains and images.

Furthermore, we shall denote the identity of the semigroup $\mathscr{I} \mathscr{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ by \mathbb{I} and the group of units of $\mathscr{I} O_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ by $H(\mathbb{I})$.

Gutik and Repovs in [5] showed that the semigroup $\mathscr{I}_{\infty}^{/}(\mathbb{N})$ of partial cofinite monotone injective transformations of the set of positive integers \mathbb{N} has algebraic properties similar to those of the bicyclic semigroup: it is bisimple and all of its non-trivial semigroup homomorphisms are either isomorphisms or group homomorphisms.

In [4] Gutik and Repovš studied the semigroup $\mathscr{J}_{\infty}^{\nearrow}(\mathbb{Z})$ of partial co-finite monotone injective transformations of the set of integers \mathbb{Z} and they showed that $\mathscr{I}_{\infty}^{\nearrow}(\mathbb{Z})$ is bisimple and all of its non-trivial semigroup homomorphisms are either isomorphisms or group homomorphisms.

In the paper [3] we studied the semigroup $\mathscr{I} O_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$. There we described Green's relations on $\mathscr{I} 0_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$, showed that the semigroup $\mathscr{\mathscr { O }}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ is bisimple and established its projective congruences. Also, there we proved that $\mathscr{I} O_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ is finitely generated, every automorphism of $\mathscr{I} \mathscr{O}_{\infty}(\mathbb{Z})$ is inner and showed that in the case $n \geq 2$ the semigroup $\mathscr{I O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ has non-inner automorphisms. In [3] we proved that for every positive integer n the quotient semigroup $\mathscr{I} O_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right) / \sigma$, where σ is the least group congruence on $\mathscr{I} O_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$, is isomorphic to the direct power $(\mathbb{Z}(+))^{2 n}$.

By Proposition $2.3(i v)$ [3], the semigroup $\mathscr{I} \mathcal{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ is isomorphic to the direct power $\left(\mathscr{I}_{\infty}(\mathbb{Z})\right)^{n}$. Fixing this isomorphism further we shall identify
elements of the semigroup $\mathscr{I O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ with elements of the direct product $\left(\mathscr{H O}_{\infty}(\mathbb{Z})\right)^{n}$, i.e., every element α of $\mathscr{\mathscr { O }} \mathcal{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ we present in the form $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$, where all α_{i} belongs to $\mathscr{I} O_{\infty}(\mathbb{Z})$. Later by α_{i}° we shall denote the element with the form $\left(\mathbb{I}_{1}, \ldots, \mathbb{I}_{i-1}, \alpha_{i}, \mathbb{I}_{i+1}, \ldots, \mathbb{I}_{n}\right)$, where \mathbb{I}_{j} is the identity of the j-th factor of $\left(\mathscr{I} O_{\infty}(\mathbb{Z})\right)^{n}$ for all j and $\alpha_{i} \in\left(\mathscr{I} O_{\infty}(\mathbb{Z})\right)$. It is obvious that for every $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathscr{I} 0_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ we have that $\alpha=\alpha_{1}^{\circ} \ldots \alpha_{n}^{\circ}$.

For every $i=1, \ldots, n$ we define a binary relation $\sigma_{[i]}$ on the semigroup $\mathscr{H} \mathscr{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ in the following way:
$\alpha \sigma_{[i]} \beta \quad$ if and only if there exists an idempotent

$$
\varepsilon \in \mathscr{H} O_{\infty}\left(\mathbb{Z}_{\operatorname{lex}}^{n}\right) \quad \text { such that } \quad \alpha \varepsilon_{i}^{\circ}=\beta \varepsilon_{i}^{\circ} .
$$

In [3] we proved that $\sigma_{[i]}$ is a congruence on $\mathscr{I} \mathcal{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ for every $i=$ $=1, \ldots, n$. Also, there is shown that for any subset $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, n\}$ of distinct integers, the relation $\sigma_{\left[i_{1}, \ldots, i_{k}\right]}=\sigma_{\left[i_{1}\right]} \circ \ldots \circ \sigma_{\left[i_{k}\right]}$ is a congruence on $\mathscr{I} \mathcal{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ and is described the properties of the congruence $\sigma_{\left[i_{1}, \ldots, i_{k}\right]}$ (see Propositions 2.11-2.13, 2.15 and 2.18 in [3]). Moreover, $\sigma_{[1,2, \ldots, n]}$ is the least group congruence on the semigroup $\mathscr{I O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$.

For every $i=1, \ldots, n$ we define a map $\pi^{i}: \mathscr{I} O_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right) \rightarrow \mathscr{I} O_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ by the formula $(\alpha) \pi^{i}=\alpha_{i}^{\circ}$, i.e., $\left(\alpha_{1}, \ldots, \alpha_{i}, \ldots, \alpha_{n}\right) \pi^{i}=\left(\mathbb{I}_{1}, \ldots, \mathbb{I}_{i-1}, \alpha_{i}, \mathbb{I}_{i+1}, \ldots, \mathbb{I}_{n}\right)$. Simple verifications show that the map $\pi^{i}: \mathscr{I} O_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right) \rightarrow \mathscr{I} O_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ is a homomorphism. Let $\pi^{i \#}$ be the congruence on the semigroup $\mathscr{\mathscr { O }} \mathcal{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ which is generated by the homomorphism π^{i}.

Let S be an inverse semigroup. For any congruence ρ on S we define a congruence $\rho_{\min }$ on S as follows:

$$
a \rho_{\min } b \text { if and only if } a e=b e \text { for some } e \in E(S) \text { and } e \rho a^{-1} a \rho b^{-1} b
$$

(see [8, Section III.2]). Then Proposition 2.17 from [3] implies that

$$
\pi_{\min }^{i \#}=\sigma_{[1]} \circ \ldots \circ \sigma_{[i-1]} \circ \sigma_{[i+1]} \circ \ldots \circ \sigma_{[n]}
$$

for every $i=1, \ldots, n$.
This paper is a continuation of [3] and we study congruences on the semigroup $\mathscr{I} O_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$. Here we describe the structure of the sublattice of congruences on $\mathscr{I} 0_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ which contained in the least group congruence.

For arbitrary elements $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ of the semigroup $\mathscr{I} \Theta_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ we define:

$$
\mathbf{D}_{\alpha, \beta}=\left\{i \in\{1, \ldots, n\} \mid \alpha_{i} \neq \beta_{i}\right\} .
$$

It is obvious that elements $\alpha, \beta \in \mathscr{H} \mathscr{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ are equal if and only if $\mathbf{D}_{\alpha, \beta}=\varnothing$.
Lemma 1. Let \mathfrak{C} be a congruence on the semigroup $\mathscr{I O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$. Let α and β be two distinct \mathfrak{C}-equivalent elements of the semigroup $\mathscr{I O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$. Then there exists an element ω in $\mathscr{I}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ such that $\mathbb{I C} \omega$ and $\mathbf{D}_{\mathbb{I}, \omega}=\mathbf{D}_{\alpha, \beta}$.

Proof. By Proposition 2.3 (iv) from [3] the semigroup $\mathscr{I} 0_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ is isomorphic to the direct power $\left(\mathscr{I}_{\infty}(\mathbb{Z})\right)^{n}$. We denote $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=$ $=\left(\beta_{1}, \ldots, \beta_{n}\right)$. Then for every $i \in \mathbf{D}_{\alpha, \beta}$ we have that $\alpha_{i} \neq \beta_{i}$.

We fix an arbitrary $i \in \mathbf{D}_{\alpha, \beta}$. Then one of the following cases holds:

1) $\alpha_{i} \mathscr{H} \beta_{i}$ in $\mathscr{O _ { \infty }}(\mathbb{Z})$;
2) α_{i} and β_{i} are not \mathscr{H}-equivalent in $\mathscr{I O}_{\infty}(\mathbb{Z})$.

Suppose that case 1) holds. By Proposition 2.3 from [4] the semigroup $\mathscr{I} \mathscr{O}_{\infty}(\mathbb{Z})$ is bisimple and hence by Theorem 2.3 from [2] there exist $\gamma_{i}, \delta_{i} \in \mathscr{H} \mathscr{O}_{\infty}(\mathbb{Z})$ such that $\eta_{i}=\gamma_{i} \alpha_{i} \delta_{i}$ and $\zeta_{i}=\gamma_{i} \beta_{i} \delta_{i}$ are distinct elements of the group of units of the semigroup $\mathscr{I}_{\infty}(\mathbb{Z})$. Then we have that $\eta_{i}^{-1} \eta_{i}=\eta_{i}^{-1} \gamma_{i} \alpha_{i} \delta_{i}=\mathbb{I}_{i}$ is the unit of the semigroup $\mathscr{I} O_{\infty}(\mathbb{Z})$ and $\eta_{i}^{-1} \zeta_{i}=\eta_{i}^{-1} \gamma_{i} \beta_{i} \delta_{i} \neq \mathbb{I}_{i}$. Hence, without loss of generality we can assume that there exist elements γ_{i} and δ_{i} of the semigroup $\mathscr{I}_{\infty}(\mathbb{Z})$ such that $\gamma_{i} \alpha_{i} \delta_{i}=\mathbb{I}_{i}$ is the unit of $\mathscr{I} \mathcal{O}_{\infty}(\mathbb{Z})$ and $\gamma_{i} \beta_{i} \delta_{i} \neq \mathbb{I}_{i}$.

Suppose that the elements α_{i} and β_{i} are not \mathscr{H}-equivalent in $\mathscr{I O}_{\infty}(\mathbb{Z})$. Then by Proposition 2.1 (vii) from [4] we have that at least one of the following conditions holds:

$$
\operatorname{dom} \alpha_{i} \neq \operatorname{dom} \beta_{i} \quad \text { or } \quad \operatorname{ran} \alpha_{i} \neq \operatorname{ran} \beta_{i}
$$

Since every subset with finite complement in \mathbb{Z} is order isomorphic to \mathbb{Z} we conclude that there exist monotone bijective maps $\gamma_{i}: \mathbb{Z} \rightarrow \operatorname{dom} \alpha_{i}$ and $\delta_{i}: \operatorname{ran} \alpha_{i} \rightarrow \mathbb{Z}$. Then we have that $\gamma_{i} \alpha_{i} \delta_{i}$ is an element of the group of units of the semigroup $\mathscr{I} \mathcal{O}_{\infty}(\mathbb{Z})$, because $\operatorname{dom}\left(\gamma_{i} \alpha_{i} \delta_{i}\right)=\operatorname{ran}\left(\gamma_{i} \alpha_{i} \delta_{i}\right)=\mathbb{Z}$.

Suppose we have that $\operatorname{dom} \alpha_{i} \neq \operatorname{dom} \beta_{i}$. If there exists an integer $k \in$ $\in \operatorname{dom} \alpha_{i}$ such that $k \notin \operatorname{dom} \beta_{i}$, then $(k) \gamma_{i}^{-1} \in \operatorname{dom}\left(\gamma_{i} \alpha_{i} \delta_{i}\right)$ and $(k) \gamma_{i}^{-1} \notin$ $\notin \operatorname{dom}\left(\gamma_{i} \beta_{i} \delta_{i}\right)$. If there exists an integer $k \in \operatorname{dom} \beta_{i}$ such that $k \notin \operatorname{dom} \alpha_{i}$, then $(k) \gamma_{i}^{-1} \in \operatorname{dom}\left(\gamma_{i} \beta_{i} \delta_{i}\right)$ and $(k) \gamma_{i}^{-1} \notin \operatorname{dom}\left(\gamma_{i} \alpha_{i} \delta_{i}\right)$. Therefore, we get that $\operatorname{dom}\left(\gamma_{i} \beta_{i} \delta_{i}\right) \neq \operatorname{dom}\left(\gamma_{i} \alpha_{i} \delta_{i}\right)$.

Suppose we have that $\operatorname{ran} \alpha_{i} \neq \operatorname{ran} \beta_{i}$. If there exists an integer $k \in$ $\in \operatorname{ran} \alpha_{i} \quad$ such that $k \notin \operatorname{ran} \beta_{i}$, then $(k) \delta_{i} \in \operatorname{ran}\left(\gamma_{i} \alpha_{i} \delta_{i}\right)$ and $(k) \delta_{i} \notin$ $\notin \operatorname{ran}\left(\gamma_{i} \beta_{i} \delta_{i}\right)$. If there exists an integer $k \in \operatorname{ran} \beta_{i}$ such that $k \notin \operatorname{ran} \alpha_{i}$, then $(k) \delta_{i} \in \operatorname{ran}\left(\gamma_{i} \beta_{i} \delta_{i}\right)$ and $(k) \delta_{i} \notin \operatorname{ran}\left(\gamma_{i} \alpha_{i} \delta_{i}\right)$. This implies that ran $\left(\gamma_{i} \beta_{i} \delta_{i}\right) \neq$ $\neq \operatorname{ran}\left(\gamma_{i} \alpha_{i} \delta_{i}\right)$.

Since every translation on an arbitrary element of the group of units of the semigroup $\mathscr{I} O_{\infty}(\mathbb{Z})$ is a bijective map of the set of integers \mathbb{Z}, without loss of generality we can assume that the element $\gamma_{i} \alpha_{i} \delta_{i}$ is the unit of the semigroup $\mathscr{I} \hat{O}_{\infty}(\mathbb{Z})$.

Next, we define elements $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ and $\delta=\left(\delta_{1}, \ldots, \delta_{n}\right)$ of the semigroup $\mathscr{I} \mathcal{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ in the following way. For $i \in \mathbf{D}_{\alpha, \beta}$ we define γ_{i} and δ_{i} to be the elements of the semigroup $\mathscr{I O}_{\infty}(\mathbb{Z})$ so constructed above. For $i \in$ $\in\{1, \ldots, n\} \backslash \mathbf{D}_{\alpha, \beta}$ we put γ_{i} and δ_{i} are the elements of the semigroup $\mathscr{I} \mathscr{O}_{\infty}(\mathbb{Z})$ such that $\gamma_{i} \alpha_{i} \delta_{i}=\gamma_{i} \beta_{i} \delta_{i}=\mathbb{I}_{i}$ is the unit of the semigroup $\mathscr{I}_{\infty}(\mathbb{Z})$. 10

The existence of so elements γ_{i} and δ_{i} in $\mathscr{I} O_{\infty}(\mathbb{Z})$ follows from Theorem 2.3 from [2] and the fact that the semigroup $\mathscr{I}_{\infty}(\mathbb{Z})$ is bisimple (see [4, Proposition 2.3]).

Hence we get that

$$
\gamma \alpha \delta=\mathbb{I}, \quad \omega=\gamma \beta \delta \neq \mathbb{I} \quad \text { and } \quad \omega \mathbb{C} \mathbb{I} \quad \text { in } \quad \mathscr{I} O_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right) .
$$

Moreover, our construction implies that $\mathbf{D}_{\mathbb{I}, \omega}=\mathbf{D}_{\alpha, \beta}$.
Lemma 2. Let \mathfrak{C} be a congruence on the semigroup $\mathscr{I} O_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$. Let α and β be two distinct \mathfrak{C}-equivalent elements of the semigroup $\mathscr{I} \mathcal{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$. Then there exists an element ψ in $\mathscr{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ such that $\mathbb{I C} \psi, \quad \mathbf{D}_{\mathbb{I}, \psi}=\mathbf{D}_{\alpha, \beta}$ and elements \mathbb{I} and ψ are not \mathscr{H}-equivalent in $\mathscr{H O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$.

Proof. If α and β are not \mathscr{H}-equivalent elements of the semigroup $\mathscr{I} \mathcal{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$, then by case 2) of the proof of Lemma 1 we obtain that $\mathbb{I C} \omega=\gamma \beta \delta$ and the elements \mathbb{I} and ω are not \mathscr{H}-equivalent in $\mathscr{I} \mathscr{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$.

Next, we suppose that $\alpha \mathscr{H} \beta$ and put $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$. Then by Proposition 2.3 from [4] the semigroup $\mathscr{I}_{\infty}(\mathbb{Z})$ is bisimple and hence by Theorem 2.3 from [2] for every $i=1, \ldots, n$ there exist $\gamma_{i}, \delta_{i} \in \mathscr{H} O_{\infty}(\mathbb{Z})$ such that $\gamma_{i} \alpha_{i} \delta_{i}=\mathbb{I}_{i}$ is the unit of the semigroup $\mathscr{I O}_{\infty}(\mathbb{Z})$ and $\gamma_{i} \beta_{i} \delta_{i} \neq \mathbb{I}_{i}$ for each $i \in \mathbf{D}_{\alpha, \beta}$. Since $\alpha \mathscr{H} \beta$ and by Proposition $2.3(v)$ from [3] the semigroup $\mathscr{I} 0_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ is isomorphic to the direct power $\left(\mathscr{I O}_{\infty}(\mathbb{Z})\right)^{n}$ we conclude that $\gamma_{i} \beta_{i} \delta_{i}$ is an element of the group of units of $\mathscr{I} \mathcal{O}_{\infty}(\mathbb{Z})$ for each $i \in\{1, \ldots, n\}$, and moreover $\gamma_{i} \beta_{i} \delta_{i}=\mathbb{I}_{i}=\gamma_{i} \alpha_{i} \delta_{i}$ for any $i \in\{1, \ldots, n\} \backslash \mathbf{D}_{\alpha, \beta}$.

We denote $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ and $\delta=\left(\delta_{1}, \ldots, \delta_{n}\right)$ and put $\mathfrak{x}=\left(\mathfrak{x}_{1}, \ldots, \mathfrak{x}_{n}\right)=$ $=\gamma \beta \delta$. Then we have that $\mathbf{D}_{\alpha, \beta}=\mathbf{D}_{\mathbb{I}, \mathfrak{x}}$. Also the relation $\alpha \mathscr{H} \beta$ implies that $\mathbb{I} \mathscr{H} \mathfrak{X}$, and since $\mathscr{\mathscr { O }} \boldsymbol{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ is an inverse semigroup we get that $\mathbb{I} \mathscr{H} \mathfrak{x}^{m}$ for every integer m. By Proposition 2.2 from [4] the group of units of the semigroup $\mathscr{O _ { \infty }}(\mathbb{Z})$ is isomorphic to $\mathbb{Z}(+)$. Hence, this implies that without loss of generality we can assume that $(p) \mathfrak{x}_{i}=p+m_{i}$, where $m_{i} \neq 0$, for every $i \in \mathbf{D}_{\alpha, \beta}$

Next, for every integer $i=1, \ldots, n$ we define a partial map $\chi_{i}: \mathbb{Z} \rightharpoonup \mathbb{Z}$ in the following way:
(a) if $i \in\{1, \ldots, n\} \backslash \mathbf{D}_{\alpha, \beta}$, then we define $\chi_{i}: \mathbb{Z} \rightarrow \mathbb{Z}$ be the identity map;
(b) if $i \in \mathbf{D}_{\alpha, \beta}$ and $m_{i} \geq 1$, then we define $\operatorname{dom} \chi_{i}=\mathbb{Z}, \operatorname{ran} \chi_{i}=\mathbb{Z} \backslash\left\{1, \ldots, m_{i}\right\}$ and

$$
(k) \chi_{i}= \begin{cases}k+m_{i}, & \text { if } \quad k \geq 1, \\ k, & \text { if } \quad k \leq 0,\end{cases}
$$

(c) if $i \in \mathbf{D}_{\alpha, \beta}$ and $m_{i} \leq-1$, then we define $\operatorname{dom} \chi_{i}=\mathbb{Z}, \operatorname{ran} \chi_{i}=\mathbb{Z} \backslash\left\{m_{i}, \ldots,-1\right\}$ and

$$
(k) \chi_{i}= \begin{cases}k, & \text { if } \quad k \geq 0 \\ k+m_{i}, & \text { if } \quad k \leq-1\end{cases}
$$

We put $\chi=\left(\chi_{1}, \ldots, \chi_{n}\right)$. The definition of the semigroup $\mathscr{I} 0_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ implies that χ and its inverse χ^{-1} are elements of $\mathscr{I} \mathscr{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$. Simple verifications show that $\mathbb{I}=\chi \chi^{-1}=\chi \mathbb{I} \chi^{-1}$. Also, since \mathfrak{C} is a congruence on the semigroup $\mathscr{I} O_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ we conclude that $\mathbb{I}=\chi \mathbb{I} \chi^{-1} \mathfrak{C} \chi æ \chi^{-1}$.

Now simple calculations imply that
(i) if $m_{i}>0$ then

$$
(k) \chi_{i} x_{i} \chi_{i}^{-1}= \begin{cases}k+m_{i}, & \text { if } \quad k \geq 1, \\ \text { undefined, } & \text { if } \quad-m_{i}<k \leq 0, \\ k+m_{i}, & \text { if } \quad k \leq-m_{i},\end{cases}
$$

and similarly
(ii) if $m_{i}<0$ then

$$
(k) \chi_{i} \mathfrak{x}_{i} \chi_{i}^{-1}= \begin{cases}k+m_{i}, & \text { if } \quad k \geq-m_{i} \\ \text { undefined, } & \text { if } \quad 0 \leq k<-m_{i} \\ k+m_{i}, & \text { if } k \leq-1\end{cases}
$$

Next we put $\psi=\chi æ \chi^{-1}$, and hence we obtain that $\mathbb{I C} \psi$ but $\operatorname{dom} \psi \neq \mathbb{Z}$. This completes the proof of our lemma.

Remark 1. The proof of Lemma 2 implies that for element $\psi=$ $=\left(\psi_{1}, \ldots, \psi_{n}\right)$ the following property holds:
Ψ_{i} is not \mathscr{H}-equivalent to the unit of the semigroup $\mathscr{I O}_{\infty}(\mathbb{Z})$ for every $i \in \mathbf{D}_{\alpha, \beta}$.
Proposition 1. Let \mathfrak{C} be a congruence on the semigroup $\mathscr{I O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$. Let α and β be two distinct \mathfrak{C}-equivalent elements of the semigroup $\mathscr{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$. Then there exists a non-unit idempotent ε in $\mathscr{I O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ such that $\mathbb{I} \mathfrak{C} \varepsilon$ and $\mathbf{D}_{\mathbb{I}, \varepsilon}=\mathbf{D}_{\alpha, \beta}$.

Proof. Lemma 2 implies that there exists an element ψ of the semigroup $\mathscr{I} \mathcal{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ such that $\psi \mathbb{C} \mathbb{I}, \mathbf{D}_{\mathbb{I}, \psi}=\mathbf{D}_{\alpha, \beta}$ and elements \mathbb{I} and ψ are not \mathscr{H}-equivalent in $\mathscr{O _ { \infty }}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$. Also, by Remark 1 for every integer $i \in \mathbf{D}_{\alpha, \beta}$ the element ψ_{i} is not \mathscr{H}-equivalent to the unit \mathbb{I}_{i} of the semigroup $\mathscr{I} \mathcal{O}_{\infty}(\mathbb{Z})$. This implies that for every integer $i \in \mathbf{D}_{\alpha, \beta}$ at least one of the following conditions holds:

$$
\psi_{i} \psi_{i}^{-1} \neq \mathbb{I}_{i} \quad \text { or } \quad \psi_{i}^{-1} \psi_{i} \neq \mathbb{I}_{i} \quad \text { in } \quad \mathscr{I} O_{\infty}(\mathbb{Z})
$$

Since $\mathscr{I} O_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ is an inverse semigroup we have that $\mathbb{I C} \psi^{-1}$. This implies that $\mathbb{I C} \psi \psi^{-1}$ and $\mathbb{I C} \psi^{-1} \psi$, and hence we get that $\mathbb{C} \mathfrak{C} \varepsilon$, where $\varepsilon=\psi \psi^{-1} \psi^{-1} \psi$. The above arguments show that $\mathbf{D}_{\mathbb{I}, \varepsilon}=\mathbf{D}_{\alpha, \beta}$.

Proposition 2. Let \mathfrak{C} be a congruence on the semigroup $\mathscr{I O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$. Let α and β be two distinct \mathfrak{C}-equivalent elements of the semigroup $\mathscr{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$. Then $\mathbb{I C} \varepsilon$ for any idempotent ε in $\mathscr{I} \mathcal{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ such that $\mathbf{D}_{\mathbb{I}, \varepsilon}=\mathbf{D}_{\alpha, \beta}$.

Proof. By Proposition 1 there exists an idempotent ε of the semigroup $\mathscr{I} \mathcal{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ such that $\mathbb{I C} \varepsilon$ and $\mathbf{D}_{\mathbb{I}, \varepsilon}=\mathbf{D}_{\alpha, \beta}$. We fix an arbitrary non-unit idempotent $\tau \in \mathscr{I} O_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ such that $\varepsilon \leq \tau$ in $E\left(\mathscr{O _ { \infty }}\left(\mathbb{Z}_{\text {lex }}^{n}\right)\right)$. Then we have that 12
$\tau \mathbb{I}=\tau$ and hence the relation $\mathbb{I C} \varepsilon$ implies that $\tau=\tau \mathbb{C} \tau \varepsilon=\varepsilon \mathbb{C} \mathbb{I}$. Therefore, for every $i \in \mathbf{D}_{\alpha, \beta}$ there exists an idempotent ε_{i}° such that $\varepsilon_{i}^{\circ} \mathbb{C I}$ and the set $\mathbb{Z} \backslash \operatorname{dom} \varepsilon_{i}^{\circ}$ is singleton. We put $\left\{m_{i}\right\}=\mathbb{Z} \backslash \operatorname{dom} \varepsilon_{i}^{\circ}$ for every integer $i \in \mathbf{D}_{\alpha, \beta}$. We fix an arbitrary integer p_{i} for $i \in \mathbf{D}_{\alpha, \beta}$ and define the map $\rho_{i}: \mathbb{Z} \rightarrow \mathbb{Z}$ by the formula:

$$
(j) \rho_{i}=j-m_{i}+p_{i} \quad \text { for every } \quad j \in \mathbb{Z}
$$

Then ρ_{i} is an element of the group of units of the semigroup $\mathscr{I} \mathscr{O}_{\infty}(\mathbb{Z})$ and hence $\rho_{i} \rho_{i}^{-1}=\rho_{i}^{-1} \rho_{i}=\mathbb{I}_{i}$ in $\mathscr{I} O_{\infty}(\mathbb{Z})$. Moreover, it is obvious that $\rho_{i}^{-1} \varepsilon_{i}^{\circ} \rho_{i}$ is an idempotent of the semigroup $\mathscr{\mathscr { O }} \mathcal{O}_{\infty}(\mathbb{Z})$ such that $\operatorname{dom}\left(\rho_{i}^{-1} \varepsilon_{i}^{\circ} \rho_{i}\right)=\mathbb{Z} \backslash\left\{p_{i}\right\}$. Also, we obtained that $\mathbb{I}_{i}=\rho_{i}^{-1} \mathbb{I}_{i} \rho_{i} \mathfrak{C}_{i}^{-1} \varepsilon_{i}^{\circ} \rho_{i}$ in $\mathscr{I} \mathcal{O}_{\infty}(\mathbb{Z})$. Now the definition of the semigroup $\mathscr{I O}_{\infty}(\mathbb{Z})$ implies that $\mathbb{I C} \tau_{i}^{\circ}$ for any idempotent τ in $\mathscr{I} \mathscr{O}_{\infty}(\mathbb{Z})$, because every idempotent τ in the semigroup $\mathscr{\mathscr { O }}(\mathbb{Z})$ is equal to a product of finitely many idempotents of the form $\tau_{i}^{\circ}, i \in\{1, \ldots, n\}$, with the property that the set $\mathbb{Z} \backslash \operatorname{dom} \tau_{i}^{\circ}$ is singleton. Then for every idempotent ε of the semigroup $\mathscr{I} \mathcal{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ with the property $\mathbf{D}_{\mathbb{I}, \varepsilon}=\mathbf{D}_{\alpha, \beta}$ we have that

$$
\varepsilon=\varepsilon_{i_{1}}^{\circ} \cdot \ldots \cdot \varepsilon_{i_{k}}^{\circ}, \quad \text { where } \quad\left\{i_{1}, \ldots, i_{k}\right\}=\mathbf{D}_{\alpha, \beta}
$$

and hence $\mathbb{I C} \varepsilon$. This completes the proof of the proposition.
Theorem 1. Let \mathfrak{C} be a congruence on the semigroup $\mathscr{I} O_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$. Then the following statements hold:
(i) If $\Delta_{\mathcal{J}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)} \subseteq \mathfrak{C} \subseteq \sigma_{\left[i_{m}\right]}$, for some $i_{m} \in\{1, \ldots, n\}$, then either $\Delta_{\mathscr{S}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)}=\mathfrak{C}$ or $\mathfrak{C}=\sigma_{\left[i_{m}\right]}$.
(ii) If $\sigma_{\left[i_{1}, \ldots, i_{m}\right]} \subseteq \mathfrak{C} \subseteq \sigma_{\left[i_{1}, \ldots, i_{m}, i_{m+1}\right]}$, for any subset $\left\{i_{1}, \ldots, i_{m}, i_{m+1}\right\} \subseteq$ $\subseteq\{1, \ldots, n\}$, then either $\sigma_{\left[i_{1}, \ldots, i_{m}\right]}=\mathfrak{C}$ or $\mathfrak{C}=\sigma_{\left[i_{1}, \ldots, i_{m}, i_{m+1}\right]}$.
Proof. By Proposition 2.15 from [3] we have that for any collection $\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, n\}$ of distinct indices, $k \leq n$, and, hence, $\alpha \sigma_{\left[i_{1}, \ldots, i_{k}\right]} \beta$ in $\mathscr{I} O_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ if and only if $\alpha \varepsilon_{i_{1}}^{\circ} \ldots \varepsilon_{i_{k}}^{\circ}=\beta \varepsilon_{i_{1}}^{\circ} \ldots \varepsilon_{i_{k}}^{\circ}$ for some idempotents $\varepsilon_{i_{1}}^{\circ}, \ldots, \varepsilon_{i_{k}}^{\circ} \in \mathscr{I} \mathcal{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$. This implies that $\mathbb{I} \sigma_{\left[i_{1}, \ldots, i_{k}\right]} \varepsilon$ for every idempotent ε of the semigroup $\mathscr{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ such that $\mathbf{D}_{\mathbb{I}, \varepsilon} \subseteq\left\{i_{1}, \ldots, i_{k}\right\}$. Then applying Proposition 1 we get the statement of the theorem.

For any proper subset if indices $\mathrm{I} \subset\{1, \ldots, n\}$ we define a map $\pi^{\mathrm{I}}: \mathscr{I} \mathscr{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right) \rightarrow \mathscr{I} 0_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ by the formula $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \pi_{\mathrm{I}}=\left(\beta_{1}, \ldots, \beta_{n}\right)$, where

$$
\beta_{i}= \begin{cases}\alpha_{i}, & \text { if } \quad i \in \mathrm{I}, \\ \mathbb{I}_{i}, & \text { if } \quad i \in\{1, \ldots, n\} \backslash \mathrm{I} .\end{cases}
$$

Simple verifications show that such defined map $\pi^{\mathrm{I}}: \mathscr{I} \mathcal{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right) \rightarrow \mathscr{I O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ is a homomorphism. Let $\pi^{\mathrm{I} \#}$ be the congruence on $\mathscr{I}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ which is generated by the homomorphism π^{I}.

Proposition 3. Let I be an arbitrary proper subset of $\{1, \ldots, n\}$. Then $\pi_{\text {min }}^{\mathrm{I} \#}=\sigma_{\left[i_{1}\right]} \circ \ldots \circ \sigma_{\left[i_{k}\right]}$, where $\left\{i_{1}, \ldots, i_{k}\right\}=\{1, \ldots, n\} \backslash \mathrm{I}$.

Proof. Suppose that $\alpha\left(\sigma_{\left[i_{1}\right]} \circ \ldots \circ \sigma_{\left[i_{k}\right]}\right) \beta$ in $\mathscr{I} 0_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ for some elements $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$. Proposition 2.15 from [3] implies that $\alpha \varepsilon_{i_{1}}^{\circ} \ldots \varepsilon_{i_{k}}^{\circ}=\beta \varepsilon_{i_{1}}^{\circ} \ldots \varepsilon_{i_{k}}^{\circ}$ for some idempotent $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ such that $\varepsilon_{i}=\mathbb{I}_{i}$ for all $i \in \mathrm{I}$, i.e., $\alpha \varepsilon=\beta \varepsilon$. Then we have that $\alpha_{i}=\beta_{i}$ for all $i \in \mathrm{I}$, and hence $\alpha \varepsilon^{*}=\beta \varepsilon^{*}$ for $\varepsilon^{*}=\left(\varepsilon_{1}^{*}, \ldots, \varepsilon_{n}^{*}\right)$, where

$$
\varepsilon_{i}^{*}=\left\{\begin{array}{lll}
\alpha_{i}^{-1} \alpha_{i}=\beta_{i}^{-1} \beta_{i}, & \text { if } & i \in \mathrm{I}, \\
\varepsilon_{i}, & \text { if } & i \in\{1, \ldots, n\} \backslash \mathrm{I} .
\end{array}\right.
$$

It is obvious that $\varepsilon^{*} \pi^{\mathrm{I} \#} \alpha^{-1} \alpha \pi^{\mathrm{I} \#} \beta^{-1} \beta$. This implies the inclusion

$$
\sigma_{\left[i_{1}\right]} \circ \ldots \circ \sigma_{\left[i_{k}\right]} \subseteq \pi_{\min }^{\mathrm{I} \#}
$$

Suppose that $\alpha \pi_{\min }^{\mathrm{I} \#} \beta$ in $\mathscr{I} \mathscr{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ for some elements $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$. Then there exists an idempotent $\varepsilon=\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ in $\mathscr{I} \mathscr{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$ such that $\alpha \varepsilon=\beta \varepsilon$ and $\varepsilon \pi^{I \#} \alpha^{-1} \alpha \pi^{I \#} \beta^{-1} \beta$. The last two equalities imply that $\alpha_{i}^{-1} \alpha_{i}=\beta_{i}^{-1} \beta_{i}=\varepsilon_{i}$ for all $i \in I$. This and the equality $\alpha \varepsilon=\beta \varepsilon$ imply that $\alpha_{i} \varepsilon_{i}=\beta_{i} \varepsilon_{i}$ for all $i \in \mathrm{I}$ and hence we obtain that $\alpha_{i}=\alpha_{i} \alpha_{i}^{-1} \alpha_{i}=\alpha_{i} \varepsilon_{i}=\beta_{i} \varepsilon_{i}=$ $=\beta_{i} \beta_{i}^{-1} \beta_{i}=\beta_{i}$ for all $i \in \mathrm{I}$. Therefore we have that $\alpha \varepsilon^{*}=\beta \varepsilon^{*}$, where the idempotent $\varepsilon^{*}=\left(\varepsilon_{1}^{*}, \ldots, \varepsilon_{n}^{*}\right)$ defined in the following way

$$
\varepsilon_{i}^{*}=\left\{\begin{array}{lll}
\alpha_{i}^{-1} \alpha_{i}, & \text { if } & i \in \mathrm{I}, \\
\varepsilon_{i}, & \text { if } & i \in\{1, \ldots, n\} \backslash \mathrm{I} .
\end{array}\right.
$$

This implies that $\alpha \varepsilon_{i_{1}}^{\circ} \ldots \varepsilon_{i_{k}}^{\circ}=\beta \varepsilon_{i_{1}}^{\circ} \ldots \varepsilon_{i_{k}}^{\circ}$. By Proposition 2.15 from [3] we get that $\alpha\left(\sigma_{\left[i_{1}\right]} \circ \ldots \circ \sigma_{\left[i_{k}\right]}\right) \beta$ in $\mathscr{I} \mathcal{O}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$, and hence we get that $\pi_{\min }^{i \#} \subseteq \sigma_{\left[i_{1}\right]} \circ \ldots \circ \sigma_{\left[i_{k}\right]}$. This completes the proof of equality $\pi_{\min }^{\mathrm{I} \mathrm{\#}}=\sigma_{\left[i_{1}\right]} \circ \ldots \circ \sigma_{\left[i_{k}\right]}$.

1. Вагнер В. В. Обобщенные группы // Докл. АН СССР. - 1952. - 84, № 6. C. 1119-1122.
2. Clifford A. H., Preston G. B. The algebraic theory of semigroups. - Providence: Amer. Math. Soc., 1961. - Vol. 1. - 288 p.; 1972. - Vol. 2. - 424 p.
3. Gutik O., Pozdnyakova I. On monoids of monotone injective partial selfmaps of $L_{n} \times{ }_{\text {lex }} \mathbb{Z}$ with co-finite domains and images // Algebra Discr. Math. - 2014. - 17, No. 2. - P. 256-279.
4. Gutik O., Repovš D. On monoids of injective partial selfmaps of integers with cofinite domains and images // Georgian Math. J. - 2012. - 19, No. 3. - P. 511-532.
5. Gutik O., Repovš D. Topological monoids of monotone, injective partial selfmaps of \mathbb{N} having cofinite domain and image // Stud. Sci. Math. Hungar. - 2011. - 48, No. 3. - P. 342-353.
6. Howie J. M. Fundamentals of semigroup theory. - Oxford: Clarendon Press, 1995. - x+351 p. - (London Math. Soc. Monographs, No. 12.)
7. Lawson M. Inverse semigroups. The theory of partial symmetries. - Singapore: World Sci., 1998. - xiii+411 p.
8. Petrich M. Inverse semigroups. - New York: John Wiley \& Sons, 1984. - 674 p.

КОНГРУЕНЦІЇ НА МОНОЇДІ МОНОТОННИХ ІН'ЄКТИВНИХ
 ЧАСТКОВИХ ПЕРЕТВОРЕНЬ МНОЖИНИ $L_{n} \times{ }_{\text {lex }} \mathbb{Z} 3$ КО-СКІНЧЕННИМИ ОБЛАСТЯМИ ВИЗНАЧЕННЯ I ЗНАЧЕНЬ

Вивчаються конгруениї напівгрупи $\mathscr{O}_{\infty}\left(\mathbb{Z}_{\operatorname{lex}}^{n}\right)$ монотонних ін'єктивних часткових перетворенъ множини $L_{n} \times{ }_{\text {еех }} \mathbb{Z}$ з ко-скінченними областями визначення i значенъ, де $L_{n} \times{ }_{\text {lex }} \mathbb{Z}-$ лексикографбічний добуток n-елементного ланиюга $m a$ множини чілих чисел зі звичайним лінійним порядком. Описується структура підгратки конгруенцій на $\mathscr{I}_{\infty}\left(\mathbb{Z}_{\mathrm{lex}}^{n}\right)$, які містяться в мінімальній груповій конгруениї.

КОНГРУЭНЦИИ НА МОНОИДЕ МОНОТОННЫХ ИНЪЕКТИВНЫХ
ЧАСТИЧНЫХ ПРЕОБРАЗОВАНИЙ МНОЖЕСТВА $L_{n} \times{ }_{\text {lex }} \mathbb{Z}$ С КО-КОНЕЧНЫМИ ОБЛАСТЯМИ ОПРЕДЕЛЕНИЯ И ЗНАЧЕНИЙ

Изучаются конгруэнции полугруппъ $\mathscr{I}_{\infty}\left(\mathbb{Z}_{\operatorname{lex}}^{n}\right)$ монотоннъх инъективных частичных преобразований множества $L_{n} \times{ }_{\operatorname{lex}} \mathbb{Z}$ с ко-конечными областями определения и значения, где $L_{n} \times{ }_{\operatorname{lex}} \mathbb{Z}$ - лексикографбческое произведение n-элементной чепи и множества чельх чисел с обычным линейным порядком. Описана структура подрешётки конгруэниий на $\mathscr{I}_{\infty}\left(\mathbb{Z}_{\text {lex }}^{n}\right)$, которые содержатся в минимальной групповой конгруэнции.

Ivan Franko Nat. Univ. of L'viv, L’viv

