
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2010. V. 13, N 2. P. 111-124.

© 2010, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

111

PACS 47.55.nb, 68.08.-p, 68.37.Ps 

Nanoprobe spectroscopy of capillary forces 
and its application for a real surface diagnostics

A.A. Efremov, P.M. Lytvyn*, А.O. Anishchenko, O.M. Dyachyns’ka, T.A. Aleksyeyeva1, I.V. Prokopenko
V. Lashkaryov Institute for Semiconductor Physics, NAS of Ukraine
41, prospect Nauky, 03028 Kyiv, Ukraine, 
*Corresponding author: phone/fax: +380445255940, e-mail: plyt@microscopy.org.ua
1G. Kurdyumov Institute for Metal Physics, NAS of Ukraine

Abstract. The paper presents an overview and analysis of the most reliable and at the 
same time rather simple theoretical models describing liquid nanomeniscus geometry and 
forces occurring between atomic force microscope (AFM) probe and a real surface. 
There are experimental results in capillary bridge force rupture measured in air, and 
interaction force under water buffer obtained over surfaces of different nature. It is 
shown that the theoretical models quite adequately describe the processes observed 
experimentally and, in particular, bridge ruptures dynamics at the vertical probe 
withdraw for different speeds. Discussed here are some methodological peculiarities and 
nanocapillary force spectroscopy diagnostic capabilities for surface energy mapping, 
prospects of using of a liquid nanomeniscus in local nanochemistry, nanolithography and 
nano-electrochemistry of a surface.
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1. Introduction

Moisture condensation, formation of liquid films and 
capillary bridges between nanoparticles play an 
important role in various technological, medical and 
biological processes affecting the adhesive and 
lyophilic/lyophobic surface properties. For example, it is 
largely evident in the interaction between the particles of 
granular materials [1], adhesion, friction [2, 3], 
corrosion, micro- and nanomechanical device operation, 
adhesion of cells and microorganisms to surface, which 
determines the toxic [4], antiseptic, and biocompatible 
implant properties [5-7], etc. It is important that these 
phenomena impact on operation of nonvacuum 
nanoprobe diagnostic and technological devices such as 
atomic force, capacitive and resistive microscopes, 
devices for nanomanipulations and nanopreparations, 
nanoprobe lithography, etc. [8-12].

Controlled capillary interaction at the nanoscale
reveals a number of new potential diagnostic and 
technological capabilities. The most flexible and high 
informative devices in this branch are the atomic force 
microscopes that can operate in different environments, 
providing simultaneously surface topography and force 

spectroscopy data with subnanometer and picoNewton 
resolution, respectively. Thus, under controlled 
humidity, quantitative measurements of capillary forces 
between atomic force microscope probe and nanoobject 
make it possible to obtain data on local wetting, and 
consequently the surface energy with a spatial local 
resolution in order of the diameter of capillary bridge 
(10-20 nm) [13]. It is possible to gain control on field 
induced electrochemical reactions in nanovolume [14], 
monitor the chemical reaction course by changing the 
nanodrops properties, make deep-pen nanolitography 
[15], etc.

First, the capillary forces were described in details 
by Haines [16] and Fisher [17]. Over the past decade, 
considerable progress was achieved in measurements 
and theoretical description of nanoparticle capillary 
interactions with flat surfaces and each other under 
conditions of low roughness, homogeneity and inertness. 
In this work, the authors make an attempt to develop 
systematic theoretical and experimental approaches for 
utilization of capillary forces as a separate instrument for 
real surface diagnostics by means of atomic force 
spectroscopy. There is a comparative analysis of the 
most successful theoretical approaches and experiments, 
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Fig. 1. Scheme of measurements (a) and schematic view of 
force curves when measured in air (b): approaching curve 
(1), withdrawing curve (2).

which illustrates several effects determining the 
nanocapillary interactions with real surfaces. It was 
experimentally illustrated that the capillary forces on 
real surfaces have more complex behavior depending on 
surface roughness, geometry of interacting bodies, 
lyophility, dynamics of capillary bridge geometry 
changes and others. Behavior of these capillary forces is 
poorly described in the simplest theories. Besides, 
complexity is presented in effects of heterogeneous 
surfaces, especially the solid liquid interface, and 
interaction between two surfaces in a liquid medium.
Nevertheless, these problems can be solved using more 
advanced numerical models adequately constructed on 
the basis of simple theories considered in this paper. In 
addition, the important role is played by a correct 
strategy of the experiment using all force spectroscopy 
possibilities.

2. Experimental procedure

The measurements of nanocapillary forces were carried 
out by AFM using the force spectroscopy method. For 
these measurements, the dependences of interaction 
force value on probe-surface distance are registered 
(Fig. 1). Before force measurements, the surface area 
under investigation is scanned by AFM in a contact 
operation mode to obtain image of relief features. Then 
this topography mapping is stopped and AFM probe is 
withdrawn for a given height above the surface at the 
selected point. Further probe provides only a vertical 
movement approaching to the surface until it reaches the 
given value of the repulsion force. This short-range force 
occurs when the electronic orbitals of the probe and 
surface begin to overlap each other (Born repulsion).
After reaching a maximum force of contact interaction, 
the probe is withdrawn from the surface. During the 
vertical displacement, the resultant surface force acts on 
the probe. This resultant force is balanced by the 
cantilever probe deformation force (elastic deflection). 
Thus, registering the value of an elastic AFM cantilever 
probe deflection it is possible to measure the interaction 
forces from pico- to microNewton (depending on the 
cantilever probe stiffness) with sub-angstrom control 
distance resolution. These dependences are called as 
force-versus-distance curves or just force-curves.

A schematic view of a typical force curves is 
shown in Figure 1b. In the position I, the probe is far 
from surface, and the interaction between them is 
missing. In the position II, the probe is approached to the 
surface so close (movement along a curve is indicated by 
arrow), that jumps to contact with the surface due to 
action of van der Waals attraction forces. Thus, if the 
measurement takes place in air, the layer of liquid 
condensed on the surface can play a significant role. In 
the position III, the probe reaches the given maximum 
repulsion force and is withdrawn from the surface. 
Hysteresis occurs due to adhesive forces of attraction. 
The most significant among attraction forces is the 
capillary force caused by liquid bridge formation 

between the probe and surface. In the position IV, the 
elastic deformation force of deflected cantilever exceeds 
the capillary force and breaks the liquid bridge. In the 
position V, the AFM probe cantilever returns to the 
equilibrium state. To measure the value of adhesion 
without affects of a liquid bridge, condensed from air, it 
is enough to perform measurements in a liquid medium 
(where liquid-air boundary is absent).

Our measurements of the force curves on various 
surfaces were carried out using a scanning probe 
microscope NanoScope IIIa both in air (at 20 C and 
relative humidity of 30%), and in liquid buffer (distilled 
water). The speed of probe vertical movement was 
varied between 20 and 2000 nm/s. The silicon nitride 
V-shaped DNP-20 contact mode probes (Veeco Inc.) 
were used for measurements. The averaged tip apex 
radius was obout 30 nm, cantilever stiffness was 
0.06 N/m. The tip shape was controlled before and after 
measurements by using the “blind reconstruction” 
algorithm [18] with the TGT-1 test grating from 
NT-MDT. The cantilever stiffness value was checked by 
analyzing the spectrum of its thermal noise [19]. Typical 
tip shape is shown in Fig. 2a. It looks like a quadran-
gular pyramid. The tip apex has an elliptical shape of the 
curvature radius within 26 to 52 nm. Cross-section with 
the largest radius of the tip is shown in Fig. 2b. It is clear 
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Fig. 2. The reconstructed shape of a real AFM tip apex (a) 
and cross-section (scale X:Y = 1:2) which shows the largest 
tip radius (b). Insert shows the approximation of tip profile 
by a semi-circle of the 52-nm radius.

seen from the insert of this figure that the tip apex is well 
approximated by a circle of the 52-nm radius up to the 
25-nm distance. This fact enables us to use the model of 
a spherical probe in calculations. To avoid a possible 
surface modification and to minimize the impact of 
relief, series of force curves were measured with the 
100-nm surface offset covering the area of 1×1 m2

(there are 100 curves in one chosen area element).

3. The physical model of AFM tip interaction with a 
flat surface in the case of water meniscus

Preliminary remarks. The geometry of the meniscus.

The tip apex contacts with surface forming a narrow slit 
of a variable width within the contact area. If the 
contacting surfaces are lyophilic (hydrophilic), in 
relation to the surrounding vapor, some vapor will 
condense in the contact vicinity and form a meniscus. 
This phenomenon is similar to condensation of a bulk 
liquid in the cracks and pores on real surface. 

The meniscus is often approximately modeled by a 
cylinder. As depicted in Fig. 3 in the more detailed 
analytical models, the meniscus is considered as a 
rotation body formed by the arc of radius r. The arch 
curvature center is separated from the rotation axis (the 
axis OY in Fig. 3a) at a distance d = r + a. This figure 
called as a pendular ring belongs to the family of toroids. 
It is the torus internal part (its hole) bounded with two 
cutting planes above and below. Thus, a is called as the 
azimuth radius, and r is called as the meridional radius 
of a liquid bridge.

The meniscus geometry forming in the so-called 
circular or toroidal approximation is shown in Fig. 3b. 
As shown, a, b, and c are the meniscus radii at the neck, 
at the probe and at the sample plane, respectively 
(Fig. 3). Let   and   be wetting angles for the material 
surface and the probe, respectively, and φ is the so-
called filling angle correlating with the environment 
humidity. 

a)

b)

Fig. 3. Three-dimensional meniscus image (b) and its cross 
section in the plane YZ (a): a is a neck radius, r is a side 
surface curvature radius, b and c are bases radii, 1 is a tangent 
to the meniscus profile at the 3-phase contact point, 2 is a 
tangential to the tip surface, 3 is a tip wetting plane, 4 is a 
sample plane.
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Then, the depth of immersion )cos1(  RH , tip

wetted area radius  sinRb  determine how deeply the 

probe is dipped into the liquid in contact.
Hence, the angle between the meniscus and the 

horizon at the 3-phase contact point on the sphere is 
 .

The distance from the meniscus center to the 
wetting appropriate plane is determined by the 
corresponding 3-phase contact angle },{  "meniscus-

plane". In the toroidal approximation, the meniscus 
surface area and volume are evaluated analytically using 
the formulas (1) and (2):

,)(2

)cos(cos22 22
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where ard  .
The exact expression for the liquid volume in the 

meniscus is (as a body of rotation):
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Various formulas for the pendular ring volume and 
surface area obtained by different authors are systema-
tized in the review [20].

However, in practice the simplified models are 
used when the form subtleties are not recorded and the 
pendular ring is approximated by a cylinder. In 
equilibrium vapor-liquid, the average curvature of the 
meniscus concave side is determined by the (negative) 
radius of Kelvin [21]:
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where  is the molecular volume, L surface tension 

(for water – 72.8 mN/m), p/pS – relative humidity, K –

the so-called Kelvin length, corresponding to rK, at 
relative humidity 36.8%. For water at 20 C (25 C), we 

have )52.0(54.0



TkB

L
K nm [21].

Considering the maximum distance between the 
planes of wetting ||22 Krrh  , it is easy to see that 

the equilibrium meniscus can be formed only between 
two sections of the surfaces that are apart no more 
than ||2 Kr .

The dependence of Kr2 on the relative humidity is 

presented at Table 1.

Table 1. The limit initial height of meniscus in dependence 
on relative humidity.

p/ps % 30 50 70 80
2|rK|, nm 0.90 1.56 3.03 4.84

Force meniscus characteristics 

In the meniscus formation, the attraction force appears 
due to two reasons [22, 23]: 

(1) The direct liquid surface tension action Fst pulls 
the tip and the surface to each other around the meniscus 
perimeter.

(2) The curved liquid surface is the cause of 
Laplace pressure, being negative with respect to external 
pressure. 

Our task is to choose the most effective 
approaches:

(a) to calculate the pull-off force of the probe the 
given radius from the plane surface,

(b) to describe the "force-distance" dependence 
)(sFtot until this job is in the interval ),0( maxss , as 

well as
(c) to use these values for the local surface 

diagnostics. 
From Fig. 3: 

Lst aF  2 , (4)

where 73 L  mN/m is water surface tension at 20 С
)/1/1( raP Lcap  . (5)

A suction effect arises as a result of Laplace 
pressure, it compresses the wetted surfaces to each other 
with the force lapF . The suction effect is calculated as 

the product of Laplace pressure with the meniscus cross 
section

caplap PaF  2 . (6)

The total vertical component of the force in each 
section of the meniscus is constant:

stlaptot FFF  . (7)

Let us estimate the forces for the two nanomeniscus 
geometries (Table 2). They differ in the “probe-surface” 
length s, meniscus height h and meridional radius 
magnitude r. In both cases, the azimuthal radius is 
approximately the same a ≈ 10 nm (Fig. 3).

Obviously, the absolute value of Laplace pressure 
is much higher (in the nanoscale) than the atmospheric 

Table 2. Forces for two nanomeniscus geometries.
s , nm a , nm h , nm || r , nm capP , atm stF , nN lapF , nN totF , nN,

1.0 9.965 2.093 1.300 – 482 4.57 15.23 19.8
0.0 10.17 1.093 0.679 – 1000 4.67 32.61 37.27
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pressure. Therefore, it is not interpreted as a difference 
of pressures inside and outside the meniscus, but as the 
internal tensile pressure in the fluid, which pull apart the 
water molecules from each other. It is also evident that 
the surface tension force is about 12 to 20% of the total 
value Ftot, and cannot be considered as the small one. In 
the approximate models, one tries to avoid this additive 
force and uses instead of the neck of meniscus as a 
calculating section, one of its broader bases, where 
vertical component Fst, is small. Therefore, typical 
values of pull-off forces are about several tens of nN, 
which are 10 times greater than the van der Waals 
forces. 

Substituting (4), (5), (6) into (7), we obtain:

capLtot PaaF  22 . (8)

We introduce the average cosine 

)]cos()[cos(
2

1
 . Two of curvature radii can be 

expressed through the angle φ (Fig. 1):
 rh 2  and sRh  )cos1(  (h – meniscus 

total height).
Equating the two expressions for the height, we 

obtain:





2

)cos1( sR
r . (9)

From Fig. 3 we have:

.)](sin1[sin  rRba  (10)

The substitution of these values into (7) gives the 
desired force value. However, both radii depend on the 
unknown filling angle and from each other as well. To 
resolve this problem, the third equation, Kelvin relation 
(3) is usually used. Equation (3) allows to calculate the 
average meniscus surface curvature at a given humidity 
at equilibrium (and estimate capP ), but it does not 

allow to determine both radii separately. As a result, 
equations (3), (9), and (10) give a closed system of 3 
nonlinear equations with respect to r , a, and   at a 

given humidity, temperature, radius of the probe, wetting 
angles, and distance to the surface. Here, it is necessary 
to make four remarks:

1. Expressions (3), (9), (10) let us directly 
calculate the pull-off force, or the maximum attraction 
force 0|)( ssF , in the wide tip approximation and a 

small filling angle  2
2
1 sincos1
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It is evident that, since the meniscus section area 
and the meridional curvature radius r are individually 

proportional to 2sin , i.e. behave identically with 

respect to the humidity – the meniscus rupture maximum 
force does not depend on humidity in the first 
approximation. It remains only a weak dependence of 
meniscus rupture maximum force on humidity due to the 
change in average cosine  . This result for a spherical 

probe is also valid in more accurate theories.
2. The system of equations (3), (9), (10) by mutual 

substitutions is reduced to a nonlinear equation 
depending on  , 0)( G , which must be solved 

numerically for each system configuration, having probe 
motion from the surface. Respective curves for filling 
angle on humidity at full tip-sample contact are shown in 
Fig. 4.

3. Although the equation 0)( G is strongly 

nonlinear, its numerical solution allows us to calculate 
the force curve )(sF  for any value of humidity and any 

relations between the radii of the meniscus and the 
probe. To determine the unknown sample wetting angle
 , enough to measure pull-off force. However, it is 
necessary to use several different probes. This issue will 
be discussed below in the appropriate section.
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4. There are many published works (one of them is 
[24]), where the filling angle φ is considered as an 
independent free parameter, being equivalent to relative 
humidity spp / . Thus, there are models of dependences 

)(totF  or )(bFtot , where  sinRb is the probe 

wetting area radius. This approach does not inspire 
confidence, since the filling angle varies with probes 
detouching from the surface. Its exact value depends on all 
parameters mentioned above, including the probe radius, at 
a given humidity (Fig. 4 and 5). In addition, the contact 
angle behaves differently depending on the measurement 
conditions: at a constant meniscus volume, or in 
equilibrium with meniscus constant average curvature. In 
the first case (3) is accounted only for the initial 
configuration at 0s  (a probe contacts with the surface), 
then (3) is replaced by the equation 0dV , where 
meniscus volume (Fig. 5) can be calculated by formula (2).

Below, we consider a number of approximate 
models for calculating the force curve in an explicit 
form. These models do not require a solution to 
equations nonlinear in φ.

Direct pull-off forces and force curves using simplified 
models [22, 23]

Below we assume that the filling angle   is small. This 
is an approximation of low humidity (30%). Hence, 

  and the angle   is treated as the probe material 
wetting angle, and   is considered as the average cosine 

of two materials wetting angle.

Force curves at the meniscus constant curvature mode

In simplified models it is easier to calculate the force not 
in meniscus neck section, but in the section of radius b, 
where stF  has its vertical component that is proportional 

to sinΘ

)]/1/1(sin2 2 rabbF LLtot  .

Substituting  sinRb , we get:

.)]/1/1(sinsin2[sin raRRF Ltot  (12)

We use the approach of "big tip" and "thick 
meniscus" aR   and sra , . This approach allows 
us to neglect the first term in square brackets (in the 
case, where the angles  and  are not very large, and 
is not very small) and ratio a/1  in round brackets. Then, 
for the force module we have:

.
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(13)

One can see that in the approximate model (13) the 
force linearly decreases with the distance; its maximum 
value ( 0s , 0 ) does not exceed  RL4

45.87 nN for the probe of 50R nm. The maximum 
pull-off distance maxss  does not exceed r2 . At

equilibrium, from Kelvin relation:

.
)/ln( s

K

pp
r




Moreover, in equilibrium, the radius r is constant 
(we have neglected by a/1 ). Therefore, the schedule 
angle of the graph )(sFF   is determined only by the 

relative humidity value (Figs 6 and 7). Thus, the force 
curve is not very informative at measurements under 
equilibrium conditions in the simplified theory, from the 
sample diagnostic point of view.
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It can be seen that (if the model is applicable) 
meniscus-rapture distance values do not exceed a couple 
of nanometers. However, a more accurate toroidal model 
(Figs 6, 7) gives small deviations from linearity right 
before the meniscus rupture. To use this fact for 
diagnostic purposes, it is necessary to increase the 
accuracy of probe spatial motion in this range.

Force curves at the constant meniscus volume mode

Let us consider the second version of a simplified 
theory, when the probe detouches either fast enough, or 
when the liquid slowly evaporates and condenses, that 
the equilibrium meniscus with the environment can not 
be established during the measurement. In this case, the 
initial meniscus volume is fixed, and the curvature 
radius varies with the probe motion.

To calculate the liquid volume in the meniscus, we 
approximate the pendular ring shape with a cylinder 
having the height sRh  )cos1( with the radius 

 sinRb , and subtract from it the volume wet probe 

cap value )3( 22
6

HbH  , where )cos1(  RH is

the cap height. After all the substitutions and 
simplifications in the small angle approximation φ, when 

 2
2
1 sincos1 , we get

.)sin
2

2(sin
2

222 



R

sRV

Substituting 
R

sR 24
sin2 

 , we obtain

)4( 222 srRV   or

222 4/ 





 


 s
R

V
r and .2/2 






 


 s
R

V
r

Substituting r into (13), we obtain the final formula 
for the force curve (Fig. 8a)

 

 
.1)cos(cos2

/14

2

2























 





s

s
R

ssRF

R
V

L

R
V

L

  (14)

Here, the pull-off force is the same as in the 
previous cases (11) and (13). The dependence )(sF does 

not vanish, no matter what the distance is. This 
conclusion is not valid, however and caused by 
cylindrical meniscus geometry assumed in the simplified 
model. In the toroidal approximation (Fig. 8b) the 
constant volume liquid bridge is ruptured at a finite 
distance (from 5 to 10 nm), due to collapse of concave 
walls at the neck. Another reason for the rapture is the 
meniscus equilibration at some moment. After this the 
constant volume approximation is not valid, and result 
depends on the probe speed – the probe moves slowly, 
the earlier meniscus is torn. 
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Fig. 8a. Analytical force curves at a constant meniscus volume 
for three different values of RH (R = 50 nm).
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Fig. 8b. Force curves at a constant volume for different 
models, dependences of filling angle and the neck radius on 
separation.

It is evident that the force curve (at the initial part 

)0(
)0(2

F
F

R
Vr   ) contains information about the 

initial meniscus volume 224  RrV  (Fig. 8a) and 

allows one to calculate the meniscus curvature initial 
radius. It enables to control processes in surface 
nanochemistry and nanolithography.

Еnergy approach [21]

In the energy approach, the interaction force is 

determined from the ratio 
s

W
F




 , where )(sW is the

total system free energy as a function of the vertical 
distance and other parameters. If the expression for the 
energy is written quite fully, considering all the 
components, we can get more accurate expression for 
the force, as well as to clarify the nature of the 
simplifications used in the force approach. 

By approximating the meniscus cylinder, let us 
express the energy as a sum of contributions from 
different surface parts

201 WWWW  , (15)

where

)(sin2 222
1

Z
SL

S
SL

Z
SL

S
SL RRHbW  (16)
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– two meniscus bases energy (interfaces "liquid-solid"), 
and

)(sin 22
0

Z
SV

S
SVRW   (17)

– energy of the same parts of the surface of the sample 
and probe (in contact with air) before wetting. Here, the 
superscripts Z and S correspond to the tip and sample, 
respectively. Summand

LL

stL

bsR

AWsHbW





2sin

)(2
32

32
(18)

corresponds to the total energy of meniscus lateral 
surface. The first component 3W  is of higher smallness 

order (  23 sinsin ) in comparison with 1W  and 

0W , the second component stA  corresponds to the 

liquid lateral surface tension forces work at the meniscus 
stretching during probe pull-off. Thus, in the small 
filling angles approximation ( sin  and

2/sincos1 22
2
1  ) there is 01 WWW  .

Considering that the contact sample and probe 
angles are determined by the Young relation

)(cos SLSVL  , we obtain 

)cos(cos22  LRW , from where 

  .)cos(cos2 2  
ds
d

Lds
dW RF             (19)

The formula for the force contains an unknown 

factor 





 

ds

d
. To define it, let us consider the constant 

volume approximation. For the liquid volume in the 
meniscus (meniscus = cylinder – a spherical cap), we 
have

 

  ,)cos2(cos1
3

)(sin

3
3

)(sin

2
3

22

2
22











R
sHR

HR
H

sHRV

or after transformation to small φ

;4/)cos1(

);2/3()cos2(;2/
42

22



 RH

22
4363

424






 sR

RR
V ;

4/),( 4322  RsRsVV . (20)

In constant volume conditions, all the increments in 
volume (due to changes in different variables) compen-
sate each other:

    0 



 ddsdV

s
V

s
V .

Due to 22
 R

s
V  and 3322 

 RsRV , it is 

possible to obtain

.
/21

11

2
/

2

2


















RsRds

d

sRV

V
dsd s

            (21)

Substituting this ratio into the expression for the 
force (19), we finally obtain (formula of Izraelishvili)









 2/21
1)cos(cos2

Rs
LRF =

.
/1

)cos(cos2

Hs

R L




 (22)

Since 2/)cos1( 2RRH  , this formula, however, 

is not closed and is not suitable for the force curve 
calculation. In fact, at a constant volume, H depends on 

the distance s    2sH
R

V   . However, (22) gives 

the correct expression for the pull-off force, which is 
identical to (11) and (13).

Energy approach shows that, in the final expression 
for the force, the appearance of contact angles is due to 
interface energy "solid-liquid", for each of the contacting 
bodies, and not directly related to real meniscus 
geometry. Neglecting the meniscus lateral surface 
energy is equivalent to the neglecting the surface tension 
forces stF  in the force approach.

Numerical simulation methods for meniscus geometry 
[25]

Despite toroidal model is a rather plausible one, it is also 
one of simplified approaches, when lateral surface is the 
arc of fixed circle radius r, and the horizontal meniscus 
sections are the circles of variable radius. The average 
toroid curvature slightly varies along the axis from

)/1/1(/1/1 rarr Ka   in the neck to

)/1/1(/1 rcrc  in the sample surface.

However, in equilibrium meniscus curvature must 
be constant in every section, and it is inverse Kelvin 

radius )/ln(/1 1
sKK ppr  . It means that the radii 

)(yrr   and )( yaa   must be agreed to change along 

the rotation axis 0Y. The figure, having such a property, 
is called as nodoid [26]. Let us place origin of 
coordinates at sample surface plane on meniscus 
symmetry axis (Fig. 9). Lateral surface profile is 
calculated as a sequence of small linear elements, whose 
direction is obtained using the following algorithm:

1) The first linear element starts from some 
spherical surface point ),( 00 zy  in such a way that the 

angle between this element and the tangent to the sphere 
gives material sphere wetting angle  . It is convenient 

to set the initial filling angle 0 as an auxiliary 

parameter. Then
)cos1( 00  Rsy , 00 sin Rz , and
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Fig. 9. Numerical simulation illustration of the meniscus 
profile z = z(y).

)
2

tan( 0

0













yydy

dz
. (23)

2) The endpoint position of the first element 11, zy

determines the value of a variable azimuthal radius 

11)( zya  .

3) From 
K

s

K

pp

r 


)/ln(1
and obtained a, we get 

the second (meridian) radius at the point )( 1yrr  , 

using the formula 
Krar

111
 .

4) The following linear element should be placed to 
satisfy the resulting curvature meridional radius value r

22

2/32

/

])/(1[

dyzd

dydz
r


 .

5) Since (as the solution of the second order 
differential equation, or two first order differential 
equations)

r

dydz
dyzd

2/32
22 ])/(1[

/





















r

U

dy

dU

U
dy

dz

2/32 ]1[
(24)

it is obtained the following linear element endpoint 
),( 22 zy , where dyyy  12  and dzzz  12 .

6) The linear element placement process continues 
till the moment when the profile touches sample surface 

0y . Thus, it allows to calculate the angle   between 

the last element and the surface 

  0/arctan
2 


 ydydz . (25)

If it does not coincide with a given wetting angle, 
the procedure is repeated from a new starting point (with 
the new auxiliary angle value 1 ) until the desired 

angle   value is reached. It is clear, if  , then at 
the next iteration   should be increased, starting with 

the more distant probe point from the sample . 
From the mathematical point of view, this process 

corresponds to the boundary problem solution by 
shooting method. There is one of the borders called as 
probe wetting plane is mobile. Here, the function and its 
derivative are given. The second border is sample plane, 
where only the function derivative is fixed. 

Thus, the calculation is carried out at a given 
humidity, probe radius, and the distance to the surface. 
Filling angle is automatically excluded from the model 
parameters. 

Meniscus rupture is fixed, if the profile cannot 
touch the surface at a given angle no matter what 

)2/,0(  . Force calculation is based on formulas 

similar to (8) and (9). 
It is interesting case when the sample or the probe 

is separately hydrophobic. For example, one of cosines 
is negative. Simplified formulas (11) and (12) give the 
ultimate value of the attractive force, whereas the 
procedure for constructing the meniscus may thus fail 
(because the meniscus can not have inflection points 
where profile curvature changes sign). The latter is 
equivalent to the absence of a bridge between the tip and 
surface and the attraction force is of zero value. 

Let us list briefly the main results obtained in the 
framework of this approach [25] applicable to a 
spherical probe:

 For thick probes with radius 100R  nm, the 
pull-off force is weakly dependent on humidity. Even for 

15R  nm, it decreases by 20% when changing RH
from 10 to 50%.

 For a finite distance from the sample, the force 
considerably varies (increasing by several times) with 
humidity increasing, especially in the range of 10-50%. 
The stretched meniscus actively absorbs the moisture 
from the environment.

 The comparison of calculations in the 
framework of this approach and the toroidal 
approximation gives discrepancy no more than 1-3%. 
The discrepancy increases with decreasing R and 
increasing humidity. 

 In exact approach, the force is also proportional 
to the contact angle cosine, as in the approximate 
models, for both large and small R values. 

 The force curves calculated at constant 
curvature and constant volume are qualitatively similar 
to curves (13) and (14), calculated from the 
corresponding approximate models (Figs 6-8). 
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 The dependence of force on the humidity is 
very sensitive to the probe shape, especially not in 
contact, but at finite distances from the surface. 

In general, this approach is not more complicated 
or time-consuming than the toroidal approximation and 
can be used in practice, along with other approaches.

Amendments to adhesion forces

All the arguments above are related only to the capillary 
forces induced by liquid in between two solids. An 
additional factor is the adhesion force due to direct 
contact between two different solids inside the liquid 
meniscus. 

Let us use the Derjaguin approximation [21], which 
relates the interaction force Fad between curved objects 
of radii 1R  and 2R , and the interaction energy between 

flat surfaces (unit area) at the same distance s

)(2)(
21

21 sW
RR

RR
sFad 


 .  (26)

Repeating the arguments [21] for the case, we find 
that in the case of contact )( s , in the liquid two 

single planes system energy is equal to their interface 

energies sum S
SL

Z
SLW  . Hence, the adhesion force 

between plane and sphere ( RR 1  and 2R ):

SLad RF  4 , (27)

where  S
SL

Z
SLSL 

2
1  is the average interface 

energy of the contacting materials in the given liquid. 
This formula is valid for indeformable objects. More 
general case differs from (27) only by a numerical factor 
[21].

In most cases, the direct adhesion force Fad is low 
and all the formulas, presented above, remain valid. In 
addition, this force can be measured directly in a liquid 
that has been described in this paper. It should also be 
noted that by measuring one sample in the liquid using 
two different probes, after an additional third 
measurement of the probe on the probe (in liquid) you 
can get all three interface energies values, relating to the 

sample S
SL  and two probes 1Z

SL  and 2Z
SL .

4. Results and discussion

Typical force curves for 50-nm thick gold film deposited 
on a glass substrate are shown in Fig. 10. Comparison of 
force curves obtained in air and in liquid shows that the 
value of capillary force is by order of magnitude more 
than that of adhesive forces holding the AFM tip near 
the sample surface (curves 2). Bridge rupture is 
happened after stretching for about 5 nm at the available 
force 11.8 nN (Fig. 10a, curve 2). Accordingly, the 
contact with surface in liquid is destructed when tip 
reaches a distance close to 2 nm and the force of  1.3 nN 
(Fig. 10b, curve 2), and there is no significant jump. It is 

interesting fact, that snap-in part of approaching curve 
(Fig. 10b, curve 1), where, in contrast to measurements 
in air, AFM tip is attracted to surface starting from a 
distance close to 20 nm. Probably, this behavior in the 
liquid snap-in curve is associated with the uncontrolled 
surface layer specifics of adsorbed active chemical 
groups (eg CH), in which liquid is actively manifested.

Relief surface and surface charge (potential) 
features are illustrated by the thick (several microns) 
film example of pure polytetrafluoroethylene (PTFE, 
teflon) and PTFE, filled with multiwalled carbon 
nanotubes (Fig. 11). Investigated pure PTFE surface has 
a root-mean-square roughness (RMS) of 3 nm with the 
typical curvature radius of single inequalities of 1000 nm 
(Fig. 11a). Carbon nanotubes added to the PTFE cause 
increasing the RMS value up to 4 nm (Fig. 11c). 
Characteristic surface features curvature radius is less 
than tip apex radius and, according to AFM 
measurements in the tapping-mode, is 10 to 30 nm. For 
such surfaces, characteristic pull-off force values in the 
liquid and air are, respectively, 3.7 and 10.7 nN in the 
case of pure PTFE as well as 0.9 and 8.3 nN for PTFE 
with CNT (Fig. 11b, d). Thus, there is a clear tendency 
to reduce the value of capillary forces over rough 
surfaces where multiple capillary bridges could be 
formed and their geometry could be distorted due to high 
local surface curvature in accordance with the 
Derjaguin’s formula.
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(b): approaching curve (1) and withdrawing curve (2).
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Fig. 11. AFM images surfaces and the corresponding force curves for PTFE (a, b) and PTFE filled with carbon nanotubes (c, d). 
Curves taken in the liquid are of blue colour (1), in the air are of red colour (2). Inserts in b and d show the snap-in areas of
relevant curves.

A characteristic pure PTFE feature is static electric 
charge presence on the surface, while in PTFE with 
carbon nanotubes it is practically absent. Such a charge
can significantly affect the force curves, especially in 
liquid. So, in the snap-in curve for pure PTFE in liquid 
there is no abrupt jump to contact part (see insert in 
Fig. 11b, curve 1). There is the so called double layer 
electrostatic repulsion, which starts from the tip-surface 
distance of ~20 nm. While for PTFE with carbon 
nanotubes in liquid (insert in Fig. 11d) jump to contact 
occurs at a distance of ~2.5 nm. This behavior is 
explained by facilitating charge flow from the surface 
with conductive carbon nanotubes. 

Fig. 12 illustrates the dependence of capillary 
bridge geometry on the AFM tip withdraw speed. 
Measurements performed on the artificial diamonds 
surface, which excludes the possible deformation effects 
in tip-surface contact vicinity. It is seen, the higher a tip 
withdraw speed the larger height of bridge: increasing 
the speed from 20 to 200 nm/s causes an increase of the 
bridge height from 2-5 to 6-10 nm (Figs 12a, b). At the 
speed of 2000 nm/s, the bridge is ruptured at the height 
of 12-15 nm only (Fig. 12c). This behavior qualitatively 
agrees well with the simulation results presented in 
Figs 6-8. The slow tip movement corresponds to 
meniscus constant curvature, a quasi-linear force curve 
and shorter capillary bridges (Fig. 6). The constant 
volume mode is realized during fast AFM tip 
withdrawing (Fig. 8).

It should be noted that shown variations of the tip 
speed do not significantly affect the derived capillary 
pull-off force value (Fig. 12, histograms) which is in 
good agreement with theoretical models discussed 
above. There is only a slight distribution broadening. 
Anyway, it is necessary to notice the difference between 
the measured and the envisaged capillary bridge heights. 

Dependences of adhesion forces in air and liquid 
for various materials are shown in Fig. 13. Generally, 
there is a capillary forces correlation value from the 
wetting angle investigated surfaces. However, in these 
measurements it is particularly important to examine 
surface cleanliness. Not always correlation of capillary 
and adhesion forces takes place in liquid.

Surface energy mapping using capillary bridge pull-off 
force

From the theoretical models, the meniscus rupture force 
depends on the average contact angle cosine for the 
sample and the probe, respectively. Therefore, for 
surface proper diagnostics there must be a probe 
calibrated to the wetting angle. Alternatively, we can 
suggest a method of forces rupture bridge measuring by 
two different probes on the same sample ( 1F  and 2F ) 

with additional capillary forces measurement probe on 
the probe 2112 FF  . This method immediately gives the 

calibration of wettability for both probes cosΘ1 and 
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cosΘ2, as well as the corresponding map of cosΘ value 
for researched sample:






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2

1

coscos

coscos

coscos

Here, 11 2/ RFA L , 22 2/ RFB L , 

)2(112 2/ RFC L . This system solution is elemen-

tary: 2/)(cos CBA  , 2/)(cos 1 BCA 
and 2/)(cos 2 ACB  .
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Fig. 12. Force curves and capillary forces histograms (inserts) 
for the diamond surface depending on capillary bridge forming 
speed: 20 nm/s (a), 200 (b), and 2000 (c).

Likewise, it is possible to make wetting angle 
intercalibration for three probes at the same time. 
Having the wetting angle map data for the sample 
(Young's formula [21])

L
S
SL

S
SV  /)(cos (28)

as well as adhesion forces measurements on the same 

sample in liquid, giving value S
SL , solid surface energy 

mapping can be realized with nanometer resolution. This 
very useful result can be a diagnostic tool for established 
and new technological trends in nanolithography, the local 
water chemistry, local (electro) chemistry of materials, as 
well as corrosion processes study and surfactants traces 
detection on the surface. This method can be used not 
only for diagnostics but also for the local chemical surface 
modification due to the reagent injection directly to the 
meniscus. Moreover, all reactions take place in the liquid 
under high tensile pressure. It is obvious that control the 
meniscus geometry and its force characteristics can be 
used here to monitor process kinetics.

Naturally, during this program performing number 
of methodological problems increases. To such problems 
are referred geometric relief treatment (especially in the 
nanoscale), a partial surface deformation in contact with 
the probe, etc. However, the good news is that most of 
these problems can be solved within AFM-spectroscopy 
framework. Another problem is in the possible 
restrictions imposed on the applicability of the formulas 
Young, Derjaguin, and Kelvin [21] for drops and 
menisci of nanoscale sizes, as well as all given above (in 
essence, a continuum) models. In particular, it remained 
unsettled question about the need to incorporate linear 
tension on the liquid perimeter in contact with solid, as 
well as considering dependence of the meniscus surface 
tension on meniscus curvature. Of course, there are 
required additional researches, including new atomistic 
model creation. At this stage, we observe good 
qualitative agreement with continuum models and the 
experimental results presented here. 
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Fig. 13. Capillary bridge rupture value for different materials 
in air (1) and magnitude of adhesive forces in the liquid for 
related materials (2). SS – stainless steel.
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5. Conclusions

In this paper, authors make an attempt to develop 
systematic theoretical and experimental approach for 
application of capillary forces as a unique diagnostic 
tool for a real surface basing on an atomic force 
spectroscopy technique. There is comparative analysis 
of the most successful theoretical approaches and 
experimental illustration of several effects that define 
nanocapillary interactions on real surfaces. Introduced 
there are experimental results of rupture capillary 
bridge force measurements in air and adhesion forces 
inside liquid by AFM tip probing a surface. The 
investigated materials differed in conductivity, 
topography, adsorbed layer presence etc. It is shown 
that theoretical models describe quite well the 
processes and, in particular, bridge rupture dynamics 
with a vertical tip displacement at different speeds. It is 
expected that usage of more advanced numerical 
models, adequately constructed on the base of the 
simplest theories, allows complex heterogeneous 
surfaces diagnostics using nanocapillary forces. In 
addition, an important role is played by proper strategy 
for the experiment using all force microscopy 
advantages. The analysis allowed to propose a new 
approach to diagnose real surface local energy 
parameters using probes of different properties, at 
agreed spatially measurements both in air and liquid, 
using topometric and surface potential data.
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