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Abstract. A theory for the spontaneous emission (SE) of radiation for a Bloch electron 
traversing a single energy miniband of a superlattice (SL) in a cavity while undergoing 
scattering is presented. The Bloch electron is accelerated under the influence of
superimposed constant external and internal inhomogeneous electric fields while 
radiating into a microcavity. The constant external electric field strength is chosen so that 
the emitted radiation lies in the terahertz spectral range. The quantum dynamics for the 
inhomogeneous field correction is obtained from a Wigner–Weisskopf-like long-time, 
time-dependent perturbation theory analysis based on the instantaneous eigenstates of the 
electric field-dependent Bloch Hamiltonian. It is shown that SE for the cavity-enhanced 
Bloch electron probability amplitude becomes damped and frequency shifted due to the 
perturbing inhomogeneity. The developed general quantum approach is applied to the 
case of elastic electron scattering due to SL interface roughness (SLIR). In the analysis, 
the interface roughness effects are separated into contributions from independent planar 
and cross-correlated neighboring planar interfaces; it is estimated that the cross-
correlated contribution to the SE relaxation rate is relatively small compared to the
independent planar contribution. When analyzing the total emission power, it is shown
that the degradation effects from SLIR can be more than compensated for by the 
enhancements derived from microcavity-based confinement tuning.
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1. Introduction

It has been known that spontaneous emission (SE) of 
photons from an optically active medium can be strongly 
enhanced or inhibited by controllably modifying the 
dielectric environment in which the emission of photons 
occurs [1, 2]. Relevant to the subject of this paper is the 
coherent emission of electromagnetic radiation from 
Bloch oscillations in electrically biased semiconductor 
superlattices (SLs) [3-12]. In the case when the bias is 
chosen that the radiation output is in the terahertz 
regime, this allows for the possibility of inversionless 
terahertz lasers [13].

A theory of microcavity-enhanced spontaneous 
emission (MESE) for a Bloch electron traversing a 
single energy band without scattering accelerating in an 
external constant electric field has recently been 
examined by the authors [14, 15]. The theoretical 
analysis was fully quantum mechanical in that the 
quantized radiation field was described in terms of the 
dominant rectangular microcavity waveguide mode in 
the Coulomb gauge; also the instantaneous eigenstates of 
the Bloch Hamiltonian were utilized as the basis states in 
describing the Bloch electron dynamics to all orders in 
the constant electric field. Analysis of the probability 
amplitudes, over integral multiples of the Bloch period, 



Semiconductor Physics, Quantum Electronics & Optoelectronics, 2014. V. 17, N 2. P. 109-129.

© 2014, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine

110

resulted in selection rules for photon emission in both 
photon frequency and wave vector, showing preferable 
transitions to the Wannier–Stark ladder levels. It was 
shown that the SE rate could be enhanced over free 
space emission [16] by tuning the emission frequency to 
align with the cavity mode spectral density peak, thus 
resulting in an output power of several microwatts in the 
terahertz spectral range for a GaAs-based superlattice 
(SL) imbedded in a microcavity.

In this paper, we generalize the analysis of MESE 
for a Bloch electron accelerating through a single 
miniband of a SL structure to include the electron 
scattering. As an example, the additional interaction of 
the electron with a perturbing inhomogeneous electric 
field arising from interface roughness [17-19] inherent 
from the SL material process is studied. The intent in 
studying the effect of such a perturbing inhomogeneity is 
to determine its role in limiting the MESE process as a 
scattering influence that dephases the coherency of the 
Bloch oscillation, and to quantitatively determine how 
the MESE selection rules are influenced by such a 
perturbation. The theoretical approach developed herein 
is quite general and allows for the inclusion of electron-
phonon scattering as well. In this work, however, SLs 
are only considered for which the miniband width is less 
than the LO-phonon energy thereby relaxing the need to 
consider phonon effects in this analysis. A host of other 
possible deleterious scattering mechanisms are discussed 
in the literature [7, 17-20]. The developed theoretical 
methods and details of derivations, which are not 
reflected in a reduced version [21] are fully described.

The paper is organized as follows. In Sec. II, the 
quantum approach is briefly reviewed, and the 
Hamiltonian for a Bloch electron in the quantum 
electrodynamic field of interest is developed. The 
classical external electric field is described in the vector 
potential gauge, and the quantized electromagnetic 
radiation field is described by the dominant microcavity 
TE10 rectangular waveguide mode in the Coulomb 
gauge; the general inhomogeneous electric field is 
treated in the scalar potential gauge. In neglecting the 
higher-order quantum field-field interaction term, it is 
shown that the total Hamiltonian for this problem 
reduces to the sum of three contributions, the 
Hamiltonian for the Bloch electron in the classical 
external electric field interacting with the 
inhomogeneity, the Hamiltonian of the free quantized 
electromagnetic field, and the Hamiltonian for the first-
order interaction between the cavity quantum field and 
the accelerated Bloch electron. Further, the 
instantaneous eigenstates of the Bloch Hamiltonian and 
the states of the free radiation field are utilized as basis 
states in describing the time development, and in 
calculating the one photon SE transition rates of the 
accelerated Bloch electrons under the simultaneous 
perturbing action of the quantum cavity radiation field 
and the inhomogeneous potential energy. In Sec. III, the 
overall probability amplitude analysis for one photon 
emission is developed; as a result of treating the 

perturbing inhomogeneity in long-time, time-dependent 
perturbation theory relative to the Bloch-accelerated 
system in the electrodynamic radiation field, it is found 
that the SE amplitude for the cavity-enhanced Bloch 
electron radiation becomes damped and frequency 
shifted in the off-diagonal and diagonal matrix elements 
of the inhomogeneous potential energy with respect to 
the instantaneous Bloch eigenstates. This resulting SE 
amplitude for the cavity-enhanced Bloch radiation is 
strikingly reminiscent to the form obtained for the 
Boltzmann transport equation to describe scattering in 
the well-known relaxation-time approximation. 
Therefore, in Sec. IV, for purposes of showing trends 
with regard to simple Bloch oscillation dephasing effects 
as the electron undergoes scattering, the dephasing 
analysis is carried out for a heuristic constant relaxation-
time approximation, where the damping term is assumed 
constant and the frequency shift is constant, in particular, 
zero. Also, since our basic quantum analysis excludes 
the dissipative effect of the cavity radiation field 
interacting with lossy cavity walls, use is made of a 
well-known phenomenological treatment of dissipation 
whereby the singular part of the density of states is
replaced by a Lorentzian with a broadening parameter 
dependent on the quality factor of the microcavity. In 
analyzing the total power in this approximation, it is 
shown that the degradation effects from SLIR can be 
more than compensated for by the enhancements derived 
by microcavity-based confinement tuning. In Sec. V, the 
theoretical analysis is extended beyond the heuristic 
relaxation-time approximation and is developed for the 
specific case where the inhomogeneous potential energy is 
represented by a lattice comb of planar interface 
inhomogeneities of variable potential strength, where the 
SL planar interface roughness is characterized statistically 
by an ensemble averaged over the variable potential 
strength. It is found that both the frequency shift and the 
damping constant are dependent on the Brillouin zone 
vector component perpendicular to the SL direction, the 
characteristic correlation lengths, and the applied electric 
field. Further, since the required matrix elements for the 
inhomogeneous potential energy are separable in terms of 
planar and cross-planar interface roughness contributions, 
detailed analysis revealed that the cross-planar 
contribution to the SE relaxation rate is relatively small, 
representing less than roughly 10% of the total relaxation 
rate relative to the dominant independent planar 
contribution. In Sec. VI, a summary and discussion of 
overall results is given. The Appendix provides the details 
of the time-dependent double perturbation theory analysis 
used to calculate the probability amplitude.

2. Quantum approach: Dynamics based on 
instantaneous eigenstates

Dynamical properties are considered for the situation in 
which the electron is confined to a single miniband n0 of 
SL with energy )(

0
Kn , while the effects of interband 
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coupling are ignored [22, 23]. Therefore, the quantum 
dynamics is described by the time-dependent 
Schrödinger equation

,),(|=/),(|
00

 tHtti nn rr

where the exact Hamiltonian

),()(2/])/([= 0
2 tVHVmceH rc rrAp 

can be reduced to a sum of the following separate 
Hamiltonians

Ir HHtVHH  ),(= 0 r .

Here, the first two terms represent the Hamiltonian, 

)(/2)]([=)( 0
2

0 rpp cc VmttH  , for single electron in a 

periodic crystal potential, )(rcV , interacting with a 

homogeneous electric field E, and the potential energy, 
),( tV r , for the inhomogeneous electric field due to the 

impurities or interface roughness; although the special 
case for the scattering potential considered in this work 
is time independent, the developed general treatment is 
applicable to a general time-dependent perturbation 

),( tV r . Also rH  is the Hamiltonian for the cavity mode 

electromagnetic radiation field ( 0m  is the free-electron 

mass, c  is the velocity of light in vacuum, and e  is the 
electron charge). The total vector potential in the exact 
Hamiltonian consists of rc AAA = , where 

cc ec pA )/(=   describes the external electric field with 

tetdtet
t

t
c EEp  )(=)(

0

 for the time-independent 

homogeneous electric field turned on at initial time 

0=0t ; rA  describes the TE 10  cavity mode of the 

quantized radiation field rE  with the frequency q

given by [24] 

  ,ˆˆ)(sin
4

= †

0

2

,
zziq

q
zziq

qx
q

zq
yr eaeaxq

V

c
A




 
(1)

and 0== ,, zrxr AA , where †̂
qa  and qâ  are the photon 

boson creation and annihilation operators,   is the 
dielectric constant of the medium filling the waveguide 
of the length zL  and cross-section yxLL , zyx LLLV =0 , 

and xx Lq /=  . For the chosen system geometry, the 

corresponding electric field rE is polarized in the 

direction of the dc field, which is assumed to be oriented 
along the y  axis (also the SL growth direction). The 

Hamiltonian for the quantized radiation field has the 

form qqqqr aaH ˆˆ= †  , where 

1/22 ])/([1= xzcq qq  is the mode dispersion 

relation, and  /= cqxc  is the angular cutoff 

frequency; also the guided mode wavelength is written 

as 1/22 1])//[(=  cqc , where xc L2=  is the 

cutoff wavelength [25]. The Hamiltonian 
)]([)/(=)( 0 tcmetH crI ppA  , for the first-order 

interaction between the quantum field and the Bloch 
electron, couples both subsystems 0H  and rH , and 

causes transitions between the accelerated Bloch 
electron states through photon absorption and emission. 
Then, starting with the reduced Hamiltonian 

),(= 0 tVHHHH Ir r , use is made of first-order, 

early-time time-dependent perturbation theory [26, 27] 
to calculate SE transition probabilities between states of 

rHH 0  while regarding )]([~)( ttH crI ppA   as a 

perturbation, and at the same time, use is made of a 
long-time Wigner-Weisskopf approximate perturbation 
theory analysis [27, 28] to calculate the relaxation 
influence of ),( tV r  on the SE transition probabilities; 

this time scale ordering is invoked since SE rates are 
orders of magnitude faster than relaxation times due 
to ),( tV r .

The solution for  ),(|
0

tn r  can be represented in 

terms of the eigenstates of basis states 
 }{|),(=|}{),,(| ,, 00 jnjn ntnt qKqK rr  of the 

unperturbed Hamiltonian rHH 0 as 
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Here, the summation over K  is carried out over 
the entire Brillouin zone, and }{ , jnq  is specified over all 

possible combinations of photon occupation number, 

jn ,q , with photon wave vector q  and polarization j,q̂ , 

2,1=j . The instantaneous eigenstates of 0H  are given 

[22, 23] by ,)(=),( )(
1/2

00
rr k

rK
K tn

i
n uet   where 

)()(0
rk tnu  is the periodic part of the Bloch function, 

)/(=)( tt cpKk  , and the values of the electron wave 

vector K  are determined by the periodic boundary 
conditions of the periodic crystal of volume  .

For the case of one photon SE, which assumes that, 
initially, no photons are present in the radiation field, the 
probability amplitude in the wave function of Eq. (2) 
satisfies the initial condition 

0,, ,,00}{ }{=),( KKqq
K 

jj nn tA  at time 0= tt , when the 

electric field is turned on. Here, 0K  and 0=0
, jnq  are 

the initial values of K  and jn ,q . The probability 

amplitude for SE, ),(}{ ,
tA

jn K
q

, is evaluated by double 

perturbation theory in the Appendix.
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3. Probability amplitude analysis

A. Probability amplitudes – one photon emission

The appropriate time-dependent equations of motion for 
the ),(}{ ,

tA
jn K

q
 coefficients expressed in Eq. (2) relate 

the time rate of change of ),(}{ ,
tA

jn K
q

 to the basis-

dependent matrix elements of IH  and ),( tV r  through a 

self-consistent set of equations. In applying early-time, 
first-order perturbation theory to the IH -coefficients of 

the set of equations, and applying a long-time, Wigner–
Weisskopf-like approximation to the V -coefficients of 
the set of equations, we obtain [see Appendix, 
Eq. (A12)] a closed form of inhomogeneous equation for 
the one photon SE amplitude 
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where  ),(),(),,(=)(
0000

ttVttV nn rrr KKKK    are the 

appropriate matrix elements of the perturbing 
inhomogeneity, ),( tV r ; the general time dependence of 

the matrix elements originates from both the explicit 
time dependence of ),( tV r  and from the time 

dependence of )/(=)( tt cpKk  . Also, 
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the probability amplitude for the microcavity-based SE 

alone [14]; 0/= VciD c , ce /= 2  is the fine 

structure constant, }0,,{= zxs qqq  with “+” for 1=s

and “–” for 2=s , 1/222 )(= zx qqq  , and 

)(|)()(1/=)]([
0 tnKy y

tv kKk  , the y  component of 

Bloch velocity in the band.

B. Analysis of one photon SE amplitude equation

The solution for ),( 0 tAn K  in Eq. (3) depends explicitly 

on )(
0

tf KK   as noted in Eq. (4). The time dependence of 

)(
0

tf KK  , expressed through the time-dependent matrix 

elements of ),( tV r  and through the time dependence of 

accelerated instantaneous energy eigenstates in the phase 
of )(

0
tf KK  , are now addressed. For the type of potential 

energy function of interest in this problem, that is, one 
where )(),( rr VtV  , a function of position alone, and 

where )(rV  is a comb of abruptly changing, planar, 

interface inhomogeneities positioned at the SL lattice 
sites with randomly distributed planar interface 
roughness, one can find the analytic solution to Eq. (3) 
quite readily. Attention is now focused on the closed 
form inhomogeneous equation for the one photon SE 
amplitude noted in Eq. (3).

1. The potential energy consideration

In the Wannier representation, the instantaneous 
eigenstates, ),(

0
tn rK , are equivalently expressed as 
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where NNN y=0  is the total number of lattice sites, 

and  lr 
0nW  are the Wannier functions, which are 

independent of K  [29], defined over all the lattice sites, 

l, of a given band, 0n . Then, in taking the matrix 

elements of )(rV  with ),(
0

tn rK  in Eq. (6), one obtains 
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where   .)()(=
00
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  nn WVWdV  The matrix 

elements in Eq. (7) are seen to be dependent on time 
through the )(tcp  dependence or, equivalently, through 

)/(=)( tt cpKk  .

For the case where )(rV  is a lattice comb of planar 

interface inhomogeneities with randomly distributed 
planar interface roughness, ll V  can be expressed as 
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Here, )( rv l  includes the effect of the SL interface 

roughness which is generally accounted for [30] 
independent planar interfaces by an ensemble averaged 
autocorrelation function in the form 
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with },{= rryr l ll . Later, we consider the effect of SL 

interface roughness from cross-correlated neighboring 
planar interfaces. It is noted that an equivalent abrupt 
interface model has been utilized in Refs. [31, 32] based 
on potential with similar correlation properties. The 
Fourier transform of the autocorrelation function is a 
specific Gaussian [33] assumption with two parameters 
which characterize the rms height of the interface 
potential fluctuations and the roughness correlation 
length. Other forms may be more suitable [34] based on 
empirical data.

2. The evaluation of the integral of the instantaneous 
eigenstates

Since KK V  is time independent, for the potential energy 

of interest, the only other source of time dependence in 
)(tf KK   comes from the accelerated instantaneous 

energy eigenstates, )]([
0

tn k , in the phase of )(tf KK   in 

Eq. (4). This time dependence in a constant electric field 
can be expressed as 
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/=B eEa  the Bloch frequency, a  the SL period, and 

y  an integer. In (12), )()(
00

KK nn    is the average 

value of )(
0

Kn  along the yK  direction in the Brillouin 

zone, dependent on K  alone. In particular, in (13), 

when the nearest-neighbor tight-binding (NNTB) 
approximation is considered, only the terms with 

1= y  need be retained in the sum.

In order to arrive at the result of Eq. (11), we 
develop the time integral required by expressing )(

0
Kn

in the Wannier representation. As such, )(
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Kn  can be 

written as  
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Then, it follows that, for a constant electric field, 
with tyc  B=  lp , the phase integral, 

0nI , becomes 
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Equation (17) can be rewritten explicitly in terms 
of 0=y  and 0y  contributions, which when using 

Eq. (16) results in 
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Here, )(
0  Kn  is given in (12) and ),(

0  Kyn a

is given in (14), which gives the result of Eq. (11). In 
further considering the integral, 

0nI , in Eq. (11), but 

instead over the limits from 0 to t , the same procedure 
is followed, but with limits from t  to t, to obtain 
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where ),( tK  is given by Eq. (13).

The variables defined by Eqs. (12), (13), and (14) 
are central to the entire analysis. Although they are 
formally defined for a general band structure, they are 
evaluated here for the specific SL miniband dispersion 
relation expressed as 
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where (0)
0n  is the miniband edge, l  is the width of 

the l -th miniband harmonic of SL, and )(  K  is the 

contribution from the perpendicular components of the 
band. Such a form for the energy band dispersion in the 
SL growth direction generally includes long range 
coupling over the neighboring quantum wells (QWs) 
with a relative strength measured by the specific value of 
the ratio 1</1 ll   , which is strongly dependent on 

the extent of wave function overlap. In putting the 
expression for )(

0
Kn  from Eq. (20) into Eq. (12) and 

using )(
2

=)(
/

/
 y

a

a

y

K
dK

aN

y 



, one obtains 
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Also, for ),(
0  Kyn a  in Eq. (14), one similarly 

obtains ||2

1
=),(

0 yyn a   K  and in using this 

expression in Eq. (13), ,0)()( K K  becomes 
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Therefore, for the assumed miniband dispersion, 

)(
0

Kn  depends only on K , ),(
0  Kyn a  is constant, 

and )(K  depends only on yK .

The result of Eq. (11) is a significant reduction of 

0nI  and allows one to develop a simple time-dependent 

expression for )(tf KK   as 
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where KK V  is given in Eq. (8), ),( tK  is given in 

Eq. (13), and )(
0  Kn  is given in Eq. (12).

3. Solution to SE amplitude equation for planar interface 
roughness

In looking for the solution to Eq. (3) for the potential 
energy function defined by matrix elements KK V  given 

in Eq. (8), with )(lv  satisfying ensemble average values 

given in (9) and (10), it has been already shown that 
)(tf KK   is given by Eq. (23); also, from (4), it follows 

that  
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It then follows from the use of Eq. (19) in Eq. (24) 
that 
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where 
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After ensemble averaging over the interface 
roughness, it is clear from Eqs. (9) and (10) that the 

diagonal matrix elements )()(1/= 0 l
lKK vNV   and the 

matrix elements in Eq. (8) ensemble average to zero 

because 0=)(  lv  at each l ; but 2|| KK V  survives 

because Eq. (27) contains ensemble averages over 

  )()( ll vv  which obeys an autocorrelation relation 

from Eq. (9).

Therefore, in putting )(tf KK   and )()( 'tftf 
 KKKK

into Eq. (3), and taking the ensemble average to lowest 
order (dropping the ensemble average symbol for 
mathematical convenience), one obtains the SE 
amplitude equation as 
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Here, the ensemble average of 
00KKV  is zero, but 

we retain the diagonal element to show the systematic 
behavior of perturbation theory in what follows.

Equation (24) contains an integral form which 
requires the explicit time-dependent specification of 

),(
0

tt  KK  defined through ),( B  KtaK y  and 

),( B  KtaK y , where )(K  is given in Eq. (22). 

For NNTB, in the SL band of interest, we see from 

Eq. (22) that )(sin
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 K . Then 
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where B1/2=   . In utilizing the well-known result 

[35] )(exp)(=)sin(exp
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 
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imJi mm

, where 

)(mJ  is the m-th order Bessel function of the first kind, 

it then follows that ),( tt  KK  can be expressed as a 

product of four sums over Bessel functions with 
differing indices, which when placed in (28) and ordered 
appropriately with respect to indices and time, results in 
the equation 
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Eq. (30) is solved by Laplace transform, and an 
analytic solution can be obtained in the long-time limit. 
We note that the temporal integral in Eq. (30) is in the 
form appropriate to apply the convolution theorem. 
However, with )(sFn  noted as the Laplace transform of 

),( 0 tAn K , the term ),( 0
)]()[( B tAe n

tmmmmi  K  under 

the integral, which gives rise to the Laplace transform 
component })]()[({ B mmmmisFn , is rapidly 

oscillatory for mmmm   as t  grows; thus, for 
1B  t , the terms in the four-fold sum for which 

mmmm  =  dominate in the long-time limit. 
Therefore, the terms with mmmm  =  only are 
retained in the four-fold sum while all other terms are 
neglected. Thus, in letting 
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transformed to get
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Also, )(mR  in Eq. (32) has its origin from 

summing over the term mKKKK
RG
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We then find that 
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hereafter we omit a comparatively small additional term, 

,0m , compared to the leading term which is 

proportional to yN , the number of SL sites in the y

direction. Then )}({=),( 1
0 sFLtA nn

K  is the inverse 

transform of (31) for all t. However, one can obtain the 
long-time behavior of ),( 0 tAn K by examining (31) in 

the limit 0)(  s . In using the well-known relation 
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Therefore, in the long-time limit, dropping the 
homogeneous solution and keeping the inhomogeneous 
solution in Eq. (31), we obtain  
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and 
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The inverse Laplace transform of (35) is 
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),( 0 tAn K  in Eq. (38) is a key result and shows that 

the SE for the cavity-enhanced Bloch electron 
probability amplitude becomes damped by )( 0K  in 

Eq. (37) and frequency shifted by )( 0K  in Eq. (36) 

due to the perturbing influence of the constant external 
electric field and the assumed interface inhomogeneity. 
It is interesting to note that the result obtained in 
Eq. (38) is strikingly reminiscent of the result obtained 
for the Boltzmann transport equation to describe the 
scattering processes in the well-known relaxation-time 
approximation [36]. Therefore, in an approach similar to 
analyzing the complications of the Boltzmann theory, we 
first consider the model, noted here as the constant 
relaxation-time approximation, where )( 0K  is 

assumed to be a constant, chosen to be zero for 
convenience, and )( 0K  is assumed to be a constant, 

independent of wave vector 0K , to analyze, in the 

simplest heuristic approximation, the dephasing effects 
due to interface roughness.

The frequency shift in Eq. (36) is essentially, to 
within mR , the second-order perturbation correction for 

the inhomogeneity and the external field, and the energy 
difference in the denominator is taken with respect to the 
average value of the energy band in the direction of the 
constant electric field, which is the y  direction. It is 

noted that the frequency shift can be expressed in terms 
of the Green function for the field-dependent SL 
Wannier functions in the NNTB approximation as [37] 
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Then, )( 0K  in Eq. (36) can be alternatively 

expressed as 
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Also note that the neglected off-diagonal term on 
the right-hand side of Eq. (40) [which arises from the 
neglected term on the right-hand side of Eq. (33)] is 
expressed in terms of 0G as 
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For convenience of performing the sum over K , 

we use the form   expressed in Eq. (36) throughout.

4. Degradation of cavity-enhanced SE: Constant 
relaxation-time approximation

In this section, for purposes of showing heuristic trends 
with regard to the effects of interface roughness, the 
analysis for Eq. (38) is carried out for the assumed case 
where the damping term,  , is a constant, independent 
of K , and the frequency shift is zero. In this case, it 
follows from Eq. (38) that 
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where  2/=  takes on the meaning of a characteristic 
mean dephasing time, and from Eq. (5) it follows that 
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Therefore, the one photon SE probability amplitude 
can be expressed as 
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0
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qqq etAtA KK (44)

where )~,,( 0
0

qq tA K  is obtained from Eq. (5) by the 

formal substitution of a renormalized complex photon 
“energy”   iqq =~  in place of q  with 

 1/ , so that 
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This incorporation of the relaxation-time 
approximation parameter,  , as a complex addition 

into the renormalized photon frequency, q
~ , thus allows 

us to analyze degradation in a straight forward manner. 
Then the emission process results in the total SE 
probability 

.|),(|=)( 2
0

=1,2

tAtP q
sq

s
e K (46)

A. Selection rules

In evaluating ),( 0 tAq K , the external dc field, E , is 

assumed to be oriented along the y  axis; it then follows 

that /=)( 00 eEtKtk yy  . In taking advantage of the 

periodic properties of the terms in Eq. (45), ),( 0 tAq K  in 

Eq. (44) is evaluated in clocked integral multiples N  of 
the Bloch period, so that B= Nt , where 

BBB /2=1/=  , the time to traverse one period of 

the Brillouin zone. The integral in Eq. (45) over time can 
be replaced by an integral over yk0  through the 

substitution ydkeEdt 0)/(=  . Then the probability 

amplitude of Eq. (44), evaluated at integral multiples of 
the Bloch period, can be expressed in terms of the 
probability amplitude over a single Bloch period, B , 

[16] to obtain 
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where the complex parameter q
~

 is given by 
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and aGy /2=  , the y  component of the SL reciprocal-

lattice vector. From Eq. (47), the corresponding squared 
probability amplitudes are expressed as 
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where the transfer function ),,(  Nq  is given by 
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Here,   clearly shows the effect of Bloch 

oscillation dephasing in the constant relaxation-time 
approximation.
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Fig. 1. The transfer function  = (q, N, ) calculated at 
maximum growth conditions [Eq. (51)],  = max, as a function 
of a number of Bloch oscillations N for different values of B: 
(a) 5  B  10 and (b) 2  B  4. The dashed curve shows
max ~ N2 without dephasing (B ).

The general behavior of ),,(  Nq  is displayed in 

Fig. 1. From Eqs. (49) and (50), it is seen that for the 
case of a weak scattering when 1/ B N , i.e., when 

the electron scattering event is not probable even over 
many Bloch oscillations, N, on the time scale of the 

scattering time , then the quantity 2
B0 |),(| NAq K  will 

reach its maximum growth value when )(2=  mq , 

where q = )
~

(Re q , m  is an integer and 0 ; for 

this limiting case, the function ),,(  Nq  is reduced to 

the function ),( Nq  previously obtained in the 

absence of scattering [16], that is 
222 /2)(sin/2)/(sin=),( NNN qqq  , i.e., it 

becomes sharply peaked at the resonances with 
increasing N. It is clear that this condition for maximum 
growth establishes the selection rules for both the photon 
emission frequency, q, and the key wave vector 
component, qz , 

  ;1)/(=,= 1/22
BB  cxzmzq mqqqm (51)

this gives the “Stark ladder” resonance frequency 
condition, along with the sustaining wave vector cavity 
resonance conditions. Thus, the modes that radiate with 
the highest probability correspond to the fundamental 
Bloch frequency and its harmonics. These quantization 
conditions are obtained without requiring any 
assumptions concerning the existence of Wannier-Stark 
energy states. Further, analyzing the changing behavior 
of ),,(  Nq  with increased intensity of scattering, it 

is noted that the peak positions are negligibly affected, 
although the associated spectral widths become 
broadened and related peak values are reduced with 
decreasing ratio of B  (Figs. 1a and 1b). From this 

relaxation-time approximation result, it is noted that the 
maximum growth condition for the probability 
amplitudes in Eqs. (49) and (50) still preserves the 
selection rules for SE given in Eq. (51) despite the 
increased reasonably strong scattering ( 1B  ). It is 

important to emphasize that both Eqs. (49) and (51) 
taken together are central to the evaluation of total SE 
probability.

In the preceding calculation, if (K0) were chosen 
to be a non-zero constant, say 0, then the selection rules 
in Eqs. (51) would indicate a constant shift in q by the 
assumed constant 0, which would then be appropriately 
reflected in Eq. (50) by replacing q with q+ 0.

Not withstanding the relaxation-time 
approximation, both  and   in Eqs. (36)-(38) are 
non-trivial functions of K-vector and B , so that 

depending on the strength and breath of the interface 
inhomogeneity, the Stark selection rules and the SE will 
be affected by this dependence. The analysis is extended 
beyond the relaxation-time approximation in Section V 
to demonstrate the dependence of  and  on K-vector 
and B  within a model problem.

B. General expression for the total SE probability

The total SE probability at time B= Nt , noted as 

)(= BNPP s
e

s
e , is evaluated by substituting 

2
B0 |),(| NAq K  from Eq. (49) into Eq. (46). The sum 

over q in Eq. (46) is replaced by an integral over q , by 

taking into account the TE 10  mode density of states and 

polarization such that 
1/22 ])/()/[1()/()( qqdqL xzq

  . Thus, s
eP

can be written as 

  .
)/(1

|),(|
),,(=

1/22

2
B0

1,2= qq

A
Ndq

L
P

x

q
q

s

zs
e






 
K

(52)

In Eq. (52), we have made use of the mode density 
of states for a lossless waveguide cavity; this results in 
infinitely sharp peaks at the system resonances. 
However, if we incorporate a radiative loss component 
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into the density of states due to the interaction of the 
radiation field with lossy cavity waveguide walls, this 
would lead to a broadening and finiteness of the density 
of states resonance peaks. Therefore, we introduce here a 
well-known and frequently used phenomenological 
Lorentzian broadening component into the density of 
states, which approximates [38] the effect of radiative 
dissipation to the cavity walls. As such, the singularity 
of the density of states in Eq. (52) can be expressed as 

=])/(1/[1 1/22qqx 1/21/2 1)/(1)/)/(/(  xxx qqqqqq ; 

then, in replacing 1/21)/( xqq  by 
4/1

220
1)/(

1
lim
















xq
q qq

 with Qq 1/2= , where 

Q  is the microcavity quality factor, we can express 

Eq. (52) as 

.
1)/(
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221/2
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qqqqq
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Ndq
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(53)

Thus, s
eP  in Eq. (53) is reflective of the loss 

component at the resonances.
The integral in Eq. (53) can be evaluated by using 

the special property of the integrand, that is, ),,(  Nq

is a sharply peaked, symmetric function of q , at 
1/222 )(= zmxm qqqq  . With decreasing  , the 

maximum values of this function decrease relative to the
no scattering case (  = ). However, its sharp and 
oscillatory behavior is preserved for the wide range of 
physical scattering times greater than or of the order of 
the inverse Bloch frequency B . Thus, for 1B  , at 

every node defined by the resonance conditions, the 
slowly varying function of q  in the integrand, including 

the peaked density of states, can be replaced by its value 
evaluated at mqq = , and then removed from the integral 

over q . It is noted that in comparing the effective half-

widths of   and the Lorentzian lineshape, we find that 
the sharpness of   dominates for the conditions that 

NNq Q1/2 , NQQ N  15 . Within these 

criteria, the integral over q  can be completed as 

outlined to obtain 

.
1)/(
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1)/(
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221/2
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(54)

Here, maxl  follows from xc qlq )/(= Bmaxmax  , 

and determines the upper limit in the sum over higher 
Bloch oscillation harmonics. The integral )( BNI

reflects Eq. (50) and is defined by 

.
)(sin)(1/2sinh

)(sin)2/(sinh2
=)(

2
B

2

2
B

2/2

0

1)/( B

x

NxN
dxeI N

BN 
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
 
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(55)

The calculation of s
eP  in Eq. (54) requires the use 

of )~,,( B0
0

qqA K  in Eq. (45), evaluated at the 

maximum growth conditions of Eq. (51), that is, when 

B=   mq  and mqq = . In addition, the dependence 

on q  in Eq. (45) is made explicit by invoking the 

assumption of photon long-wave limit, which is valid for 
all periodic potentials of interest, even superlattices, 
where aq / . Thus, Eq. (45) results in 

,)/~(exp
2

=)~,,( B0

1/2

B
B0

0 



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


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lqyl

l

x

lqlq aiKDI
q

q
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(56)
where 

)(exp)]2/(exp)([
2

1
= B kkkykl ilvdI 

 



(57)

is the l-th Fourier component of the function 
)/2(exp)( B kkyv , ak yk 0= , and 

 /=~
B il

lq . Note that D  in Eq. (56) has been 

defined below Eq. (5). Since the electron velocity 
component )( kyv   depends on details of the SL 

miniband structure, such dependence comes explicitly 
into the SE probability amplitude through the integral lI

given by Eq. (57), thus  

.)/(exp||=|)~,,(| B0
2

2
B

2
B0

0 


 aKDI
q

q
A yl

l

x

lqlq K (58)

Note that the exponential term in Eq. (58) contains 
a dependence on the initial wave vector, yK0 . This 

dependence is implicit in Eq. (44) through   and q~ , 

and arises from the symmetry breaking incorporation of 
damping into SE probability amplitude analysis. Since 

/0 aK y  is bounded within 1,1][  in the Brillouin zone, 

and  <2 B  is the physical range of values taken 

under circumstances of strong to weak scattering, 
respectively, a simple estimate shows that for 2=B , 

the exponential factor varies from approximately 0.61
at aK y /=0   to 1.65  at aK y /=0  , and for weak 

scattering, when B  is very large, the exponential 

factor is approximately unity throughout the Brillouin 
zone. Therefore, in further discourse, the analysis is 
treated for the weak scattering case, and the exponential 
factor is replaced by unity so that Eq. (58) becomes 
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.||=|)~,(||)~,,(| 2
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lqlqlqlq DI
q

q
AA


K (59)

If one wanted to include this exponential factor for 
strong scattering analysis, then knowledge of the initial 
condition would be required; in lacking such knowledge, 
a suitable ensemble average would have to be taken over 
probable initial conditions to get a weighted average.

C. Analysis of the total SE probability
for specific energy miniband

The analysis for SE and radiation characteristics is now 
developed by considering a general form for the electron 
energy miniband dispersion relation given by Eq. (20). 
In particular, the well-known case of NNTB 
approximation corresponds with purely harmonic energy 
dispersion where only the single term ( 1l ) is 
considered as significant, so that the next nearest 
neighbor and longer range QW wave function overlaps 
are assumed to be negligibly small. The electron group 
velocity in the general miniband of Eq. (20), for the 
given yK  in the y  direction, is then given by 

)(sin=)(
1= yllyy aKlvKv 



 , where 2/= ll alv   , the 

maximum velocity associated with the l -th miniband of 
band width, l . Substituting the expression for 

)( yy Kv  in Eq. (57), one can find the total SE 

probability from Eqs. (54) and (59) as 
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where /2= 11 av  and 
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Here, summation is carried out over both the higher 

harmonics of Bloch frequency (l) and higher harmonics 
of the general energy miniband ( l ) from Eqs. (20) 
and (61).

Let us consider the case of a purely harmonic 
miniband ( 1=l ) described within the NNTB 
approximation; in this case, the probability amplitude in 
Eqs. (59) and (57) results in 

,
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=|)~,(|

2222
B

2
B

B
2

3
B

2
124

2
B











lll

v
D

A

c

lqlq

(62)

where an account has been taken for the wave vector 

cxl lqq  /= B . In particular, if finite scattering is totally 

ignored ( B ), then from Eq. (57) ll viI 11/2)(=  , 

and therefore

.)/(||=|)(||)~,(| 1
3
B

2
1

222
B

2
B lclqlqlq vDAA 

Thus, it is concluded that for the electron dynamics 
in a purely harmonic miniband when only the single 
Fourier component of the electron velocity )( kyv   with 

1=l  is nonzero, and in the absence of scattering, all 

probability amplitudes 2
B |)(| 

lqA  are zero, except the 

one corresponding to 1=l . In accordance with the 
selection rule of Eq. (51), this frequency harmonic 
corresponds to the fundamental Bloch frequency alone. 
It is interesting to note that with finite values of 
scattering time, the generation of higher Bloch 
harmonics becomes possible even in a pure harmonic 
miniband. From Eqs. (54) and (62), the total SE 
probability becomes 
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It is seen from Eq. (63) that with increasing  , the 
effect of higher Bloch harmonics generation becomes 
reduced, and for   it completely disappears. In 
tracking the contribution from higher harmonics of 
Bloch frequency in the total SE probability, note once 
again that the NNTB approximation in Eq. (20) is 
obtained by letting ll   11=  so that ll vv  11= . 

Occurrence of the Kronecker symbol, l1 , allows for 

the contribution of the 1=l  term only, whereas all other 
terms are equal to zero, thereby limiting, within the 
NNTB approximation and without scattering, generation 
to the fundamental Bloch harmonic. In this problem, the 
genesis of harmonics arises from the basic structure of 
the probability amplitude in Eqs. (42), (43); these 
equations have a direct dynamical dependence on the 
Bloch electron velocity and the SL miniband energy, 
both of which contain a broad harmonic dependence due 
to band periodicity. However, as noted from Eqs. (60) 
and (61), in the relaxation-time approximation, finite 
scattering plays a role, but as  , only the pure 
harmonic survives.

D. Total SE power estimate

Spontaneous emission is considered for photon energy 

B=   q  corresponding to the fundamental Bloch 
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harmonic frequency. It follows from Eq. (63) that the SE 
probability for 1=l  is given by 
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In the absence of scattering, Eq. (64) is evaluated in 
the limit B  to get 
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indeed, for the limit of B , the integral in 

Eq. (55) behaves as a linear function of N, that is, 

Ndx
x

xN
I N =

)(sin

)(sin)(2/)(
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
 ,

so that Eq. (64) goes over to Eq. (65). For finite values 

of  , the linear dependence of )(NPs
e  is replaced by the 

general factor )( BNI , which is a slower than linear,

but an increasing function of N . To compare the 
probabilities for SE with and without scattering, we 
obtain the ratio 
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In particular, for frequencies close to the peak of 
the density of states ( cB ), we get from Eq. (65) in 

the absence of scattering 

,)(
3

=)=,1,=( 1/2
BB fsc

s
e PQlP 


 (67)

where 22
1 //3)(2= cvNPfs   is the probability of SE into 

free space. Hence, the enhancement of SE probability 
into the microcavity waveguide relative to SE into free 

space, fsc
s

ec PlPP )/=,1,=()( BBB 
is determined by 

,)(
3

=)( 1/2
B QPc 


 (68)

i.e., the Purcell factor proportional to 1/2Q . Similarly, 

for a finite  , it follows from Eq. (64) that 
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Fig. 2. Relative SE probability Pr [Eq. (66)] as a function of N
at fundamental Bloch frequency for different values of B.
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where the relative probability 

fsc
s

ec PlPP )/=,1,=()( B   is given by 

.)(=)( B rcc PPP   The latter clearly reflects both 

the effects of the microcavity waveguide )]([ B cP

and the electron scattering )( rP . Depending on the 

operational parameters Q  and B , either factor in 

Eq. (69) can dominate in which case inhibition 
[ 1<)(cP ] or enhancement [ 1>)(cP ] can take place. 

Then, assuming the enhancement of the total probability 
in Eq. (69) 1>)(cP , we get the criterion on the quality 

factor )(> B0 QQ , where 22
B0 //3)(=)( rPQ   is 

determined from the equation 1=)(cP . Combining 

both criteria [see discussion above Eq. (54)], we get the 
region for Q  values which is determined as follows 

NQQQ  <)( B0 .

The relative SE probability, rP , calculated as a 

function of N  at different values of the dephasing 

parameter B , is shown in Fig. 2; within the 

relaxation-time approximation, it is seen that the effect 
of dephasing on the relative total SE probability 
becomes more prominent with decreased B . As a 

numerical estimate, assume that 10=B  and 10=N , 

which corresponds to the aspect ratio of 1=/B N . 

Then in using the data of Fig. 2 with the curve indicated 
by 10=B , one obtains 0.39rP  for 10=N ; then it 

follows that the total SE probability and the generated 
output power of SE is appreciably damped by a factor of 
2.6 due to dephasing effects as compared with that in the 
absence of scattering. To obtain a specific value for 
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power output, use is made of the conditions for a GaAs-
based SL ( 12.2= ) with the miniband width 

meV36= , the SL period nm10=a , the vertical 

dimension μm14 , and the lateral cross section 

28×1000 µm 2  embedded into a rectangular waveguide. 
For the estimate, the electron density is taken to be 

316 cm105  , which provides the total number of 

electrons 10102= n  in the active region of SL. The 
Bloch frequency THz1.5=)(B c  corresponds to 

meV6B   and the electric field 

=/= B eaE  6 kV/cm, which requires the external bias 

of 8.4 V. The SE power generated into free space is 
estimated to be μW0.36)/(= BB  fsfs PNnW  . The 

Purcell factor is estimated as 10)( B cP  for 

9=Q  ( 0.60 Q , 69NQ ); then we get 3.9)( cP . 

This results in the estimate of the damped SE power 
generated into the microcavity environment under the 
dephasing effects μW1.4W . The estimates show that 

the SE power of about μW1  is achievable for the 

microcavity quality factor in the range of 4-5; this shows 
the degradation effects from SLIR can be more than 
compensated for by the enhancements derived from 
mircocavity-based confinement tuning.

5. Localized interface roughness model

In proceeding beyond the relaxation-time approximation, 
consideration is now given to the more general result of 
Eqs. (36) and (37) where the interface roughness model 
is explored, that is, the lattice comb of localized planar 
interface inhomogeneities with randomly distributed 
planar interface roughness defined by an ensemble 
averaged autocorrelation function (9) and (10). Clearly 
the results of evaluating Eqs. (36) and (37) explicitly 
will differ from the constant relaxation-time 
approximation in that both )( 0K  and )( 0K  are 

non-trivial functions of wave vector 0K . As such, it has 

been explicitly shown in Sec. III that the matrix elements 
for this lattice comb are given in Eqs. (8) and (27) from 
which one can arrive at 
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This ensemble average matrix element can be re-
expressed by opening the sums over l  and l  in terms of 
y  and perpendicular components so that Eq. (70) 

becomes 
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In general, the matrix elements in Eq. (71) can be 

separated into planar, pV  
2|| KK , and cross-planar, 

cpV  
2|| KK , contributions as 

cpp VVV  
222 ||||=|| KKKKKK , where  
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comes from independent planar interfaces and 
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takes into account cross-correlations between different 
planar interfaces. The planar and cross-planar 
contributions to the matrix elements are established 
below in Secs. A and B, respectively, along with their 
contributions to the damping constant,  , and the 
frequency shift,  .

A. Roughness effects from independent planar interfaces

For independent planar interfaces, then making use of 
the autocorrelation relation (9) in Eq. (72), one obtains 
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The double sum 
 


ll ,2

1

N
 in Eq. (74) can be 

evaluated by using the Poisson summation formula. 
Specifically, the double sums over areal vectors 

kil ˆˆ= zx ll   and kil ˆˆ= zx ll   can be further 

decomposed into four sums over xxx anl = , xxx anl  = ; 

zzz anl = , and zzz anl  = , where in  are the number of 

cells and ia  are the directional lattice parameters for 

each perpendicular direction. Then, in the limit of large 

in  in each direction perpendicular to the SL axis, the 

double sum in Eq. (74) is decomposed into  xx ll ,
 and 

 zz ll ,
 and evaluated separately by the method of 

Poisson summation formula [39] to obtain 
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for each of the sums. Here, ii aG /2=   is the i -th 

component of the reciprocal lattice vector and i  is the 

i -th component of )(  KK . For lattices with 

Å7.5ia , 110 m101.1 iG  which is much larger 

than any scattering component, i , in the perpendicular 

direction; thus 1||/ iiG  and the only significant 

term contributing to the sum of exponential terms in 
Eq. (75) corresponds to the term when 0=m . Thus, 

/4)(exp= 22
yi

i
yii a

NS 


  and the double sum in 

Eq. (74) can be expressed as 
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here, |=|   KK , zxaaNS  = , and zx NNN = . 

Therefore, Eq. (74) becomes 
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summed over the y  direction of the SL layers. 

Therefore, at each SL layer, the ensemble averaged 
matrix elements depend only on the perpendicular 
components of K  and K . In addition, 

)()(
00

KK  nn  from Eq. (12) becomes 

)()(
00   KK nn , which depends only on the 

perpendicular component of wave vector in the Brillouin 
zone. Therefore, )( 0K  and )( 0K  can be rewritten 

in terms of the perpendicular contributions as )( 0 K

and )( 0 K .

Analysis of the type of matrix elements reflected in 
Eq. (77) have been reported for a model square-well SL 
[30]. For the simple model case considered in this work, 

2|)(| ylv  is essentially constant at all interface sites, so 

that the ensemble averaged matrix elements from 
Eq. (77) can be simplified as 

,/4)(exp)/(=|| 22222   vSNV ypKK  with the 

measure of interface roughness at each interface site 

reduced to the statistical parameters 22 =|)(| vlv y   and 

 =y . In this case, Eqs. (36) and (37) become 
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and 
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where  SaN y=  and )(
0  Kn  comes from Eq. (21) 

and depends on the specific perpendicular component of 
the band structure for the material under study.

As a model calculation of p  in Eq. (79), it is 

assumed that )(
0  Kn  is given by Eq. (21), and, for 

simplicity, it is also assumed that  mK /2=)( 22K . 

The delta function in Eq. (79) can be expressed as
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= . Using the property of the 

delta function, the sum over K  alone, namely, 
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can be expressed as 
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where )( mnI   is the modified Bessel function of the first 

kind of integral order n , )(=)( ixJxI nn , and
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The expression for )( 0 KI  of Eq. (81) can now 

be inserted into Eq. (79) and summed over m  under the 
restriction on m  imposed by the delta function 
condition, namely that

0=)(
2 B

2
0

2
2

 





mKK
m

.

Since

0
2

=
2 B

2
0

2
2

2

 








mK
m

K
m

,

it follows that ]2/[ B
2
0   mKmm u  . Here, um

imposes an upper limit on the possible values of m  in 
the set },{  , and ][x  is the greatest integer function 

of x . In addition, 0=m  must be excluded from the sum 
over m , for then, the term  0= KK  would necessarily 
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be dropped from the sum over K  in Eq. (79) as 

required. Thus, )(=)( 00   Kpp K  in Eq. (79) can be 

expressed as 
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where 0m  is imposed in the sum over m . 

 /2= 2
0 v , 


  m/2/2)(= 22  is the size 

quantization energy associated with the length /2 , and 
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In Eq. (83), note that )(=)(  mm  and )(mR

is defined in Eq. (33). A graphic analysis of )(m  is 

depicted in Fig. 3; a plot of )(m  versus   in the 

interval 51   for m  values 1, 2, 3 shows a peaked 

and decreasing oscillatory behavior, which is a general 
trend inherent in this quantity.

For the special case where 0=0K , then 0=um , 

0=m , and 1=(0)0I ; thus, Eq. (82) reduces to 
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mmp e  For convenience in 

further numerically analyzing (0)p , it is scaled in 

terms of two variables  /=  and B/2=   , where 

1  is the miniband width. As such, it is re-expressed 

as 

,)(=
(0) /2

1=0








 mx

m
m

p e (84)

0 1 2 3 4 5
0.0

0.1

0.2

2

1

3

 m

h
B

Fig. 3. The dependences of m() [Eq. (83)] as a function of 
 = /2ħB for the first three values of m  in Eq. (84): m = 1 
(curve 1), m = 2 (2), and m = 3 (3).

where 2
00 2/=1 v  . The relaxation rate 

)const=,(=(0)  pp  as a function of   has a 

maximum, max , at max=  , which can be found from 

the equation 0=)(
 pd

d
. An approximate analytic 

solution is easily obtained, if we keep only one term in 
the sum over m  ( 1=m ); then  2=max  and 

)()(2/= 10max  e . The dependences of 0/)( p , 

calculated for different values of  , and 0)/( p , 

calculated for different values of  , are plotted in Figs 4 

and 5, respectively. If using numerical parameters from 
Sec. 4D, that is B = 6 meV and  = 36 meV ( 3= ), 

we can make an estimate of the relaxation time  2/= . 
In particular, we find 0.36/)( 0max   at the 

maximum point 4.2max   (Fig. 4, curve 3); thus we 

obtain the correlation length 

nm16)/2(= 1/2
max  m  and the relaxation time 

05.5 . Fig. 6 displays the parameter 0  versus v . If 

we take meV1.4=v , then we get an estimate 

ps1.80   which gives the relaxation time ps10 .

In evaluating )( 0 Kp  expressed in Eq. (78), 

one proceeds in a similar fashion as done in Eqs. (80) 
and (81); the sum over K  in Eq. (78) is evaluated with 

care taken of the principal value (   0KK ) and 

attention is given to lower limit of K  determined by 

)(=)(
0   KK cn  [see Eq. (21)], where 
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 nc  is the bottom of the band. The sum 

over K  alone in Eq. (78), namely, 
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can be expressed as 
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here 
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B. Roughness effects from cross-correlated neighboring 
planar interfaces

The planar contribution to the matrix elements, 

pV  
2|| KK , has already been established in Sec. A, 

along with its contribution to   in Eq. (84) and   in 

Eq. (88). The evaluation of cpV  
2|| KK  in Eq. (73), and, 

therefore, its contribution to  , is strongly dependent on 
the cross-autocorrelation function given by 

 


 ),(),( ll yy lvlv . There is a great discussion of 

interface roughness models for autocorrelation functions 
in multilayer systems [20, 40, 41], especially with regard 
to analysis of X-ray scattering [40]. Here, we make use 
of an approach motivated by X-ray scattering analysis 
which considers the cross-correlation function to be 
approximated as 
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where  


 ),(),( ll yy lvlv  and  


 ),(),( ll yy lvlv

are given by Eq. (9) for both yl  and yl ; also yyd   is the 

thickness of layer yy  , and yy   is the cross-

correlation length for layer yy  .

Thus, putting the cross-correlation term of Eq. (89) 

into cpV  
2|| KK  of Eq. (73), and summing over 

 ll ,

as in Eq. (76), we obtain 
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and 

;
)()(

|
~

|

~1
=)(

B0

2

,
=

,
,

0

00

0

0






























m

V

RA

nn

cp

yym
m

yy
lll

cp

yyy

KK

K

KK

KK

(92)

here 
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equation (91) can be reduced to the form of the planar 
contribution in Eq. (82) by using the same procedure 
[see Eqs. (80)-(82)] and taking vlv y =|)(|  ,  =y , 

  =yy  for all y  and y  so that 
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where 
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,
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1=
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(95)

here, )(
~

)(1/=)(~
,,  smysm RN  and )(~=)(~

,,  smsm . 

Also, the upper limit of the index s, 22= us , is 

determined by the criterion that the number of interfaces 
crossed within the Bloch oscillation, 12   (neglecting 

turning points), should be greater than or equal to s1
so as to ensure interface-interface interactions; thus, it 
follows that s 112  or 22 s  so that 

22= us  for a given  .

Therefore, including both planar and cross-planar 
correlations allows us to express the total t =  as the 

sum of the two contributing terms cppt  =  for “p” 

and “cp” contributions ( t  can also be analyzed in a 

similar way). The total t =  can be expressed as 
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with )(~)(=)()(  mm
t

m , where )(m  and )(~ m

are defined in Eqs. (83) for “p” and (95) for “cp” 
contributions, respectively. We evaluate t in the 

manner used in the previous Sec. A, then Eq. (96) 
becomes 
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Fig. 4. Normalized relaxation rate ()/0 as a function of 
 = / calculated for different values of  = /2ħB:
 = 1 (1);  = 2 (2);  = 3 (3, 4). The solid curves 1-3 take the 
planar correlations alone [Eq. (84)], while the dashed curve 4
takes the total, planar and cross-plane correlations [Eq. (97)].

0 1 2 3 4 5
0.0

0.1

0.2

0.3

0.4

Г/
Г 0

'

h
B

2

34

1

Fig. 5. Normalized relaxation rate 0)/(   as a function of 

 = /2ħB calculated for different values of  = /
[Eq. (84)]:  = 1 (1);  = 2 (2);  = 3 (3);  = 4 (4).
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Fig. 6. The parameter 0 = 1/0 as a function of v
( = 36 meV).

This equation has the form similar to Eq. (84) 
derived for planar correlations alone and shows the 
similar behavior as a function of   and  . In Eqs. (96) 

and (97), we can see that the term m
~  in 

mm
t

m  ~=)( , which corresponds to cross-planar 

interference, is relatively small compared to the planar 
contribution, m . As a numerical estimate of the 

contribution from cross-planar correlations in Eq. (97), 
we take 3=  and 1=/a , i.e., for nm10=a  we take 

nm10= . In this case, we obtain 4.9max   and 

0.39)/( 0max   (Fig. 4, dashed curve 4). The 

estimates show that, for the assumed values of the model 
parameters, the cross-planar contribution to the SE 
relaxation rate is about 8% as compared to the dominant 
independent planar term defined in Eq. (84).

It is worth noting that the developed methodology 
for evaluating the degradation effects from SE due to 
perturbing inhomogeneity in the SL is quite general and 
is not restricted to a one-dimensional (1D) quantum-well 
SL with the miniband dispersion as in Eq. (20). Recent 
progress in nanotechnology makes it possible to 
fabricate various kinds of SLs that are different from the 
usual periodically layered QW structures based on III-V 
compounds. [3-5] These examples include quantum-dot 
SLs of varying dimensionality (1D, 2D, and 3D SLs) 
[42, 43], graphene-based SLs [44-46], and natural SLs in 
SiC crystals [47], which, in particular, have been 
investigated for the practical realization of a Bloch-
oscillation terahertz generator [48-52].

6. Summary

A theory for the spontaneous emission of Bloch 
oscillation radiation under the competing influences of 
microcavity environment and inhomogeneous interface 
scattering is presented. The external constant electric 
field strength is chosen so that the emitted radiation is in 
the terahertz spectral range; the quantum 
electromagnetic radiation field is described by the 
dominant TE10 rectangular microcavity waveguide mode 
in the Coulomb gauge. The instantaneous eigenstates of 
the Bloch Hamiltonian are used to describe the Bloch 
electron dynamics to all orders in the constant electric 
field, and the inhomogeneous electric field describing 
the interface inhomogeneities is treated in the scalar 
potential gauge. In general, it is shown that the 
spontaneous emission probability amplitude for the 
cavity-enhanced Bloch electron radiation becomes 
damped and frequency shifted due to the perturbing 
influence of the inhomogeneous electric field; the 
frequency shift is shown to be proportional to the 
second-order perturbation theory correction of the 
Hamiltonian for the perturbing inhomogeneity with 
respect to the Bloch instantaneous eigenstates, and the 
damping term is shown to be proportional to the square 
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of the off-diagonal transition matrix elements of the 
perturbing Hamiltonian with respect to the instantaneous 
eigenstates summed to the appropriate final states as 
determined in a golden-rule fashion. The general 
emission formulation with regard to competing 
influences lends itself to a heuristic relaxation 
approximation development; therefore, a simplified 
trend analysis was developed in order to explicitly 
characterize the degradation of cavity-enhanced 
spontaneous emission in a user friendly way; the results 
of this analysis clearly show that the degradation effects 
reflected in the probability amplitude as a result of the 
presence of interface inhomogeneities can be more than 
compensated for by the enhancements derived by 
microcavity-based confinement tuning. Finally, the 
general theoretical analysis is extended to the specific 
case where the inhomogeneous interface potential 
energy is represented by a comb of localized planar 
inhomogeneities of varying strength positioned at all the 
SL sites. The frequency shift and damping constant is 
discussed for this model problem as a methodology for 
going beyond the constant relaxation-time 
approximation. In this approach, the interface roughness 
effects were separated into those arising from 
independent planar and cross-correlated neighboring 
planar interfaces; it was estimated that the cross-
correlated contribution to the spontaneous emission 
relaxation rate is relatively small, comprising less than 
roughly 10% of the total relaxation rate, compared to the 
independent planar contribution.

Although the special case of abrupt interface 
roughness treated in this work is time independent, the 
general treatment developed in the Appendix is 
applicable to the more general case of quantum 
spontaneous emission under the competing influence of 
a general time-dependent perturbation. This perturbation 
can also be made to depend on other degrees of freedom, 
so that the analysis provides a framework for examining 
the influence of phonon scattering on the spontaneous 
emission process; this will be the objective of a future 
study.

Appendix: Time-dependent double perturbation 
theory approach

The equation for the probability amplitudes 
),(},{ tA

jn K
q

 in Eq. (2) is given by 
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We assume that at initial time, t0, the system is in 
one of the eigenstates of Hamiltonian rHH 0  with 

wave function  }{),(| 0
,00 jn nqK r , corresponding to the 

Bloch electron in a single band 0n  with the wave vector 

0K  and with the initial distribution of photon numbers 

in the radiation field }{| 0
, jnq . Substituting 
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this equation for ),((1)
}{ ,

tA
jn K

q
 is good to first order in 

IH  and to all orders in V . Matrix elements for the 

perturbation operator IH  are given by 












)]([
])/([1

1

=}{),,(||),(},{

0

000

1/42
1,2=0

0

t
qqV

c

ntHtn

nyk
xzsqc

nIn

z

k

rr qKKq

.}){;(1

}){;(

,,1,
0

,,1,
0

000

000





















s

s

nnnn

nnnn

n

n

qKKq

qKKq

qqqq

qqqq
(A.4)

For brevity in using notation, Eq. (A.3) can be 
written as 
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Again, it is emphasized that Eq. (A.5) is valid to 

the first order in IH  and to all orders in V . Also to 

simplify notations, we designated 

),(),((1)
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tAtA nn j
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 . Then, separating terms with 

diagonal and off-diagonal matrix elements )(, tf KK   in 

Eq . (A.5) so that 
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the equation for ),( tAn K  in the third term on the left-

hand side of (A.8) can be written as 
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Following to the Wigner–Weisskopf-like 
approximation, we ignore the third term on the right-hand 
side of (A.9); then, after integration on time, we find 
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where we have taken into account that 
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Thus, by making use of (A.10) in Eq. (A.8), we 
obtain the latter equation in the form 
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Here, the solution to Eq. (A.12) represents an early-
time, first-order perturbation theory solution for IH , 

and a long-time, Wigner–Weisskopf-like perturbation
solution for V  in this double perturbation theory 
approach.
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Abstract. A theory for the spontaneous emission (SE) of radiation for a Bloch electron traversing a single energy miniband of a superlattice (SL) in a cavity while undergoing scattering is presented. The Bloch electron is accelerated under the influence of superimposed constant external and internal inhomogeneous electric fields while radiating into a microcavity. The constant external electric field strength is chosen so that the emitted radiation lies in the terahertz spectral range. The quantum dynamics for the inhomogeneous field correction is obtained from a Wigner–Weisskopf-like long-time, time-dependent perturbation theory analysis based on the instantaneous eigenstates of the electric field-dependent Bloch Hamiltonian. It is shown that SE for the cavity-enhanced Bloch electron probability amplitude becomes damped and frequency shifted due to the perturbing inhomogeneity. The developed general quantum approach is applied to the case of elastic electron scattering due to SL interface roughness (SLIR). In the analysis, the interface roughness effects are separated into contributions from independent planar and cross-correlated neighboring planar interfaces; it is estimated that the cross-correlated contribution to the SE relaxation rate is relatively small compared to the independent planar contribution. When analyzing the total emission power, it is shown that the degradation effects from SLIR can be more than compensated for by the enhancements derived from microcavity-based confinement tuning.


Keywords: Bloch oscillations, spontaneous emission, semiconductor superlattices.

Manuscript received 03.02.14; revised version received 16.04.14; accepted for publication 12.06.14; published online 30.06.14.

1. Introduction 

It has been known that spontaneous emission (SE) of photons from an optically active medium can be strongly enhanced or inhibited by controllably modifying the dielectric environment in which the emission of photons occurs [1, 2]. Relevant to the subject of this paper is the coherent emission of electromagnetic radiation from Bloch oscillations in electrically biased semiconductor superlattices (SLs) [3-12]. In the case when the bias is chosen that the radiation output is in the terahertz regime, this allows for the possibility of inversionless terahertz lasers [13].

A theory of microcavity-enhanced spontaneous emission (MESE) for a Bloch electron traversing a single energy band without scattering accelerating in an external constant electric field has recently been examined by the authors [14, 15]. The theoretical analysis was fully quantum mechanical in that the quantized radiation field was described in terms of the dominant rectangular microcavity waveguide mode in the Coulomb gauge; also the instantaneous eigenstates of the Bloch Hamiltonian were utilized as the basis states in describing the Bloch electron dynamics to all orders in the constant electric field. Analysis of the probability amplitudes, over integral multiples of the Bloch period, resulted in selection rules for photon emission in both photon frequency and wave vector, showing preferable transitions to the Wannier–Stark ladder levels. It was shown that the SE rate could be enhanced over free space emission [16] by tuning the emission frequency to align with the cavity mode spectral density peak, thus resulting in an output power of several microwatts in the terahertz spectral range for a GaAs-based superlattice (SL) imbedded in a microcavity.


In this paper, we generalize the analysis of MESE for a Bloch electron accelerating through a single miniband of a SL structure to include the electron scattering. As an example, the additional interaction of the electron with a perturbing inhomogeneous electric field arising from interface roughness [17-19] inherent from the SL material process is studied. The intent in studying the effect of such a perturbing inhomogeneity is to determine its role in limiting the MESE process as a scattering influence that dephases the coherency of the Bloch oscillation, and to quantitatively determine how the MESE selection rules are influenced by such a perturbation. The theoretical approach developed herein is quite general and allows for the inclusion of electron-phonon scattering as well. In this work, however, SLs are only considered for which the miniband width is less than the LO-phonon energy thereby relaxing the need to consider phonon effects in this analysis. A host of other possible deleterious scattering mechanisms are discussed in the literature [7, 17-20]. The developed theoretical methods and details of derivations, which are not reflected in a reduced version [21] are fully described.


The paper is organized as follows. In Sec. II, the quantum approach is briefly reviewed, and the Hamiltonian for a Bloch electron in the quantum electrodynamic field of interest is developed. The classical external electric field is described in the vector potential gauge, and the quantized electromagnetic radiation field is described by the dominant microcavity TE10 rectangular waveguide mode in the Coulomb gauge; the general inhomogeneous electric field is treated in the scalar potential gauge. In neglecting the higher-order quantum field-field interaction term, it is shown that the total Hamiltonian for this problem reduces to the sum of three contributions, the Hamiltonian for the Bloch electron in the classical external electric field interacting with the inhomogeneity, the Hamiltonian of the free quantized electromagnetic field, and the Hamiltonian for the first-order interaction between the cavity quantum field and the accelerated Bloch electron. Further, the instantaneous eigenstates of the Bloch Hamiltonian and the states of the free radiation field are utilized as basis states in describing the time development, and in calculating the one photon SE transition rates of the accelerated Bloch electrons under the simultaneous perturbing action of the quantum cavity radiation field and the inhomogeneous potential energy. In Sec. III, the overall probability amplitude analysis for one photon emission is developed; as a result of treating the perturbing inhomogeneity in long-time, time-dependent perturbation theory relative to the Bloch-accelerated system in the electrodynamic radiation field, it is found that the SE amplitude for the cavity-enhanced Bloch electron radiation becomes damped and frequency shifted in the off-diagonal and diagonal matrix elements of the inhomogeneous potential energy with respect to the instantaneous Bloch eigenstates. This resulting SE amplitude for the cavity-enhanced Bloch radiation is strikingly reminiscent to the form obtained for the Boltzmann transport equation to describe scattering in the well-known relaxation-time approximation. Therefore, in Sec. IV, for purposes of showing trends with regard to simple Bloch oscillation dephasing effects as the electron undergoes scattering, the dephasing analysis is carried out for a heuristic constant relaxation-time approximation, where the damping term is assumed constant and the frequency shift is constant, in particular, zero. Also, since our basic quantum analysis excludes the dissipative effect of the cavity radiation field interacting with lossy cavity walls, use is made of a well-known phenomenological treatment of dissipation whereby the singular part of the density of states is replaced by a Lorentzian with a broadening parameter dependent on the quality factor of the microcavity. In analyzing the total power in this approximation, it is shown that the degradation effects from SLIR can be more than compensated for by the enhancements derived by microcavity-based confinement tuning. In Sec. V, the theoretical analysis is extended beyond the heuristic relaxation-time approximation and is developed for the specific case where the inhomogeneous potential energy is represented by a lattice comb of planar interface inhomogeneities of variable potential strength, where the SL planar interface roughness is characterized statistically by an ensemble averaged over the variable potential strength. It is found that both the frequency shift and the damping constant are dependent on the Brillouin zone vector component perpendicular to the SL direction, the characteristic correlation lengths, and the applied electric field. Further, since the required matrix elements for the inhomogeneous potential energy are separable in terms of planar and cross-planar interface roughness contributions, detailed analysis revealed that the cross-planar contribution to the SE relaxation rate is relatively small, representing less than roughly 10% of the total relaxation rate relative to the dominant independent planar contribution. In Sec. VI, a summary and discussion of overall results is given. The Appendix provides the details of the time-dependent double perturbation theory analysis used to calculate the probability amplitude.


2. Quantum approach: Dynamics based on instantaneous eigenstates


Dynamical properties are considered for the situation in which the electron is confined to a single miniband n0 of SL with energy 
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can be reduced to a sum of the following separate Hamiltonians
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, for the inhomogeneous electric field due to the impurities or interface roughness; although the special case for the scattering potential considered in this work is time independent, the developed general treatment is applicable to a general time-dependent perturbation 
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Here, the summation over 
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For the case of one photon SE, which assumes that, initially, no photons are present in the radiation field, the probability amplitude in the wave function of Eq. (2) satisfies the initial condition 
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3. Probability amplitude analysis

A. Probability amplitudes – one photon emission

The appropriate time-dependent equations of motion for the 
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the probability amplitude for the microcavity-based SE alone [14]; 
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Equation (17) can be rewritten explicitly in terms of 

[image: image145.wmf]0


=


y


l


 and 

[image: image146.wmf]0


¹


y


l


 contributions, which when using Eq. (16) results in 




[image: image147.wmf].


1


)


,


(


)


(


=


B


0


B


0


0


0


y


t


i


a


iK


y


n


n


n


i


e


e


a


t


I


y


y


y


y


l


l


l


l


l


w


-


e


+


e


w


^


¹


^


å


K


K




(18)


Here, 

[image: image148.wmf])


(


0


^


e


K


n


 is given in (12) and 

[image: image149.wmf])


,


(


0


^


e


K


y


n


a


l


 is given in (14), which gives the result of Eq. (11). In further considering the integral, 

[image: image150.wmf]0


n


I


, in Eq. (11), but instead over the limits from 0 to 

[image: image151.wmf]t


, the same procedure is followed, but with limits from 

[image: image152.wmf]t


¢


 to t, to obtain 




[image: image153.wmf],


)


,


(


)


,


(


)


)(


(


=


]


)/


(


[


0


0


t


i


t


i


t


t


t


d


t


n


c


n


t


t


K


K


K


p


K


h


-


¢


h


+


¢


-


e


=


¢


¢


¢


¢


+


e


^


¢


ò


h



(19)
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The variables defined by Eqs. (12), (13), and (14) are central to the entire analysis. Although they are formally defined for a general band structure, they are evaluated here for the specific SL miniband dispersion relation expressed as 
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Therefore, for the assumed miniband dispersion, 
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where 
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3. Solution to SE amplitude equation for planar interface roughness

In looking for the solution to Eq. (3) for the potential energy function defined by matrix elements 
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It then follows from the use of Eq. (19) in Eq. (24) that 
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where 
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After ensemble averaging over the interface roughness, it is clear from Eqs. (9) and (10) that the diagonal matrix elements 
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 into Eq. (3), and taking the ensemble average to lowest order (dropping the ensemble average symbol for mathematical convenience), one obtains the SE amplitude equation as 
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Here, the ensemble average of 
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 is zero, but we retain the diagonal element to show the systematic behavior of perturbation theory in what follows.


Equation (24) contains an integral form which requires the explicit time-dependent specification of 
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Eq. (30) is solved by Laplace transform, and an analytic solution can be obtained in the long-time limit. We note that the temporal integral in Eq. (30) is in the form appropriate to apply the convolution theorem. However, with 
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where 
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Also, 
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hereafter we omit a comparatively small additional term, 
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Therefore, in the long-time limit, dropping the homogeneous solution and keeping the inhomogeneous solution in Eq. (31), we obtain  




[image: image234.wmf],


2


)


(


)


(


)}


,


(


{


(0)


)}


,


(


{


=


)


(


0


0


0


0


0


0


0


0


K


K


K


K


K


K


G


+


w


D


+


º


D


+


+


i


s


t


A


L


i


V


i


s


t


A


L


s


F


q


q


n


&


h


&


(35)


where 
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and 
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The inverse Laplace transform of (35) is 
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The frequency shift in Eq. (36) is essentially, to within 
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, the second-order perturbation correction for the inhomogeneity and the external field, and the energy difference in the denominator is taken with respect to the average value of the energy band in the direction of the constant electric field, which is the 
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 direction. It is noted that the frequency shift can be expressed in terms of the Green function for the field-dependent SL Wannier functions in the NNTB approximation as [37] 
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Then, 
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Also note that the neglected off-diagonal term on the right-hand side of Eq. (40) [which arises from the neglected term on the right-hand side of Eq. (33)] is expressed in terms of 
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For convenience of performing the sum over 
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 expressed in Eq. (36) throughout.


4. Degradation of cavity-enhanced SE: Constant relaxation-time approximation

In this section, for purposes of showing heuristic trends with regard to the effects of interface roughness, the analysis for Eq. (38) is carried out for the assumed case where the damping term, 

[image: image253.wmf]G


, is a constant, independent of 

[image: image254.wmf]K


, and the frequency shift is zero. In this case, it follows from Eq. (38) that 




[image: image255.wmf],


)


,


(


=


)


,


(


)/


(


0


0


0


0


t


¢


-


-


¢


¢


ò


t


t


q


t


n


e


t


A


t


d


t


A


K


K


&



(42)


where 
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 takes on the meaning of a characteristic mean dephasing time, and from Eq. (5) it follows that 
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Therefore, the one photon SE probability amplitude can be expressed as 
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where 
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This incorporation of the relaxation-time approximation parameter, 
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, as a complex addition into the renormalized photon frequency, 
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, thus allows us to analyze degradation in a straight forward manner. Then the emission process results in the total SE probability 
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A. Selection rules

In evaluating 
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where the complex parameter 
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and 
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where the transfer function 
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Here, 

[image: image287.wmf]h


 clearly shows the effect of Bloch oscillation dephasing in the constant relaxation-time approximation.
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Fig. 1. The transfer function ( = (((q, N, () calculated at maximum growth conditions [Eq. (51)], ( = (max, as a function of a number of Bloch oscillations N for different values of ((B: (a) 5 ( ((B ( 10 and (b) 2 ( ((B ( 4. The dashed curve shows (max ~ N2 without dephasing (((B  ( ().


The general behavior of 
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(51)


this gives the “Stark ladder” resonance frequency condition, along with the sustaining wave vector cavity resonance conditions. Thus, the modes that radiate with the highest probability correspond to the fundamental Bloch frequency and its harmonics. These quantization conditions are obtained without requiring any assumptions concerning the existence of Wannier-Stark energy states. Further, analyzing the changing behavior of 
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B. General expression for the total SE probability
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In Eq. (52), we have made use of the mode density of states for a lossless waveguide cavity; this results in infinitely sharp peaks at the system resonances. However, if we incorporate a radiative loss component into the density of states due to the interaction of the radiation field with lossy cavity waveguide walls, this would lead to a broadening and finiteness of the density of states resonance peaks. Therefore, we introduce here a well-known and frequently used phenomenological Lorentzian broadening component into the density of states, which approximates [38] the effect of radiative dissipation to the cavity walls. As such, the singularity of the density of states in Eq. (52) can be expressed as 
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Thus, 
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 in Eq. (53) is reflective of the loss component at the resonances.
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The calculation of 
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where 
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is the l-th Fourier component of the function 

[image: image352.wmf])


/2


(


exp


)


(


B


ptn


J


J


k


k


y


v


, 

[image: image353.wmf]a


k


y


k


0


=


J


, and 

[image: image354.wmf]t


-


w


w


/


=


~


B


i


l


l


q


. Note that 

[image: image355.wmf]D


 in Eq. (56) has been defined below Eq. (5). Since the electron velocity component 

[image: image356.wmf])


(


k


y


v


J


 depends on details of the SL miniband structure, such dependence comes explicitly into the SE probability amplitude through the integral 

[image: image357.wmf]l


I


 given by Eq. (57), thus  




[image: image358.wmf].


)


/


(


exp


|


|


=


|


)


~


,


,


(


|


B


0


2


2


B


2


B


0


0


ptn


n


w


t


a


K


DI


q


q


A


y


l


l


x


l


q


l


q


K



(58)


Note that the exponential term in Eq. (58) contains a dependence on the initial wave vector, 
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If one wanted to include this exponential factor for strong scattering analysis, then knowledge of the initial condition would be required; in lacking such knowledge, a suitable ensemble average would have to be taken over probable initial conditions to get a weighted average.


C. Analysis of the total SE probability 
for specific energy miniband

The analysis for SE and radiation characteristics is now developed by considering a general form for the electron energy miniband dispersion relation given by Eq. (20). In particular, the well-known case of NNTB approximation corresponds with purely harmonic energy dispersion where only the single term (
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where 
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Here, summation is carried out over both the higher harmonics of Bloch frequency (l) and higher harmonics of the general energy miniband (
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) from Eqs. (20) and (61).


Let us consider the case of a purely harmonic miniband (
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where an account has been taken for the wave vector 
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Thus, it is concluded that for the electron dynamics in a purely harmonic miniband when only the single Fourier component of the electron velocity 
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. In accordance with the selection rule of Eq. (51), this frequency harmonic corresponds to the fundamental Bloch frequency alone. It is interesting to note that with finite values of scattering time, the generation of higher Bloch harmonics becomes possible even in a pure harmonic miniband. From Eqs. (54) and (62), the total SE probability becomes 
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It is seen from Eq. (63) that with increasing 
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D. Total SE power estimate

Spontaneous emission is considered for photon energy 
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In the absence of scattering, Eq. (64) is evaluated in the limit 
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indeed, for the limit of 
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so that Eq. (64) goes over to Eq. (65). For finite values of 
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In particular, for frequencies close to the peak of the density of states (
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), we get from Eq. (65) in the absence of scattering 
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where 
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i.e., the Purcell factor proportional to 
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Fig. 2. Relative SE probability Pr [Eq. (66)] as a function of N at fundamental Bloch frequency for different values of ((B.
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where the relative probability 
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5. Localized interface roughness model

In proceeding beyond the relaxation-time approximation, consideration is now given to the more general result of Eqs. (36) and (37) where the interface roughness model is explored, that is, the lattice comb of localized planar interface inhomogeneities with randomly distributed planar interface roughness defined by an ensemble averaged autocorrelation function (9) and (10). Clearly the results of evaluating Eqs. (36) and (37) explicitly will differ from the constant relaxation-time approximation in that both 
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This ensemble average matrix element can be re-expressed by opening the sums over 
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In general, the matrix elements in Eq. (71) can be separated into planar, 

[image: image474.wmf]p


V


ñ


á


¢


2


|


|


K


K


, and cross-planar, 

[image: image475.wmf]cp


V


ñ


á


¢


2


|


|


K


K


, contributions as 

[image: image476.wmf]cp


p


V


V


V


ñ


á


+


ñ


á


ñ


á


¢


¢


¢


2


2


2


|


|


|


|


=


|


|


K


K


K


K


K


K


, where  




[image: image477.wmf])


(


)


(


,


2


2


2


)


,


(


)


,


(


1


1


=


|


|


^


^


^


^


¢


-


×


¢


-


^


*


^


¢


^


¢


ñ


¢


á


´


´


ñ


á


å


å


l


l


K


K


l


l


K


K


l


l


i


y


y


l


y


p


e


l


v


l


v


N


N


V


y



(72)


comes from independent planar interfaces and 
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takes into account cross-correlations between different planar interfaces. The planar and cross-planar contributions to the matrix elements are established below in Secs. A and B, respectively, along with their contributions to the damping constant, 
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A. Roughness effects from independent planar interfaces

For independent planar interfaces, then making use of the autocorrelation relation (9) in Eq. (72), one obtains 
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The double sum 
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for each of the sums. Here, 
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here, 
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summed over the 
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 direction of the SL layers. Therefore, at each SL layer, the ensemble averaged matrix elements depend only on the perpendicular components of 
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Analysis of the type of matrix elements reflected in Eq. (77) have been reported for a model square-well SL [30]. For the simple model case considered in this work, 
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and 
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can be expressed as 
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In Eq. (83), note that 
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Fig. 3. The dependences of (m(() [Eq. (83)] as a function of ( = (/2ħ(B for the first three values of 
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 in Eq. (84): m = 1 (curve 1), m = 2 (2), and m = 3 (3).
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can be expressed as 
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B. Roughness effects from cross-correlated neighboring planar interfaces

The planar contribution to the matrix elements, 
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Fig. 4. Normalized relaxation rate ((()/((0 as a function of ( = (/(( calculated for different values of ( = (/2ħ(B: ( = 1 (1); ( = 2 (2); ( = 3 (3, 4). The solid curves 1-3 take the planar correlations alone [Eq. (84)], while the dashed curve 4 takes the total, planar and cross-plane correlations [Eq. (97)].
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Fig. 5. Normalized relaxation rate 
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Fig. 6. The parameter (0 = 1/((0 as a function of 
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This equation has the form similar to Eq. (84) derived for planar correlations alone and shows the similar behavior as a function of 
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 (Fig. 4, dashed curve 4). The estimates show that, for the assumed values of the model parameters, the cross-planar contribution to the SE relaxation rate is about 8% as compared to the dominant independent planar term defined in Eq. (84).


It is worth noting that the developed methodology for evaluating the degradation effects from SE due to perturbing inhomogeneity in the SL is quite general and is not restricted to a one-dimensional (1D) quantum-well SL with the miniband dispersion as in Eq. (20). Recent progress in nanotechnology makes it possible to fabricate various kinds of SLs that are different from the usual periodically layered QW structures based on III-V compounds. [3-5] These examples include quantum-dot SLs of varying dimensionality (1D, 2D, and 3D SLs) [42, 43], graphene-based SLs [44-46], and natural SLs in SiC crystals [47], which, in particular, have been investigated for the practical realization of a Bloch-oscillation terahertz generator [48-52].


6. Summary

A theory for the spontaneous emission of Bloch oscillation radiation under the competing influences of microcavity environment and inhomogeneous interface scattering is presented. The external constant electric field strength is chosen so that the emitted radiation is in the terahertz spectral range; the quantum electromagnetic radiation field is described by the dominant TE10 rectangular microcavity waveguide mode in the Coulomb gauge. The instantaneous eigenstates of the Bloch Hamiltonian are used to describe the Bloch electron dynamics to all orders in the constant electric field, and the inhomogeneous electric field describing the interface inhomogeneities is treated in the scalar potential gauge. In general, it is shown that the spontaneous emission probability amplitude for the cavity-enhanced Bloch electron radiation becomes damped and frequency shifted due to the perturbing influence of the inhomogeneous electric field; the frequency shift is shown to be proportional to the second-order perturbation theory correction of the Hamiltonian for the perturbing inhomogeneity with respect to the Bloch instantaneous eigenstates, and the damping term is shown to be proportional to the square of the off-diagonal transition matrix elements of the perturbing Hamiltonian with respect to the instantaneous eigenstates summed to the appropriate final states as determined in a golden-rule fashion. The general emission formulation with regard to competing influences lends itself to a heuristic relaxation approximation development; therefore, a simplified trend analysis was developed in order to explicitly characterize the degradation of cavity-enhanced spontaneous emission in a user friendly way; the results of this analysis clearly show that the degradation effects reflected in the probability amplitude as a result of the presence of interface inhomogeneities can be more than compensated for by the enhancements derived by microcavity-based confinement tuning. Finally, the general theoretical analysis is extended to the specific case where the inhomogeneous interface potential energy is represented by a comb of localized planar inhomogeneities of varying strength positioned at all the SL sites. The frequency shift and damping constant is discussed for this model problem as a methodology for going beyond the constant relaxation-time approximation. In this approach, the interface roughness effects were separated into those arising from independent planar and cross-correlated neighboring planar interfaces; it was estimated that the cross-correlated contribution to the spontaneous emission relaxation rate is relatively small, comprising less than roughly 10% of the total relaxation rate, compared to the independent planar contribution.


Although the special case of abrupt interface roughness treated in this work is time independent, the general treatment developed in the Appendix is applicable to the more general case of quantum spontaneous emission under the competing influence of a general time-dependent perturbation. This perturbation can also be made to depend on other degrees of freedom, so that the analysis provides a framework for examining the influence of phonon scattering on the spontaneous emission process; this will be the objective of a future study.


Appendix: Time-dependent double perturbation theory approach

The equation for the probability amplitudes 
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(A.1)


We assume that at initial time, t0, the system is in one of the eigenstates of Hamiltonian 
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and 
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this equation for 
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For brevity in using notation, Eq. (A.3) can be written as 
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with 
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Again, it is emphasized that Eq. (A.5) is valid to the first order in 
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the equation for 
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(A.9)


Following to the Wigner–Weisskopf-like approximation, we ignore the third term on the right-hand side of (A.9); then, after integration on time, we find 
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where we have taken into account that 
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Thus, by making use of (A.10) in Eq. (A.8), we obtain the latter equation in the form 
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Here, the solution to Eq. (A.12) represents an early-time, first-order perturbation theory solution for 
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, and a long-time, Wigner–Weisskopf-like perturbation solution for 
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 in this double perturbation theory approach. 
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