
 
Semiconductor Physics, Quantum Electronics & Optoelectronics, 2015. V. 18, N 3. P. 297-301. 

doi: 10.15407/spqeo18.03.297 

 

© 2015, V. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine 
 

297 

PACS 73.21.Fg, 84.40.-x 

Composition and concentration dependences of electron mobility  
in semi-metal Hg1–xCdxTe quantum wells 

E.O. Melezhik*, J.V. Gumenjuk-Sichevska, F.F. Sizov 
V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine,  
41, prospect Nauky, 03028 Kyiv, Ukraine,  
*E-mail: emelezhik@gmail.com 
 

Abstract. Modeled in this work is the electron mobility in the n-type  
Hg0.32Cd0.68Te/Hg1–xCdxTe/Hg0.32Cd0.68Te quantum well being in the semi-metal state at 
T = 77 K. Calculations take into account longitudinal polar optical phonon scattering, 
charged impurities scattering and electron-hole scattering. The Boltzmann transport 
equation has been solved directly to account the inelasticity of optical phonon scattering. 
Numerical modeling showed that the intrinsic electron mobility at liquid nitrogen 
temperature is sufficiently low. This mobility can be increased up to the values close to 
105…106 cm2/(V·s) by increasing the electron concentration in the well. A higher 
electron concentration could be reached by doping the barriers or by applying the top 
gate voltage. The effect of mobility growth could be explained by the enhancement of 
2DEG screening and the decrease of holes concentration. 
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1. Introduction  

Mercury-cadmium-telluride (MCT) heterostructures are 
promising materials for creation of bolometric THz 
detectors. Depending on their parameters, the quantum 
wells (QWs) in them can be characterized by high 
electron mobilities and concentrations even at nitrogen 
temperatures. Depending on the composition x and 
quantum well width L, in such QWs there can be 
realized semi-metal or semiconductor states [1]. The 
semi-metal state is characterized by a much higher 
conduction electron concentration at nitrogen 
temperatures [2]. Comparing with undoped semi-
conducting Hg1–xCdxTe QWs of the same width, semi-
metal QWs can have much lower resistivity and lower 
thermal noise. Thus, we restrain our modeling to the 
case of semi-metallic Hg1–xCdxTe heterostructures and 
temperature T = 77 K.  

Numerical modeling of carrier energy spectra and 
wave-functions was carried out in the framework of  
8-band k-p Hamiltonian [2, 3], which allows accounting 
of strong bands mixing and nonparabolicity of 
dispersion law and describes onsets of semi-metal or 
semiconductor states in QW due to its growth parame-
ters. In mobility modeling, we incorporated calculated 
mixed electron wave functions into the calculation of 
matrix elements for electron scattering. For the 
simplicity, we used the form of electron wave-function 
taken on the Fermi level. 

At the nitrogen temperature in bulk Hg1–xCdxTe, 
there exist three efficient scattering mechanisms, 
namely: i) longitudinal polar optical (LPO) phonon 
inelastic scattering, ii) residual charged impurities (CI) 
elastic scattering, and iii) electron-hole (EH) elastic 
scattering [4]. To calculate the impact of these scattering 
mechanisms on the electron mobility in a quantum well, 
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the linearized Boltzmann transport equation (LBTE) was 
iteratively solved. This direct solution of LBTE allows 
one to accurately account inelasticity of electron 
scattering and recovers how carrier distribution function 
is perturbed by the applied electric field in the channel. 
Estimation of the perturbed distribution function allows 
one to calculate electron mobility.  

In the semi-metal state of Hg1–xCdxTe QW, the 
electron-hole scattering becomes very powerful due to 
osculation of electron and heavy hole (HH) zones and 
due to small curvature of HH zone supplying a large 
density of HH states. Therefore, in this work alongside 
with the standard scattering mechanisms in narrow-gap 
semiconductors we consider contribution of electron 
scattering on HH and the way to reduce the influence of 
this scattering mechanism. 

2. Calculations of perturbed distribution function  

Calculations of the perturbed distribution function are 
based on the solution of Boltzmann transport equation. 
We followed the methodology of [5] and adapted it for 
the case of non-parabolic energy dispersion law. For the 
simplicity, we considered the case when only the ground 
electron level is populated and all scattering processes 
take place within this level. We denote the energy of the 
bottom of ground level as E0.  

Let f (r, k, t) denote the distribution function that 
gives the occupation probability of the state |k〉 by 
electron in a volume element dr in the position r at a 
time t. The rate of changes in f (r, k, t) with respect to 
time is given by the famous Boltzmann equation:  
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where E is the electron energy, F is the force due to the 
externally applied electric field (this force for electrons 
is expressed as F = – eEext, where Eext is external applied 
electric field). The latter term is the collision integral 
that arises from electron scattering and is given by: 
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where S(k, k') is the differential scattering rate from the 
state |k〉 to the state |k′〉, bold characters are the vectors 
while non-bold characters are scalars. For a uniform 
electric field in a homogeneous system, the Boltzmann 
equation in the steady state acquires the form:  
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In equilibrium, the carrier distribution is simply 
given by the Fermi-Dirac occupation factor f0. The Fermi 
level for intrinsic system is found numerically by 

aligning the concentrations of electrons and holes in the 
well. In the doped system with the given electron 
concentration, the Fermi level is found by fitting the 
electron concentration in the well to the needed value. 
For low electric fields, we suppose field-induced 
changes of Fermi level to be negligible. 

In the presence of low electric field, the distribution 
function f undergoes an axially symmetric perturbation 
and shifts towards the field direction. In this case, f may 
be presented as 
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Here, α is the angle between k and F, φ(E) is the 
perturbation distribution that comprises units of 
seconds. One should note that the coefficient for the 
disturbed part of f (k) can be written in an arbitrary 
form because the actual dependence of φ(E) is the 
subject to be found. The form (4) was chosen to 
simplify the further algebra. To obtain the linearized 
form of collision integral (2),  f (k) in the form of (4) is 
substituted into the expression (2). Finally, the 
simplified form for the collision integral is:  
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Substituting (4), (5) into Eq. (3) and neglecting the 
term proportional to F2 in the left-hand side of (3), one 
can derive the linearized Boltzmann equation (LBTE):  
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where ϑ is the angle between k and k', while S(k, k') – 
differential scattering rate from the state |k〉 to the state 
|k′〉. Now let us consider the most important in MCT 
scattering mechanisms: LPO phonon scattering, CI 
scattering and EH scattering.  

LPO phonon scattering is inelastic, longitudinal 
optical phonons can be considered as having the 
constant energy 0wh  (in calculations it was used the 
value of phonon energy for HgTe, 0wh =17 meV [6]). 
During the scattering by charged impurities or heavy 
holes the electron energy is conserved. Differential 
scattering rates for distinct scattering mechanisms are 
additive, thus, the total differential scattering rate 
S(k, k') can be expressed as:  
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where ),( kk ′Ο
a
LS  and ),( kk ′Ο

e
LS  are the differential 

scattering rates for phonon absorption and emission, 
while ),( kk ′CIS  and ),( kk ′EHS – differential scattering 
rates for charged impurities and electron-hole scattering. 

)( 00 EwE −−θ h  is the unit step function, which does 
not allow electrons to scatter below the bottom of the 
band.  

Substituting (7) into (6), one can obtain the 
equation that has to be iteratively solved:  
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To obtain differential scattering rate for the case of 
charged impurities, it was adopted the approach of [7] 
for nonzero temperatures. According to [8], the electron-
hole scattering rate can be calculated similarly to the 
electron-charged impurities scattering rate, but the 
concentration of charged impurities should be replaced 
with the effective number of holes in the differential 
scattering rate. For LPO phonon scattering, the 
appropriate rate for the relaxation of the carriers from 
the state (k0) is given by [9, Eq. (6.141)].  
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Fig. 1. Dependence of mobility on the electron concentration 
in the well. The curves 1, 2, 3, 4 correspond to the well 
composition values x = 0, 0.03, 0.06 and 0.09, respectively. 
The QW width is 20 nm. The concentration of residual charged 
impurities in the well is 1015 cm–3. 

 
Electrons are scattered by charged impurities, 

heavy holes and polar optical phonons via electrostatic 
potential. Consequently, this potential is screened 
simultaneously by electron and hole subsystems. This 
screening drastically reduces the effectiveness of 
scattering, and it has to be accounted in mobility 
calculations. But the form of the screening function to be 
used is in question. 

In intrinsic or n-doped semi-metal HgTe quantum 
wells, electron gas is heavily degenerated, thus energy 
dispersion near the Fermi level is almost linear. 
Therefore, the most adequate screening function for this 
system is the two-dimensional screening function for 
graphene, obtained in [10]. Recent experimental 
measurements [11] confirm applicability of this type of 
screening to HgTe two-dimensional systems. Surely, for 
the scattering by charged impurities and heavy-hole 
scattering one should use a static screening function, 
while for optical phonon scattering one should use a 
dynamic screening function on the frequency of phonon. 
Our calculations incorporate appropriate screening for 
all three considered scattering mechanisms. 

To obtain the perturbed distribution function, we 
iteratively solved the equation (8).  

The basic iterative procedure for calculation of the 
mobility is described in [18]. At the first step of this 
iterative procedure, one assumes that the upper term 

)( 0wE h+φ  and lower term )( 0wE h−φ  are equal to 
zero. Thus, one can find φ(E) from the Boltzmann 
equation in a simple algebraic way. During the following 
steps, one uses the previously found lower term 

)( 01 wEn h−φ −  and upper term )( 01 wEn h+φ −  to find 
φn(E). The procedure continues until the difference 
between φn–1(E) and φn(E) will reach the needed tolerance. 

Despite the simplicity, this procedure demands a 
huge amount of computation time. Therefore, it was 
used a modified version of this iterative procedure that 
gives faster convergence. In this modification, to find 
φn(E) from (8) it was used )( 0wEn h−φ   as a lower term 
(if it is already found, otherwise it was used 

)( 01 wEn h−φ − ), and )( 01 wEn h+φ −  as an upper term. 
The starting values for the procedure consisting of (n+1) 
iterations were found as follows: )( 00 wnE h−φ  was 
found from (8) as in classical [18] iteration procedure 
(setting lower and upper terms to be zero); )( 00 wlE h+φ  
(for 1 > –n) was found from (8) using 

))1(( 00 wlE h−+φ  as a lower term and taking upper 
term ))1(( 00 wlE h++φ to be zero.  

In calculations, the iterative procedure was 
repeated until the difference between φn–1(E) and φn(E)  
became lower than 3%. Usually, the values of φ(E)  were 
obtained after 3 to 4 iterations.  

As a result of iterative solution of the Boltzmann 
transport equation, we found the dependence of disturbed 
distribution function on the energy E. With this function, 
the electron mobility can be easily calculated. 
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3. Electron mobility – calculations and discussion 

Under the influence of external dc electric field Eext, the 
distribution function is deformed from f0 to f(k) (4), and 
the average electron velocity in 2DEG becomes non-
zero. Thus, there appears the electric current, which 
density can be defined via classical relation j = en〈ν〉. 
The current density j is found by averaging all possible 
electron velocities in this QW:  
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The drift mobility can be found using its definition 
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The results of numerical calculations for the 
electron mobility in 20-nm width HgTe quantum well at 
T = 77 K are adduced in Fig. 1. The corresponding 
dependence of the holes concentration on the electron 
concentration in QW (which can be adjusted by doping 
the barriers or by top gate) is presented in Fig. 2. 
Presented in these figures are envelope curves built on 
the numerically calculated points. 

From Fig. 1, one can see that growth of the electron 
concentration implements the growth of the electron 
mobility. It could be explained by two simultaneous 
processes – decrease of heavy holes quantity (see Fig. 2) 
and increase of the screening function. The first process 
suppresses electron scattering by heavy holes, while the 
second process suppresses all three considered types of 
scattering. 

The growth of mobility at high electron 
concentrations becomes slower, this effect is more 
pronounced for higher compositions x in the well. This 
fact could have very simple explanation. At first, there 
exists a competitive process, which suppresses mobility 
growth – increase of electron effective mass due to 
Fermi level raising. At second, heavy hole 
concentration for QW decreases faster for quantum 
wells with higher composition x (see Fig. 2). For 
example, at n = 317 cm10 − , for HgTe quantum well 
(Fig. 1, curve 1), the concentration of heavy holes 
equals to 316 cm1007.1 −⋅ , while for Hg0.91Cd0.09Te 
quantum well (Fig. 1, curve 4), it equals to 

313 cm108.7 −⋅ . Taking into account background 
charged impurities (which concentration is unchanged, 

315 cm10 − ), one should note that for higher QW molar 
ratio х total quantity of charged centers stops to 
decrease earlier (see Fig. 2). Thus, one of the mobility 
enhancement mechanisms becomes ineffective. Growth 
of mobility with the increase of quantum well 
composition could be explained by a lower 
concentration of heavy holes at the same values of n.  
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Fig. 2. Dependence of the hole concentration on the electron 
one in the well. The curves 1 to 4 correspond to compositions 
of QW x = 0, 0.03, 0.06, 0.09, respectively. The left-most dot 
on each graph corresponds to the intrinsic case, as for Fig. 1. 
The dotted horizontal line reflects the concentration of residual 
charged impurities in QW.  
 
 
 

Estimation of a resistance in semi-metal HgCdTe 
quantum wells used as a channel of THz hot-electron 
bolometer demonstrates the values of order of 1 kOhm 
and lower. These resistances are order of magnitude 
lower than the appropriate resistances in graphene 
channels (where typical resistances are of the order of 
10 kOhm [13, 14]). Thus, HgCdTe channels produce 
much lower thermal noises and provide much more 
efficient coupling to antenna than graphene in hot-
electron bolometer applications. Also, a very high 
electron mobility in considered heterostructure QWs 
makes plasmonic applications to be efficient. Thus, we 
can conclude that semi-metal HgCdTe quantum wells 
could be efficiently tuned to meet specific requirements 
of sub-THz and THz bolometric detectors and FETs 
utilizing plasma waves.  

3. Conclusions 

We have modeled electron mobility in 
Hg0.32Cd0.68Te/Hg1−xCdxTe/Hg0.32Cd0.68Te quantum well 
being in the semi-metal state at T = 77 K and have taken 
into account three electron scattering mechanisms: by 
longitudinal polar optical phonons, by charged 
impurities and by holes. While Hg1−xCdxTe QW is in the 
semi-metal state, the electron-hole scattering mechanism 
becomes very powerful due to osculation of electron and 
heavy hole (HH) zones and due to alarge density of HH 
states. Our calculations accurately treated inelasticity of 
phonon scattering, non-parabolicity of dispersion law 
and degeneracy of electron gas in the well. 

We have shown that heavy holes scattering 
mechanism is unprecedented strong in intrinsic QW. It 
dominates over longitudinal polar optical phonons 
scattering and over charged impurities scattering within 
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the wide range of electron concentrations in QW. The 
modeling showed that electron mobility is sufficiently 
low in the intrinsic state due to EH scattering. The 
mobility can be increased to the values of 
105…106 cm2/(V·s) by increasing the electron 
concentration n in the well (by applying an external field 
perpendicular to the QW plane, for example). This effect 
could be explained by the enhancement of 2DEG 
screening and the decrease of holes concentration. Also, 
we obtained that, for higher molar compositions x in the 
well, the maximal mobility values are higher, which 
could be explained by a lower concentration of heavy 
holes at the same values of the electron concentration. 

Thus, to achieve a high electron mobility, it is 
necessary to choose the composition of the quantum well 
to be closest to the point of inversion and at the same 
time substantially reduces the concentration of HH. 
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