УДК 624.012

Болошенко Ю.Г., ГУВПО «Белорусско-Российский университет» (г. Могилев, Беларусь)

УЧЕТ ВЛИЯНИЯ МАЛОЦИКЛОВОГО НАГРУЖЕНИЯ НА ПРОЧНОСТЬ НОРМАЛЬНЫХ СЕЧЕНИЙ ЖЕЛЕЗОБЕТОННЫХ ИЗГИБАЕМЫХ ЭЛЕМЕНТОВ, УСИЛЕННЫХ НАРАЩИВАНИЕМ СЖАТОЙ ЗОНЫ

В статье представлены предложения по расчету нормальных и наклонных сечений железобетонных изгибаемых элементов, усиленных наращиванием в сжатой зоне, с учетом влияния малоциклового нагружения.

Ключевые слова: железобетон, изгибаемый, малоцикловой, прочность, нормальный, наклонный, усиление, наращивание.

В последнее время большое внимание уделяется реконструкции и техническому перевооружению существующих зданий и сооружений, которые эксплуатируются в течение многих десятилетий. Одним из способов усиления является наращивание сечений наращиванием сжатой зоны, позволяющее существенно увеличить несущую способность конструкции. К настоящему времени практически нет рекомендаций по расчету усиленных железобетонных элементов, учитывающих предысторию загружения и влияние малоциклового характера нагрузки.

В рекомендациях, разработанных НИИСК [1], связь между напряжениями и деформациями бетона принимается в виде двухлинейной диаграммы, в соответствии с которой эпюра нормальных напряжений в бетоне сжатой зоны в виде прямоугольной трапеции с высотой участка постоянных напряжений равной $\lambda \cdot x$, где x — среднее значение высоты сжатой зоны, λ — коэффициент пластичности бетона (рис. 1). Данная методика была использована при расчетах и уточнена в работах [2-5] и получила название «Упругопластическая модель расчета» (УПМ).

Проверка прочности нормальных сечений производится из условия:

$$M_{Sd} \leq M_{Rd} = 0.5 f_{c,red} \cdot b \cdot x \cdot [(1 + \lambda_{c,red}) \cdot d - 0.33x \cdot (1 + \lambda_{c,red} + \lambda^2_{c,red})] +$$

$$+ \sigma_{sc} \cdot A_{sc} \cdot (d - h_{ad} - c') + \sigma_{sc,ad} \cdot A_{sc,ad} \cdot (d - c'_{ad}).$$

$$\tag{1}$$

Высота сжатой зоны x находится из уравнения [5, 6]:

$$A_1 \cdot x^2 + A_2 \cdot x + A_3 = 0; (2)$$

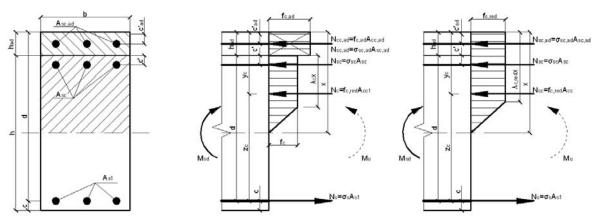


Рис. 1. Схема усилий и эпюра напряжений в нормальном сечении изгибаемого железобетонного элемента при расчете по упругопластической модели

где коэффициенты A_1 , A_2 , A_3 рассчитываются по формулам:

$$A_1 = 0.5 \cdot b \cdot (1 - \lambda^2_{c,red}); \tag{3}$$

$$A_2 = \alpha_m \cdot (A_{sI} + A_{sc} + A_{sc,ad}); \tag{4}$$

$$A_3 = -\alpha_m \cdot A_{sl} \cdot d. \tag{5}$$

Во всех случаях должно соблюдаться условие:

$$\frac{\alpha_m f_{c,red} d}{\alpha_m f_{c,red} + 0.02 E_{c,red} (1 - \lambda_{c,red})} \le x \le \frac{\alpha_m f_{c,red} d}{\alpha_m f_{c,red} + \sigma_s (1 - \lambda_{c,red})}.$$
 (6)

В случае, если нейтральная линия проходит в бетоне усиления, элемент рассчитывается как состоящий из бетона одного вида и класса (бетона усиления с прочностью $f_{c,ad}$), если в бетоне основной конструкции — как состоящей из бетона одного вида и класса по приведенной прочности $f_{c,red}$.

В случае расчета по предельным деформациям ε_{cu} целесообразно использовать следующую зависимость [5] (рекомендуется для приведенных значений коэффициента пластичности):

$$\lambda_{c,red} = 1 - \frac{f_c}{\varepsilon_{cu} E_c} = 0.97 - 0.0077 f_c.$$
 (7)

Деформация предельной сжимаемости «приведенного» бетона после приобретения бетоном намоноличивания заданной прочности определяется по формуле [5, 7]:

$$\varepsilon_{cu} = \frac{f_c}{E_c(1 - \lambda_c)} \cdot \left(1 - \frac{S_{ad}}{S}\right) + \frac{f_{c,ad}}{E_{c,ad}(1 - \lambda_{c,ad})} \cdot \frac{S_{ad}}{S}.$$
 (8)

В связи с тем, что в упругопластической модели при расчете нормальных сечений квадратное уравнение типа $A_1 \cdot x^2 + A_2 \cdot x + A_3 = 0$ получено путем замены значений напряжений в растянутой σ_s и сжатой σ_{sc} арматуре формулами, предложенными в [2, 5], то для переармированных образцов в случае, если расчетное напряжение в арматуре превышает предел текучести ($\sigma_s > f_s$) лучше использовать прямой расчет, принимая $\sigma_s = f_s$:

$$N_c + N_{sc} = N_s \Rightarrow f_{c,red}bx_{eff} \frac{1 + \lambda_{c,red}}{2} + \sigma_{sc}A_{sc} = f_sA_{s1} \Rightarrow x_{eff} = \frac{f_sA_{s1} - \sigma_{sc}A_{sc}}{0.5f_{c,red}b \cdot (1 + \lambda_{c,red})}. \tag{9}$$

На основании полученных автором экспериментальных данных был сделан вывод 0 TOM, ЧТО между верхним минжин пределами микротрещинообразования существует прямая пропорциональность. Коэффициент пропорциональности $k_{crc} = \eta_{crc}^0 / \eta_{crc}^v$ является эмпирическим, отличается для бетонов различных видов и может быть принят: для тяжелого бетона $k_{crc} \approx 0,67$; для сталефибробетона $k_{crc} \approx 0,70$; для бетона с использованием литейно-металлургических производств качестве заполнителя $k_{crc} \approx 0.73$.

Данный коэффициент может также использоваться для оценки эффективности применения различных видов бетона для изготовления конструкций, работающих в условиях малоциклового нагружения: чем выше значение коэффициента $k_{\rm crc}$, тем более стабильной будет работа бетона при действии малоцикловых нагрузок.

Для определения верхнего предела микротрещинообразования η_{crc}^{v} по результатам проведенных экспериментальных исследований автором была предложена следующая зависимость:

$$\eta_{crc}^{v} = \frac{1}{3} k_{crc} \cdot \ln f_c + 0.1. \tag{10}$$

Среднее отклонение теоретических значений, полученных при расчете по предложенной формуле, от опытных составляет 1,3 %.

По результатам проведенных экспериментальных исследований для определения коэффициента, учитывающего изменение прочности бетона, автором была получена следующая зависимость при $\eta_{top} < 1.0$:

$$\gamma_{c,cyc} = 0.97 \sqrt{\eta_{crc}^{\nu}} - 0.3 \ln \eta_{top} \,. \tag{11}$$

Предложенная зависимость дает достаточную сходимость с экспериментальными данными (среднее отклонение 5-6 %).

Прочность нормальных сечений изгибаемых железобетонных элементов, усиленных наращиванием сжатой зоны при помощи бетонов разных видов, может быть с достаточной точностью рассчитана по упругопластической модели (УПМ) с учетом изменения прочности сжатого бетона при действии малоцикловых нагружений различных уровней и режимов: напряжения в бетоне сжатой зоны определяются с учетом коэффициента $\gamma_{c,cyc}$, вид бетона учитывается коэффициентом k_{crc} .

Для полученного по упругопластической модели расчетного значения разрушающего момента $M_{Rd}^{pac^{4}}$ использовать понижающий коэффициент $\gamma_{M,cyc}$: для бетона класса C20/25 и ниже $\gamma_{M,cyc}$ =0,95, для более высокого класса $\gamma_{M,cyc}$ =0,9. Таким образом, M_{Rd} = $\gamma_{M,cyc}$ · $M_{Rd}^{pac^{4}}$.

В таблице 1 представлены результаты расчета опытных образцов по предложенной методике.

Таблица 1 Результаты расчета прочности нормальных сечений опытных балок при малоцикловых нагрузках различных уровней

		·	ые обр			Усиленные образцы					
Маркировка опытных балок	Экспериментальный момент, кН·м	Расчет- ный момент по УПМ без учета режима нагру- жения, кН·м	Расчетный момент по УПМ с учетом режима нагружения, кН·м	Отклонение расчетных значений от опытных, %		Экспе-	Расчет- ный момент по	Расчет- ный момент	Откло расче значе	онение етных ний от ых, %	
				кин	с учетом режима нагруже ния	римен- таль- ный момент, кН·м	УПМ без учета режима нагру- жения, кН·м	по УПМ с учетом режима нагру- жения, кН⋅м	без учета режима нагруже ния	с учетом режима нагруже ния	
1	2	3	4	5	6	7	8	9	10	11	
1 серия											
ББ_04-08 [07]	-	-	-	-	-	10,41	10,400	10,926	0,1	-4,7	
ББ_04-08 [03- 06]	4,21	3,858	4,292	9,1	-1,9	10,50	9,631	11,203	9,0	-6,3	
ББ_04-08 [w]	4,34	3,895	4,199	11,4	3,3	10,85	10,917	11,526	-0,6	-5,9	
ББ_04-07(09) [w]	4,33	4,169	4,176	3,8	3,7	10,58	9,708	9,948	9,0	6,4	
ББ_04-07(09) [03-06-08]	4,56	4,356	4,561	4,6	-0,1	10,35	10,780	11,141	-4,0	-7,1	
2 серия											
БСФ_ 04-08 [Б2-2]	-	-	-	-	-	10,85	10,278	11,544	5,5	-6,0	
БСФ_04-07(09) [07]	-	-	-	-	-	10,85	9,798	10,193	10,7	6,4	
БСФ_04-07(09) [03-07]	5,14	4,836	5,251	6,4	-2,0	9,33	10,058	8,695	-7,2	7,3	
БСФ_04-08 [03- 07(09)]	4,40	4,620	4,651	-4,7	-5,3	8,92	10,188	8,959	-12,5	-0,5	
БСФ_04-07 [03- 07-08]	4,45	4,095	4,276	8,6	4,0	9,16	10,318	9,115	-11,3	0,5	

1	2	3	4	5	6	7	8	9	10	11
3 серия										
БО_04-08 [Б3- 2]	-	-	-	-	-	8,57	10,848	9,349	-21,0	-8,3
БО_04-07(09) [07]	-	-	-	-	-	9,22	10,470	9,108	-11,9	1,2
БО_04-07(09) [03-08]	5,12	4,926	5,052	3,9	1,4	8,79	9,990	8,909	-12,0	-1,4
БО_04-07(09) [03-06-08]	5,64	5,441	5,613	3,7	0,5	8,57	10,107	8,891	-15,2	-3,6
БО_04-09-08 [03-06(08)]	5,08	4,854	4,898	4,7	3,7	7,92	9,838	8,971	-19,5	-11,7

Из таблицы 1 видно, что предложенная методика имеет хорошую сходимость с экспериментальными данными.

Для оценки обеспеченности точности предлагаемой расчетной методики статистическими методами определили статистические критерии, по которым принимается или отвергается та или иная гипотеза: математическое ожидание z_{cp} , среднее квадратическое отклонение σ , коэффициент вариации C_{ν} а также среднюю ошибку среднего квадратического m, показатель точности P%.

Используя закон нормального распределения, интегральным методом по формуле А.М. Ляпунова определена обеспеченность предлагаемого метода расчета в заданных пределах при отклонении в процентах:

$$\lim P \left[\frac{S_n - A_n}{B_n} < x \right] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-z^2/2} dz.$$
 (12)

Таблица 2 Обеспеченность точности расчета несущей способности изгибаемых железобетонных элементов при однократном и малоцикловом видах нагружения по различным метоликам

puotin moroginami								
Статистические характеристики	Z _{cp}	٥	\mathbf{C}_{v}	P%	Обеспеченность точности, % при отклонении			
ларактернетики					±5%	±10%	±15%	±20%
при расчете по уточненной упруго- пластической модели	0,99137	0,04711	4,75218	0,70067	71,14	96,62	68,89	86,66

Таким образом, предлагаемая методика расчета — уточненная упругопластическая модель (с учетом изменения прочностных и деформативных характеристик бетона) — обеспечивает достаточно высокую точность и может быть использована при проектировании и расчете

изгибаемых железобетонных элементов, усиленных наращиванием сжатой зоны, по первой группе предельных состояний.

Литература

- 1. Рекомендации по оценке состояния и усилению строительных конструкций промышленных зданий и сооружений / НИИСК Госстроя СССР. М. : Стройиздат, 1989. 104 с.
- 2. Голишев, О.Б. Курс лецій з основ розрахунку конструкцій і з опору залізобетону / О.Б. Голишев, А.Н. Бамбура. К.: Логос, 2004. 340 с.
- 3. Задорожнікова, І.В. Підсилення стиснутої зони, як засіб відновлення експлуатаційних якостей залізобетонних згинальних елементів : Дис... канд. техн. наук : 05.23.01 / Задорожнікова Ірина Вікторівна. Луцк, 2006. 121 с.
- 4. Поветкин, М.С. Напряженно-деформированное состояние усиленных под нагрузкой железобетонных изгибаемых преднапряженных элементов : Дис. ... канд. техн. наук: 05.23.01 / Поветкин Максим Сергеевич / ГОУ ВПО «Курский государственный технический университет». Орел, 2009. 213 с.
- 5. Семенюк, С.Д. Прогнозирование работы и расчет железобетонных пространственных конструкций на неравномерно деформируемом основании : Дис... докт. техн. наук / Семенюк Славик Денисович / ГУ ВПО «Белорусско-Российский университет». Могилев, 2004. 381 с.
- 6. Семенюк, С.Д. Расчет нормальных сечений изгибаемых железобетонных элементов с учетом упругопластических характеристик материалов / С.Д. Семенюк, Ю.Г. Болошенко // Проблемы современного бетона и железобетона : сборник трудов. В 2 ч. Ч. 1. Бетонные и железобетонные конструкции. Минск : Минсктиппроект, 2009. С. 385 398.
- 7. ТКП 45-5.03-97-2009 (02250) Железобетонные сборно-монолитные конструкции. Правила проектирования. Минск: Министерство архитектуры и строительства РБ, 2009. $80\ c.$

Анотація

У статті наведені пропозиції з розрахунку нормальних і похилих перерізів залізобетонних елементів, що згинаються, посилених нарощуванням у стиснутій зоні, з урахуванням впливу малоциклового навантажування.

Ключові слова: залізобетон, згинальний, малоцикловий, міцність, нормальний, похилий, посилення, нарощування.

Annotation

The article offers suggestions for the calculation of normal and oblique sections of reinforced concrete flexural elements, enhanced capacity in a compact area, with the influence of low-cycle loading.

Keywords: concrete, bending, low cycle, strength, normal, italic, strengthening, capacity.