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We prove the well-posedness of Fourier problems for anisotropic parabolic equations with
variable exponents of nonlinearity without any assumptions on the solution behavior and growth
of the initial data as time variable tends to minus infinity. We obtain estimates for generalized
solutions of these problems as well as conditions for the existence of periodic and almost
periodic solutions. Moreover, we prove some properties of the solutions of the problems under
consideration.
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Jokazana KOPppeKTHOCTD 3a1ad Pypbe /IJIsT aHU30TPOITHBIX MapabOJIUIecKX ypaBHEHUN C
[IepEMEHHBIMU [I0KA3ATe/IIMI HeJIMHETHOCTH 6€3 IIPEe/IITOI0KEHNI O TIOBEIEHUN PENIeHuil U Po-
CT€ UCXOJHBIX MAHHBIX IIPU CTPEMJIEHUU JYaCOBOIl IIepEeMEeHHOI K MuHYyC OeckoHednocTu. [losy-
9eHBbI OIeHKHU ODOOITEHHBIX PENTEHU ITUX 33129 U YCJIOBUSA CYIIECTBOBAHUS MEPUOIUIECCKUX U
[IOYTHU [EPUOUIecKUX perieHnii. TakKe yCTaHOBJIEHBI HEKOTOPBIE CBOMCTBA PEIIeHnii paccMar-
puBaeMoOil 3a/1a4u.

Introduction. We examine a question of well-posedness of the Fourier problems (the prob-
lems without initial conditions) for anisotropic second order parabolic equations with variable
exponents of nonlinearity. These equations are defined on unbounded cylindrical domains,
which are the Cartesian products of bounded space domains and the whole time axis. Also
the existence conditions of periodic and almost periodic solutions are investigated. Moreover,
we examine the conditions on input data that guarantee specific behavior of the solutions at
infinity.

Fourier problems for parabolic equations are examined in many papers ([1]-[11]). Fairly
good survey of results regarding these problems can be found in [11]. It is worth to mention
that Fourier problems for linear and a plenty of nonlinear parabolic equations are well posed
only under some restrictions on the growth of solutions and input data as the time variable
tends to —oo, in addition to boundary conditions. However, there are nonlinear equations
for which the Fourier problems are uniquely solvable with no conditions at infinity. This
case for equations with variable exponents of nonlinearity is considered here. We look for
solutions from the generalized Lebesgue and Sobolev spaces. More information on these
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spaces and about its applying can be find in [12]-[18]|. The present paper can be viewed as
a natural continuation of papers [4, 8, 9| for the case of equations with variable exponents
of nonlinearity.

The paper consists of three parts: in the first part the formulation of problem and main
results are presented, the second part includes auxiliary statements while the proofs of main
results are in the third part.

1. Setting of the problem and main results. Let {2 be a bounded domain in R" with
the piecewise smooth boundary 0f). Suppose that 02 is divided into two subsets I'y and
I'y, where I'y is closed. The cases I'y = @ and 'y = 02 are also possible. We denote by
v = (11,...,V,) the unit outward normal vector on 9. Set @ := Q X R, ¥y := Ty x R,
Y :=T1 xR, and Qy, 4, := Q X (t1,t2) for arbitrary real ¢; and t,. Here and subsequently,
we assume that ¢; < 5.

Consider the problem of finding a function u: Q — R satisfying (in some sense) the
equation

n

up — Z (a;(z, t)|u,

i=1

PO20,) (e Dl e = f(at), (@) €@ (1)

and the boundary conditions

-0, A [— (2)

Yo al/a 31

where Ou(x,t)/0v, == Yo ai(,t)|ug, [P"®~2u,, v;(x) is the “conormal” derivative on ¥,
and the functions p;: @ = R, a;: Q =R (j=0,...,n), f: Q — R are given.

First we introduce some function spaces. Suppose that either G = Q or G = Q x §,
where S is an interval in R. We also consider a function r € L. (€2) such that r(x) > 1
for almost all x € Q. We denote by L,.y(G) the generalized Lebesgue space consisting of
functions v 6 L,(G) such that pg,(v) < 00, where pg (v fQ lv(2)|"®dx for G = Q,
and pg,(v) = [, |v(z B["@dxdt for G = Q x S. The space is equ1pped with the norm
||?JHLT('>(G = 1nf{/\ >0 per(v/A) <1} ([12, p. 599]). If essinf,cqr(x) > 1, then the dual
space [L.()(G)] can be identified with L,/ (G), where r’ is the function defined by the
equality (1) + ,( 3 = 1 for almost all z € Q

Let G = Q xS, where S is an unbounded interval in R or S = R. We denote by L, 1o (E)
the space of measurable functions g: G — R such that the restriction of g to Q, 4, belongs
to Ly(y(Q4, ,) for each t1,t, € S. This space is complete locally convex with respect to the
fannly of seminorms {| - || Loty @iyt ‘tl,tg € S}. A sequence {g,,} is said to be convergent

strongly (resp., weakly) in L loc( ) provided the sequences of restrictions {gmlq,, ,,} are
convergent strongly (resp., weakly) in Ly)(Q¢ ) for all ¢,t, € S. Similarly we can define
the space Lo 10c(G).

Let B be a Banach space with a norm || - ||g. We also denote by C(S; B) the space
of functions v: S — B such that restriction of v to any interval [t;,t2] C S belongs to
C([t1,t2); B). The space C(S; B) is complete locally convex with respect to the family of
seminorms { maxeefs, ,) [|[v(¢)||5 |t1,t2 € S}. Therefore a sequence {g,} is convergent in
C(S; Ly(€2)) provided the sequences of restrictions {gm |, +,]} are convergent in C([t1,ts]; B)
for each t1,t, € S.

Let p= (po,...,pn): @ — R be a vector-function satisfying the following conditions:
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(P) the functions p;: @ — R are measurable for all j € {0,...,n}, p, = ess glf pi(x) > 2,
re
p; = essiélfpi(x) >2 forie{l,...,n},
xe

p; = esssupp;(x) < +oo for j € {0,...,n}.
zeQ
We also denote by p' := (po/,...,p,’) the vector whose components are given by the

equalities 1/p;(x) + 1/p; () = 1 for almost all z € Q.

Let Wpl(.)(Q) be the generalized Sobolev space consisting of functions v € Ly,)(£2)
such that vy, € L,y () for all ¢ € {1,...,n}. The space is equipped with the norm
Hv||W1 L@ = = ||v HLP()() + 2 e lvwllr, 9. We denote by WZ}(,)(Q) the closure of the set
{ve Cl( ) | vlr, = 0} in the space W) (). Next, let W;(’,O)(chtz) denote the set of functi-
ons w € Lp,y(Q4 +,) such that w,, € L (@t 1,) for all 4+ € {1,...,n}. We also define the

norm ||wHW() @, t2) = |lw ||Lp0() (@Qty.0) + Zl L lwe L, @iy 0y)- We denote by W (chtz)

the subspace of W (Qt1 t,) consisting of functions v such that v(-,t) € Wpl(.)(Q) for a. e.
t € [t1,1s).
Assume G = Q2 x S, where S is a real interval or the real axis. Let Wpl(’g loc (G) be the linear

P'L()

space of measurable functions such that its restrictions to @, +, belong to /Wv;(’g(chtQ) for
all t1,t5 € S. This space is complete locally convex with respect to the family of seminorms

{H : HW;g(Qtl,tQ) |t17t2 € R}-

We also introduce the space Uy, joc = Wpl(’g 0e(@)NC(R; Ly(92)), which is a complete linear
local convex space with respect to the family of seminorms

(ol g + o [ Olaey 1.2 € R,
For an interval I we consider the space CJ(I) of C'(I)-functions with compact support.
Let us denote by A the set of ordered arrays of functions (ag, ay,...,a,) satisfying the
condition
(A): for each j € {0,1,...,n} the function a; belongs to the space Lu10c(Q) and the
following holds

aj(z,t) > K; for almost all (z,t) € Q (3)
with some constant K; > 0 being dependent on (ag, ay, ..., a,).
Definition 1. Suppose that p satisfies condition (P), (ag, a1, . . ., a,) €A, and f € Ly 10d Q).

A function u is called a weak solution of (1), (2) provided u € U, jo. and the following integral
identity holds

//Q{;: (ailus,

for all ¢ € vaI}(.)(Q), v € Cj(R).

P2y a0|u|po(x)—2u¢)gp — uwgo’}dmdt = / fopdedt  (4)
Q

We say that a weak solution of (1), (2) continuously depends on input data, if for each
sequence { fr}321 C Lyy(),100(Q) such that fkk—>f in Lpyr(,10c(Q) we have U~ u in U, joc.
—00 —00

Here uy and u are weak solutions of (1), (2) with the right-hand sides f and f, respectively.
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Theorem 1. Suppose that p satisfies (P), (ag, a1, ..., a,) € A, and f € Lyy()10c(Q). Then

there exists a unique weak solution of (1), (2), and it continuously depends on the input
data. Moreover, the estimate

a t)|*d +/ / 2 (7, 1)
mR§t0/|ux x - Z|u1x
< C’1{R 2/(5=2) +/ /|f(x,t)|p0/(x)d:pdt}, (5)
to—R JQ

holds for each R, Ry such that R > 1,0 < Ry < R/2, and t, € R. Here C; is a positive
constant, which depends on K, and pjt ( €40,...,n}) only.

Pil@) gz, t) [Po@ ]dxdt <

Remark 1. Note that Theorem 1 has no conditions imposed on the behaviour of the solution
and the growth of functions a; (j € {0,...,n}) as well as on the behaviour of f ast — —oc.
But the theorem is not longer true for the case where py(z) = p1(x) = -+ = p,(x) = 2 for
almost all z € Q (see, for example, [11]). Therefore condition (P) is essential.

A solution u of (1), (2) is called bounded if sup [, |u(x,t)|*dz < co.
teR

Corollary 1. Let f € Ly, )(Q). Under the assumptions of Theorem 1, any weak solution
of (1), (2) is bounded; it belongs to Wpl(’g (Q) and the following estimate holds

Sup/ lu(z, )| dx—i—// g, (2, 1) [P@) 4 |u(z, t)[PP@ | dedt <

teR
gq/|mmw@mw (6)
Q

Corollary 2. Under the assumptions of Theorem 1, if

sup / / o ) D dadt < C
TER Jr—1JQ

for some positive constant Cy, then a weak solution u of (1), (2) is bounded. In addition,

sup/ / [Z g, (2, )| + |u(x,t)|p°($)] dxdt < Cs
T-1JQ ",

TER

with some positive constant C3 being dependent on Kl,p;-t(j € {0,...,n}) and Cy only.

Corollary 3. Under the assumptions of Theorem 1, if moreover

ml/ /U@QWMMﬁ:Q
T—7400 —1Ja

then for a weak solution u of problem (1), (2) the following relations hold

pz po
Aim fu(, )|y = Tg%/'/mgj%ﬂm| )+ |u(z, t)| ]mm_o
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Theorem 2. Under the assumptions of Theorem 1, if the functions f, ao,...,a, are periodic
in time with a period o > 0, then a weak solution of (1), (2) is also o-periodic in time.

A set X C R is called relatively dense, if there exists a positive [ such that the interval
la,a + ] contains at least one element of the set X for any real a, i.e. X N[a,a + 1] # @.

Let B be a Banach space with a norm || - ||g. A function v € C(R; B) is Bohr almost
periodic, if for each € > 0 the set {o | sup,eg ||[v(-,t + o) — v(-,t)||p < e} is relatively dense.
A function f € Lpo(~),loc(@) is Stepanov almost periodic provided the set

a| Sup/ / \f(z,t+0) — flx, t)|PP@dadt < 5}
T—1

TER

is relatively dense for each positive €. Viewing w as an element of Wl’o C(@) we say that w
is almost pemodzc by Stepanov, if for each € > 0 the set {0 | supTeRf 1fQ[ o |we (x,t +

0) — Wy, (2, )P +|w(z,t + o) — w(z,t)[°@)]dedt < e} is relatively dense. We refer to
[4, 19, 20] for the detailed information on the theory of almost periodic functions.

Theorem 3. Let the hypotheses of Theorem 1 hold. In addition, suppose aq, . . . , a, are Bohr
almost periodic functions in C'(R; Ly (€2)). Assume also that f is Stepanov almost periodic
in Ly(),10c(@). Moreover, the set

E. = {o] Sup/ / |f(x,t+0) — f(x, )PP dedt < e,
T—1JQ

TER

max sup [la;(-,t +0) — a;(-,1)| L) < €}
7€{0,...,n} tcR

is relatively dense for each € > 0.
Then the (unique) weak solution of (1), (2) is Bohr almost periodic in C'(R; Ly(€2)) and
Stepanov almost periodic in W x ]OC(@) .

2. Auxiliary statements. We start with some auxiliary results, which will be used below.

Lemma 1. Giventy,t; € R, we assume that a function w € W (Qt1 +,) satisfies the identity

/tz /Q{ (z”: GV, + 901/1>s0 — wibcp'}dxdt =0, vYe€ va;(.)(Q), Q€ Cé(thtg) (7)
b i=1

for some functions g; € Ly () (Qu) (5 € {0,...,n}). Then w € C([ty,t2]; L2(2)) and the
following equality

/|w z, ) dx T2_/ /|w| dedt—i—Q/ / Zgzwx +g0w>8dxdt—0 (8)
—

holds for all Ty, To € [tl,tg] (7'1 < 7'2), 0 e Cl([tl,tg]).

This statement can be proved similarly to Lemma 1 in [4].
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Lemma 2. G1ven t1,to € R such that t, —t; > 1 and a € A, we suppose that functions u;
and usy from W (Qt1 1) N C([t1, ta]; L2(Q2)) fulfill the following identities

to n
/ / { < E a’ilul,Ii
e SO o

— / 2 /Q<Z figte, + fo,zw) pdxdt, Y € Wpl(.)(g), o€ C’é (t1, o) 9)
t i=1

P2 g, + a2 ) o — unp fdudt =

with the functions f;; € Lyy(Qy1,) (7 €{0,...,n}; 1 € {1,2}), respectively.
Then the following

to n
ma uy(x,t) —us(x,t 2da:+/ /< U g — U
s o et e 0P s [ [ (3
< 04{3 /(75 =2) +/ /Z|f;1 z,t) — fio(z, 1)@ da:dt} (10)

holds for each R, Ry and ty such that R > 1,0 < Ry < R/2, and t; < tg— R <ty < ty. Here
C} is a positive constant, which depends on K; and pji (7 €40,...,n}) only.

pi($)+ ’U1 _ uﬂ}?o@)) drdt <

Proof of Lemma 2. Let R, Ry, to be as in the lemma statement, and n(t) :=t—to+ R, t € R
(see [21]). For given ¢ € W (Q), ¢ € Cy(t1,t2) we subtract equality (9) with I = 1, and
the same equality with [ = 2. Then, putting

u12($7t) = ’Uq(fl',t) - UQ($,t), fj,lQ(xvt) = fj,l(xvt) - fj,?(x7t)a
ap12(x,t) == ao(x,t)(\ul(as,t)|p°(x)_2u1($,t) — |us(x, t)|p°(x)_2u2(x, t)),
a;12(z,t) = a;(x, t)(\ulm (z,t) pi(f‘)’Quin (x,t)—|ugy, (z,1) pi(m)’zuz’xi(x, t))
(te{l,....,n}; j€{0,...,n}; (z,t) € Q),
we obtain an equality. From this equality using Lemma 1 with w = w19, g; = @12 — fj12

(7 €{0,...,n}), 0 =n°, s :=py/(pg —2), 1 =ty— R, 2 =7 € (to — R, to], we get the
following equality

n

/ |U12 x T | dlL’—i— 2/ / Zaz 12 u12> + a0,12u12}775dxdt —
i=1
= S/ / |U12|2778—1d1’dt—|—2/ / (Zfi712(u12)mi + f0,12u12>7]sdl’dt. (11>
to—R JQ to-rJ0 N

We make corresponding estimates of the integrals in equality (11). First we note if r € Lo (Q2)
and essinf,cqr(z) > 2, then in view of Lemma 1.2 of [5] we have the following inequality

(11" @725y — |so|" @ 25,) (51 — 59) > 227 |5y — s|"®

for each sy, so € R and for almost all x € §2 (here r := esssup,cq 7(2)). Using this inequality

we get
/ / az 12(w12) 2, + a0 12 U12}775d:[dt >
to—
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> Co [ [ (3 lw)a P+l ), (12)
to—R JQ i=1

where C5 > 0 is a constant depending only on K; and pf (j € {0,...,n}).
Further we need the following inequality

ab<celal"+e V@I abeR, ¢>1,1/g+1/¢d =1,e>0, (13)

which is a consequence of standard Young’s inequality: ab < |a|?/q + |b|? /.
Putting (for almost all = € Q) ¢ = po(2)/2, ¢ = po(z)/(po(z) — 2), a = [ura|*n*/",
b=n%""1 ¢ =¢ >0, under (13) we obtain

/ /|u12|2n5_1da:dt§61/ /|u12|p°(x)775da:dt~l—
to—R J ) to—R J )

e / T / P @/ @2 gy, (14)
to—R JQ

where ¢; € (0,1) is an arbitrary number.
Again using inequality (13), we get

/ /<Zfi,12(U12)xi+fo,12U12>Usdl"dtS52/ /<Z|(U12)x
+/ /(Z{;‘Ql/(pj_1)|fj712|pj,(x)>nsdxdta (15)
to—R JQ =0

where €5 € (0,1) is an arbitrary number.
If &1 and ey are sufficiently small positive, then from (11), (12), (14), (15) we get the
following

s 2 ! -

n 7'/ upo(, T dx—l—/ /{ U12) 1,
(7) QR! 12(7,7)] s ;\( 12)
< 06[ / / P @/ 0@ =2) gt 4 / / (Z!fj,lzlpﬂ"(”)nsfzxdt], (16)

to—R JQ to—R JQ =0

where (g is a positive constant depending only on K; and p;-t (7 € {0,...,n}), and 7 €
(to — R, o] is an arbitrary number.

Note that 0 < n(t) < R, if t € [to — R,to], and n(t) > R — Ry, if t € [ty — Ro, o],
where Ry € (0, R) is an arbitrary number. Using this and that R > max{1;2R,} (then,
in particular, we have R/(R — Ry) = 1+ Ro/(R — Ry) < 2), from (16) we get the needed
statement. [

pi(x)+ |u12 |po(x)> n*dxdt+

3. Proof of the main results.

Proof of Theorem 1. First we prove that there exists at most one weak solution of problem
(1), (2). Assume the contrary. Let uq, ug be (different) weak solutions of this problem. Using
Lemma 2 we get

mﬂ}/WM%ﬂ—w@ﬂﬂmgaﬁJMWQ (17)
Q

tG[to—Ro,to
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where R, Ry, to are arbitrary numbers such that R > 1, 0 < Ry < R/2, t; € R.

We fix arbitrary numbers Ry > 0, to € R, and pass to the limit in (17) as R — 4o00. As
a result we obtain that u; = uy almost everywhere on Q¢,_r,+,. Since Ry,t, are arbitrary
numbers, we get u; = uy almost everywhere on (). The obtained contradiction proves our
statement.

Now we are turning to a proof of the existence of a weak solution of problem (1), (2). For
each m € N we consider an initial-boundary value problem for equation (1) in the domain
Qm = Q x (—=m,+00) with homogeneous initial condition and boundary conditions (2),

namely: we are searching a function u,, € I/V1 0. 10e(@m)NC ([—m, +00); Ly(£2)), which satisfies

the initial condition: w,|~_,, = 0 and the mtegral equality
P 2t P P ) p it = [ [ oo
Qm

/ /Q{ ( 12;3 i | Uz,
(18)

for each ¢ € W]}(_)(Q), 0 € C{(—m,+00), where f,(x,t) := f(x,t) if (z,t) € Q,,, and
fm(z,t) == 0 if (z,t) € @\ Qm. The existence and uniqueness of the function w,, follows
from the well-known fact (see, for example, [14]).

We extend u,, to ) by zero and this extension is denoted by u,, again. Further, we prove
that the sequence {u,,} converges in U, .. to a weak solution of problem (1), (2). Indeed,
note that for each m € N the fuction u,, is a weak solution of the problem, which differs
from problem (1), (2) in f,, instead of f. Using Lemma 2 for each natural numbers m and
k we have

max /|umxt — ug(x,t) 2d$+/ E U, — Uk s
€[to,to—Ro to—

< 04{R*2/<P3 = / / | fn — fklp‘)(””)d:cdt} (19)
to—R JQ

where R, Ry, to are arbitrary numbers such that to € R, R>1, 0 < Ry < R/2.

We show that for fixed ¢y and Ry the left hand side of inequality (19) converges to zero
as m,k — 4o00. Actually, let € > 0 be an arbitrary indefinitely small number. We choose
R > max{1,2Ry} to be large enough such that the following inequality holds

Pil®) gy, — [P0 ]d:vdt <

CL R/ -2 < ¢, (20)

It is possible as pj — 2 > 0. Under (20) for arbitrary m,k € N such that max{—m, —k} <
to— R (then f,, = fr almost everywhere on Q x (tg — R, %)) the right hand side of inequality
(19) is less then e. Hence the restriction of the terms of the sequence {u,,} to Qu—no 1
is a Cauchy sequence in W (Qto Roto) N C([to — Ro,to]; L2(€2)). Therefore, since t, and
Ry are arbitrary, it follows that there exists a function v € U, such that u,, — w in
U, j0e- Taking into account that in (18) the integration on @, can be replaced with the
integration on (), we pass to the limit in this equality as m — oco. As a result we get (4)
for all ¢ € /VIV/I}(,)(Q) and ¢ € C}(R). It means that the function u is a weak solution of
problem (1), (2). Estimate (5) directly follows from Lemma 2 when putting u; = u, us = 0,
for=1Ff, fir =00 € {1,....,n}), fja =0( € {0,...,n}). Continuous dependence of
a weak solution of problem (1), (2) on input data is easily proved using Lemma 2 with w
and f; instead of u; and fy ; respectively, and also u and f instead of us and f 2 respectively,

puttlng fi,l = fi’Q =0 (Z S {1, . ,TL}) ]
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Proofs of Corollaries 1-3. These statements follow from estimate (5). n

Proof of Theorem 2. Let u denote a weak solution of problem (1), (2). Put u(x,t) :=

u(z,t +p), fW(x,t) = flz,t +p,) agu)(x,t) = aj(x,t + p), (z,t) € Q, where p € R.
Substitute ¢ by ¢t + p (1 € R is arbitrary at present) in (4). As a result we get an identity,
which we will write in the form

/ / Z 0@ )
=[] (3o~ apugp
Q"= '

for all ¢ € W[}(,)(Q), ¢ € C}(R). From this, putting 4 = ¢ and using periodicity of functions

Pi) =2y y 0|y () poe)=2 %) o — uwgo’}d:cdt _

20y, + (a) — aé“))\u(“)lm(x)”u(mw) pdzdt  (21)

a;(j €{0,...,n}) and f, we get that the function u(?) is a weak solution of problem (1), (2).
Taking this into consideration and the fact of uniqueness of a weak solution of the problem
(1), (2), we get u(® = u(?) almost everywhere on Q. Therefore the statement of Theorem 2
is correct. [l

Proof of Theorem 3. Similarly as in the proof of Theorem 2 we pass to equality (21). Let
0, :=min{l; K;/2} and o € Fj,, where F is defined in the theorem statement. We consider
identity (21) at first for 4 = 0 and afterwards for u = ¢. Then using Lemma 2 with u; =

u®, uy = ul, q; = a§-°) (G €{0,...,n}), for=1O, for = (@ —a{) ul@) po@)=2y () 4 f(@)
fir =0, fiz = (@l — a{)ul? | (x)f ul (i € {17---%}), to=T€R Ry=1, R=1¢€
N (I > 2), we get

(U
ma t) — t)|°dx +
tE[TfT]/\u X, u© (z, ] T /71/ Z!u

< O ”2/%_2)*/ / (£ = 1O+ jo) = @ @)y (22)
T—1
P E) . [yl

+Z o xi pf(f”)}dxdt).

Under the inequality (a + b)? < 297 (a? +b%), a >0, b >0, g > 1, we have

/T /(|f<a> O] 410l — O]l @1 D gy < 21/(pa—1>/T /(|f<o> _ O @)y
T—1JQ T—1JQ

+|a(()0') _ aéo)|p0/(’”)|u(”)|p°(‘”))dxdt < 2/ 1) / / (|f(0) — f(o)\pol(m)dxdt—i— (23)

i@ 4 @) (0)‘170(95)} dzdt <

o (Pg .
—i—(sup ||ag )( 1) — ao ( M oo Q) i / / | [Po@) dadt,
Tl

teR

[
T=1JQ i ‘ ’

o) [T n
< max (sup a7, 1) ~ a” (1) o) / / S P @dedt,  (24)
? T—1 Qi:n

P@) |y (©)

pi(x)) drdt <
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where (p)) :=p]/(p; = 1) (j €{0,...,n}).

Since o belongs to Fs, and f is Stepanov almost periodic, then a'?)(z,t) > K,/2(j €
{0,...,n}) for a. e. (z,t) € Q and sup,ep [ | [, |[7(z, t)|P°@dzdt < Cg, where Cg > 0 is
a number independent on ¢. Hence, by Corollary 2 we have

sup/ / [|u(0)|po(w) + Z ]ug’)
5—1JQ i=1

p"(‘”)]dxdt < Cy, (25)

seR

where C; > 0 is a constant independent on o.
Thus, from (22) using (23) and (24), we obtain

/ @ (2, 7) — 0 (z, 7)|2dz + / / [Z|ug)_u$>|pi<z>+|u<o>_u<o>|po<z>]dxdt§
(9] —1JQ i=1

l T—k+1
< CS{Z*Q/(JDSFQ) + Z/ / £ — fOP @) g4 (26)
k=1 T—k Q
(@) 0 g~ [T @) LN () @)
4+ max (su a;’” (1) —a; ()| pe ) / /[u"pox + Uy pi“"}d:}:dt},
§€{0,...,n} teﬂgH / ( ) ! ( )HL @ ; T—k Q | | ;| 1|

where Cy is a constant independent on 7,0 and [.
Let £ > 0 be an arbitrary small fixed number. We show that the set

UE::{JER

sup/ lu(z,t + o) —u(z, t)]Pde < e,
tek Jo

sup/ / [Z |ty (z,t +0) — Uxi(l'7t)|pi(ét) +|u(z, t+0) — U(!E,t)|p°($)|}dxdt < s}
T—1JQ i—1

contains a set Fj for some 0 € (0, 0,] implying the relative density of the set. Indeed, choose
large enough [ € N (I > 2) satisfying the following inequality Cyl=2/h0 -2 < £/2, and fix this
value [. Then take § € (0, d,] such that the following inequality remains true

08<z-5+ max 5@?)’4-07) g%. (27)

j€{0,....,n}

Therefore, if § € Fj, then the right hand side of inequality (26) is less than or equal to e.
This implies that Fs C U,, that is the fact we had to prove. O
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