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We prove the well-posedness of Fourier problems for anisotropic parabolic equations with
variable exponents of nonlinearity without any assumptions on the solution behavior and growth
of the initial data as time variable tends to minus infinity. We obtain estimates for generalized
solutions of these problems as well as conditions for the existence of periodic and almost
periodic solutions. Moreover, we prove some properties of the solutions of the problems under
consideration.

М. М. Бокало. Неограниченные, периодические и почти периодические решения анизо-
тропных параболических уравнений с переменными показателями нелинейности // Мат.
Студiї. – 2014. – Т.41, №1. – C.81–91.

Доказана корректность задач Фурье для анизотропных параболических уравнений с
переменными показателями нелинейности без предположений о поведении решений и ро-
сте исходных данных при стремлении часовой переменной к минус бесконечности. Полу-
чены оценки обобщенных решений этих задач и условия существования периодических и
почти периодических решений. Также установлены некоторые свойства решений рассмат-
риваемой задачи.

Introduction. We examine a question of well-posedness of the Fourier problems (the prob-
lems without initial conditions) for anisotropic second order parabolic equations with variable
exponents of nonlinearity. These equations are defined on unbounded cylindrical domains,
which are the Cartesian products of bounded space domains and the whole time axis. Also
the existence conditions of periodic and almost periodic solutions are investigated. Moreover,
we examine the conditions on input data that guarantee specific behavior of the solutions at
infinity.

Fourier problems for parabolic equations are examined in many papers ([1]–[11]). Fairly
good survey of results regarding these problems can be found in [11]. It is worth to mention
that Fourier problems for linear and a plenty of nonlinear parabolic equations are well posed
only under some restrictions on the growth of solutions and input data as the time variable
tends to −∞, in addition to boundary conditions. However, there are nonlinear equations
for which the Fourier problems are uniquely solvable with no conditions at infinity. This
case for equations with variable exponents of nonlinearity is considered here. We look for
solutions from the generalized Lebesgue and Sobolev spaces. More information on these
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spaces and about its applying can be find in [12]–[18]. The present paper can be viewed as
a natural continuation of papers [4, 8, 9] for the case of equations with variable exponents
of nonlinearity.

The paper consists of three parts: in the first part the formulation of problem and main
results are presented, the second part includes auxiliary statements while the proofs of main
results are in the third part.

1. Setting of the problem and main results. Let Ω be a bounded domain in Rn with
the piecewise smooth boundary ∂Ω. Suppose that ∂Ω is divided into two subsets Γ0 and
Γ1, where Γ0 is closed. The cases Γ0 = ∅ and Γ0 = ∂Ω are also possible. We denote by
ν = (ν1, . . . , νn) the unit outward normal vector on ∂Ω. Set Q := Ω × R, Σ0 := Γ0 × R,
Σ1 := Γ1 × R, and Qt1,t2 := Ω × (t1, t2) for arbitrary real t1 and t2. Here and subsequently,
we assume that t1 < t2.

Consider the problem of finding a function u : Q → R satisfying (in some sense) the
equation

ut −
n∑
i=1

(
ai(x, t)|uxi |pi(x)−2uxi

)
xi

+ a0(x, t)|u|p0(x)−2u = f(x, t), (x, t) ∈ Q, (1)

and the boundary conditions

u
∣∣∣
Σ0

= 0,
∂u

∂νa

∣∣∣
Σ1

= 0, (2)

where ∂u(x, t)/∂νa :=
∑n

i=1 ai(x, t)|uxi |pi(x)−2uxi νi(x) is the “conormal” derivative on Σ1,
and the functions pj : Ω→ R, aj : Q→ R (j = 0, . . . , n), f : Q→ R are given.

First we introduce some function spaces. Suppose that either G = Ω or G = Ω × S,
where S is an interval in R. We also consider a function r ∈ L∞(Ω) such that r(x) ≥ 1
for almost all x ∈ Ω. We denote by Lr(·)(G) the generalized Lebesgue space consisting of
functions v ∈ L1(G) such that ρG,r(v) < ∞, where ρG,r(v) :=

∫
Ω
|v(x)|r(x)dx for G = Ω,

and ρG,r(v) :=
∫
G
|v(x, t)|r(x)dxdt for G = Ω × S. The space is equipped with the norm

‖v‖Lr(·)(G) := inf{λ > 0 | ρG,r(v/λ) ≤ 1} ([12, p. 599]). If ess infx∈Ω r(x) > 1, then the dual
space [Lr(·)(G)]′ can be identified with Lr′(·)(G), where r′ is the function defined by the
equality 1

r(x)
+ 1

r′(x)
= 1 for almost all x ∈ Ω.

Let G = Ω×S, where S is an unbounded interval in R or S = R. We denote by Lr(·),loc(G)
the space of measurable functions g : G→ R such that the restriction of g to Qt1,t2 belongs
to Lr(·)(Qt1,t2) for each t1, t2 ∈ S. This space is complete locally convex with respect to the
family of seminorms

{
‖ · ‖Lr(·)(Qt1,t2 )

∣∣ t1, t2 ∈ S}. A sequence {gm} is said to be convergent
strongly (resp., weakly) in Lr(·),loc(G) provided the sequences of restrictions {gm|Qt1,t2

} are
convergent strongly (resp., weakly) in Lr(·)(Qt1,t2) for all t1, t2 ∈ S. Similarly we can define
the space L∞,loc(G).

Let B be a Banach space with a norm ‖ · ‖B. We also denote by C(S;B) the space
of functions v : S → B such that restriction of v to any interval [t1, t2] ⊂ S belongs to
C([t1, t2];B). The space C(S;B) is complete locally convex with respect to the family of
seminorms

{
maxt∈[t1,t2] ‖v(t)‖B

∣∣ t1, t2 ∈ S
}
. Therefore a sequence {gm} is convergent in

C(S;L2(Ω)) provided the sequences of restrictions {gm|[t1,t2]} are convergent in C([t1, t2];B)
for each t1, t2 ∈ S.

Let p = (p0, . . . , pn) : Ω→ R1+n be a vector-function satisfying the following conditions:
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(P) the functions pj : Ω→ R are measurable for all j ∈ {0, . . . , n}, p−0 := ess inf
x∈Ω

pi(x) > 2,

p−i := ess inf
x∈Ω

pi(x) ≥ 2 for i ∈ {1, . . . , n},
p+
j := ess sup

x∈Ω
pi(x) < +∞ for j ∈ {0, . . . , n}.

We also denote by p′ := (p0
′, . . . , pn

′) the vector whose components are given by the
equalities 1/pj(x) + 1/pj

′(x) = 1 for almost all x ∈ Ω.
Let W 1

p(·)(Ω) be the generalized Sobolev space consisting of functions v ∈ Lp0(·)(Ω)

such that vxi ∈ Lpi(·)(Ω) for all i ∈ {1, . . . , n}. The space is equipped with the norm
‖v‖W 1

p(·)(Ω) := ‖v‖Lp0(·)(Ω) +
∑n

i=1 ‖vxi‖Lpi(·)(Ω). We denote by W̃ 1
p(·)(Ω) the closure of the set

{v ∈ C1(Ω) | v|Γ0 = 0
}
in the spaceW 1

p(·)(Ω). Next, letW 1,0
p(·)(Qt1,t2) denote the set of functi-

ons w ∈ Lp0(·)(Qt1,t2) such that wxi ∈ Lpi(·)(Qt1,t2) for all i ∈ {1, . . . , n}. We also define the
norm ‖w‖W 1,0

p(·)(Qt1,t2 ) := ‖w‖Lp0(·)(Qt1,t2 ) +
∑n

i=1 ‖wxi‖Lpi(·)(Qt1,t2 ). We denote by W̃ 1,0
p(·)(Qt1,t2)

the subspace of W 1,0
p(·)(Qt1,t2) consisting of functions v such that v(·, t) ∈ W̃ 1

p(·)(Ω) for a. e.
t ∈ [t1, t2].

Assume G = Ω×S, where S is a real interval or the real axis. Let W̃ 1,0
p(·),loc(G) be the linear

space of measurable functions such that its restrictions to Qt1,t2 belong to W̃ 1,0
p(·)(Qt1,t2) for

all t1, t2 ∈ S. This space is complete locally convex with respect to the family of seminorms{
‖ · ‖W 1,0

p(·)(Qt1,t2 )

∣∣ t1, t2 ∈ R
}
.

We also introduce the space Up,loc = W̃ 1,0
p(·),loc(Q)∩C(R;L2(Ω)), which is a complete linear

local convex space with respect to the family of seminorms{
‖w‖W 1,0

p(·)(Qt1,t2 ) + max
t∈[t1,t2]

‖w(·, t)‖L2(Ω)

∣∣ t1, t2 ∈ R
}
.

For an interval I we consider the space C1
0(I) of C1(I)-functions with compact support.

Let us denote by A the set of ordered arrays of functions (a0, a1, . . . , an) satisfying the
condition

(A): for each j ∈ {0, 1, . . . , n} the function aj belongs to the space L∞,loc(Q) and the
following holds

aj(x, t) ≥ K1 for almost all (x, t) ∈ Q (3)

with some constant K1 > 0 being dependent on (a0, a1, . . . , an).

Definition 1. Suppose that p satisfies condition (P), (a0, a1, . . . , an)∈A, and f ∈Lp0′(·),loc(Q).
A function u is called a weak solution of (1), (2) provided u ∈ Up,loc and the following integral
identity holds∫∫

Q

{ n∑
i=1

(
ai|uxi |pi(x)−2uxiψxi + a0|u|p0(x)−2uψ

)
ϕ− uψϕ′

}
dxdt =

∫∫
Q

fψϕdxdt (4)

for all ψ ∈ W̃ 1
p(·)(Ω), ϕ ∈ C1

0(R).

We say that a weak solution of (1), (2) continuously depends on input data, if for each
sequence {fk}∞k=1 ⊂ Lp0′(·),loc(Q) such that fk−→

k→∞
f in Lp0′(·),loc(Q) we have uk−→

k→∞
u in Up,loc.

Here uk and u are weak solutions of (1), (2) with the right-hand sides fk and f , respectively.
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Theorem 1. Suppose that p satisfies (P), (a0, a1, . . . , an) ∈ A, and f ∈ Lp0′(·),loc(Q). Then
there exists a unique weak solution of (1), (2), and it continuously depends on the input
data. Moreover, the estimate

max
t∈[t0−R0,t0]

∫
Ω

|u(x, t)|2dx+

∫ t0

t0−R0

∫
Ω

[ n∑
i=1

|uxi(x, t)|pi(x) + |u(x, t)|p0(x)
]
dxdt ≤

≤ C1

{
R−2/(p+0 −2) +

∫ t0

t0−R

∫
Ω

|f(x, t)|p0′(x)dxdt
}
, (5)

holds for each R, R0 such that R ≥ 1, 0 < R0 < R/2, and t0 ∈ R. Here C1 is a positive
constant, which depends on K1 and p±j (j ∈ {0, . . . , n}) only.

Remark 1. Note that Theorem 1 has no conditions imposed on the behaviour of the solution
and the growth of functions aj (j ∈ {0, . . . , n}) as well as on the behaviour of f as t→ −∞.
But the theorem is not longer true for the case where p0(x) = p1(x) = · · · = pn(x) = 2 for
almost all x ∈ Ω (see, for example, [11]). Therefore condition (P) is essential.

A solution u of (1), (2) is called bounded if sup
t∈R

∫
Ω
|u(x, t)|2dx <∞.

Corollary 1. Let f ∈ Lp0′(·)(Q). Under the assumptions of Theorem 1, any weak solution
of (1), (2) is bounded; it belongs to W̃ 1,0

p(·)(Q) and the following estimate holds

sup
t∈R

∫
Ω

|u(x, t)|2dx+

∫∫
Q

[ n∑
i=1

|uxi(x, t)|pi(x) + |u(x, t)|p0(x)
]
dxdt ≤

≤ C1

∫∫
Q

|f(x, t)|p0′(x)dxdt. (6)

Corollary 2. Under the assumptions of Theorem 1, if

sup
τ∈R

∫ τ

τ−1

∫
Ω

|f(x, t)|p0′(x)dxdt ≤ C2

for some positive constant C2, then a weak solution u of (1), (2) is bounded. In addition,

sup
τ∈R

∫ τ

τ−1

∫
Ω

[ n∑
i=1

|uxi(x, t)|pi(x) + |u(x, t)|p0(x)
]
dxdt ≤ C3

with some positive constant C3 being dependent on K1, p
±
j (j ∈ {0, . . . , n}) and C2 only.

Corollary 3. Under the assumptions of Theorem 1, if moreover

lim
τ→±∞

∫ τ

τ−1

∫
Ω

|f(x, t)|p0′(x)dxdt = 0,

then for a weak solution u of problem (1), (2) the following relations hold

lim
t→±∞

‖u(·, t)‖L2(Ω) = 0, lim
τ→±∞

∫ τ

τ−1

∫
Ω

[ n∑
i=1

|uxi(x, t)|pi(x) + |u(x, t)|p0(x)
]
dxdt = 0.
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Theorem 2. Under the assumptions of Theorem 1, if the functions f , a0,. . . ,an are periodic
in time with a period σ > 0, then a weak solution of (1), (2) is also σ-periodic in time.

A set X ⊂ R is called relatively dense, if there exists a positive l such that the interval
[a, a+ l] contains at least one element of the set X for any real a, i.e. X ∩ [a, a+ l] 6= ∅.

Let B be a Banach space with a norm ‖ · ‖B. A function v ∈ C(R;B) is Bohr almost
periodic, if for each ε > 0 the set {σ | supt∈R ‖v(·, t + σ)− v(·, t)‖B ≤ ε} is relatively dense.
A function f ∈ Lp0(·),loc(Q) is Stepanov almost periodic provided the set

{
σ | sup

τ∈R

∫ τ

τ−1

∫
Ω

|f(x, t+ σ)− f(x, t)|p0(x)dxdt ≤ ε
}

is relatively dense for each positive ε. Viewing w as an element of W̃ 1,0
p(·),loc(Q), we say that w

is almost periodic by Stepanov, if for each ε > 0 the set {σ | supτ∈R
∫ τ
τ−1

∫
Ω

[∑n
i=1 |wxi(x, t+

σ) − wxi(x, t)|pi(x) +|w(x, t + σ) − w(x, t)|p0(x)
]
dxdt ≤ ε} is relatively dense. We refer to

[4, 19, 20] for the detailed information on the theory of almost periodic functions.

Theorem 3. Let the hypotheses of Theorem 1 hold. In addition, suppose a0, . . . , an are Bohr
almost periodic functions in C(R;L∞(Ω)). Assume also that f is Stepanov almost periodic
in Lp0(·),loc(Q). Moreover, the set

Fε := {σ | sup
τ∈R

∫ τ

τ−1

∫
Ω

|f(x, t+ σ)− f(x, t)|p0(x)dxdt ≤ ε,

max
j∈{0,...,n}

sup
t∈R
‖aj(·, t+ σ)− aj(·, t)‖L∞(Ω) ≤ ε}

is relatively dense for each ε > 0.
Then the (unique) weak solution of (1), (2) is Bohr almost periodic in C(R;L2(Ω)) and

Stepanov almost periodic in W̃ 1,0
p(·),loc(Q) .

2. Auxiliary statements. We start with some auxiliary results, which will be used below.

Lemma 1. Given t1, t2 ∈ R, we assume that a function w ∈ W̃ 1,0
p(·)(Qt1,t2) satisfies the identity∫ t2

t1

∫
Ω

{( n∑
i=1

giψxi + g0ψ
)
ϕ− wψϕ′

}
dxdt = 0, ψ ∈ W̃ 1

p(·)(Ω), ϕ ∈ C1
0(t1, t2) (7)

for some functions gj ∈ Lpj ′(·)
(
Qt1,t2

)
(j ∈ {0, . . . , n}). Then w ∈ C([t1, t2];L2(Ω)) and the

following equality

θ(t)

∫
Ω

|w(x, t)|2dx
∣∣∣t=τ2
t=τ1
−
∫ τ2

τ1

∫
Ω

|w|2θ′dxdt+ 2

∫ τ2

τ1

∫
Ω

( n∑
i=1

giwxi + g0w
)
θdxdt = 0 (8)

holds for all τ1, τ2 ∈ [t1, t2] (τ1 < τ2), θ ∈ C1([t1, t2]).

This statement can be proved similarly to Lemma 1 in [4].
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Lemma 2. Given t1, t2 ∈ R such that t2 − t1 ≥ 1 and a ∈ A, we suppose that functions u1

and u2 from W̃ 1,0
p(·)(Qt1,t2) ∩ C([t1, t2];L2(Ω)) fulfill the following identities∫ t2

t1

∫
Ω

{( n∑
i=1

ai|ul,xi |pi(x)−2ul,xiψxi + a0|ul|p0(x)−2ulψ
)
ϕ− ulψϕ′

}
dxdt =

=

∫ t2

t1

∫
Ω

( n∑
i=1

fi,lψxi + f0,lψ
)
ϕdxdt, ψ ∈ W̃ 1

p(·)(Ω), ϕ ∈ C1
0(t1, t2) (9)

with the functions fj,l ∈ Lpj ′(·)(Qt1,t2) (j ∈ {0, . . . , n}; l ∈ {1, 2}), respectively.
Then the following

max
t∈[t0−R0,t0]

∫
Ω

|u1(x, t)− u2(x, t)|2 dx+

∫ t0

t0−R0

∫
Ω

( n∑
i=1

|u1,xi − u2,xi |pi(x)+ |u1 − u2|p0(x)
)
dxdt ≤

≤ C4

{
R−2/(p+0 −2) +

∫ t0

t0−R

∫
Ω

n∑
j=0

|fj,1(x, t)− fj,2(x, t)|pj ′(x) dxdt
}

(10)

holds for each R, R0 and t0 such that R ≥ 1, 0 < R0 < R/2, and t1 ≤ t0−R < t0 ≤ t2. Here
C4 is a positive constant, which depends on K1 and p±j (j ∈ {0, . . . , n}) only.

Proof of Lemma 2. Let R,R0, t0 be as in the lemma statement, and η(t) := t− t0 +R, t ∈ R
(see [21]). For given ψ ∈ W̃ 1

p(·)(Ω), ϕ ∈ C1
0(t1, t2) we subtract equality (9) with l = 1, and

the same equality with l = 2. Then, putting

u12(x, t) := u1(x, t)− u2(x, t), fj,12(x, t) := fj,1(x, t)− fj,2(x, t),

a0,12(x, t) := a0(x, t)
(
|u1(x, t)|p0(x)−2u1(x, t)− |u2(x, t)|p0(x)−2u2(x, t)

)
,

ai,12(x, t) := ai(x, t)
(
|u1,xi(x, t)|pi(x)−2u1,xi(x, t)−|u2,xi(x, t)|pi(x)−2u2,xi(x, t)

)
(i ∈ {1, . . . , n}; j ∈ {0, . . . , n}; (x, t) ∈ Q),

we obtain an equality. From this equality using Lemma 1 with w = u12, gj = aj,12 − fj,12

(j ∈ {0, . . . , n}), θ = ηs, s := p−0 /(p
−
0 − 2), τ1 = t0 − R, τ2 = τ ∈ (t0 − R, t0], we get the

following equality

ηs(τ)

∫
Ω

|u12(x, τ)|2dx+ 2

∫ τ

t0−R

∫
Ω

{ n∑
i=1

ai,12(u12)xi + a0,12u12

}
ηsdxdt =

= s

∫ τ

t0−R

∫
Ω

|u12|2ηs−1dxdt+ 2

∫ τ

t0−R

∫
Ω

( n∑
i=1

fi,12(u12)xi + f0,12u12

)
ηsdxdt. (11)

We make corresponding estimates of the integrals in equality (11). First we note if r ∈ L∞(Ω)
and ess infx∈Ω r(x) ≥ 2, then in view of Lemma 1.2 of [5] we have the following inequality

(|s1|r(x)−2s1 − |s2|r(x)−2s2)(s1 − s2) ≥ 22−r+ |s1 − s2|r(x)

for each s1, s2 ∈ R and for almost all x ∈ Ω (here r+ := ess supx∈Ω r(x)). Using this inequality
we get ∫ τ

t0−R

∫
Ω

{ n∑
i=1

ai,12(u12)xi + a0,12 u12

}
ηsdxdt ≥
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≥ C5

∫ τ

t0−R

∫
Ω

( n∑
i=1

|(u12)xi |pi(x) + |u12|p0(x)
)
ηsdxdt, (12)

where C5 > 0 is a constant depending only on K1 and p+
j (j ∈ {0, . . . , n}).

Further we need the following inequality

a b ≤ ε|a|q + ε−1/(q−1)|b|q′ , a, b ∈ R, q > 1, 1/q + 1/q′ = 1, ε > 0, (13)

which is a consequence of standard Young’s inequality: a b ≤ |a|q/q + |b|q′/q′.
Putting (for almost all x ∈ Ω) q = p0(x)/2, q′ = p0(x)/(p0(x) − 2), a = |u12|2ηs/q,

b = ηs/q
′−1, ε = ε1 > 0, under (13) we obtain∫ τ

t0−R

∫
Ω

|u12|2ηs−1dxdt ≤ ε1

∫ τ

t0−R

∫
Ω

|u12|p0(x)ηsdxdt+

+ε
−2/(p−0 −2)
1

∫ τ

t0−R

∫
Ω

ηs−p0(x)/(p0(x)−2)dxdt, (14)

where ε1 ∈ (0, 1) is an arbitrary number.
Again using inequality (13), we get∫ τ

t0−R

∫
Ω

( n∑
i=1

fi,12(u12)xi+f0,12u12

)
ηsdxdt ≤ ε2

∫ τ

t0−R

∫
Ω

( n∑
i=1

|(u12)xi |pi(x)+|u12|p0(x)
)
ηsdxdt+

+

∫ τ

t0−R

∫
Ω

( n∑
j=0

ε
−1/(p−j −1)

2 |fj,12|pj
′(x)
)
ηsdxdt, (15)

where ε2 ∈ (0, 1) is an arbitrary number.
If ε1 and ε2 are sufficiently small positive, then from (11), (12), (14), (15) we get the

following

ηs(τ)

∫
ΩR

|u12(x, τ)|2dx+

∫ τ

t0−R

∫
Ω

{ n∑
i=1

|(u12)xi |pi(x) + |u12|p0(x)
}
ηsdxdt ≤

≤ C6

[ ∫ τ

t0−R

∫
Ω

ηs−p0(x)/(p0(x)−2)dxdt+

∫ τ

t0−R

∫
Ω

( n∑
j=0

|fj,12|pj
′(x)
)
ηsdxdt

]
, (16)

where C6 is a positive constant depending only on K1 and p±j (j ∈ {0, . . . , n}), and τ ∈
(t0 −R, t0] is an arbitrary number.

Note that 0 ≤ η(t) ≤ R, if t ∈ [t0 − R, t0], and η(t) ≥ R − R0, if t ∈ [t0 − R0, t0],
where R0 ∈ (0, R) is an arbitrary number. Using this and that R ≥ max{1; 2R0} (then,
in particular, we have R/(R − R0) = 1 + R0/(R − R0) ≤ 2), from (16) we get the needed
statement.

3. Proof of the main results.

Proof of Theorem 1. First we prove that there exists at most one weak solution of problem
(1), (2). Assume the contrary. Let u1, u2 be (different) weak solutions of this problem. Using
Lemma 2 we get

max
t∈[t0−R0,t0]

∫
Ω

|u1(x, t)− u2(x, t)|2dx ≤ C4R
−2/(p+0 −2), (17)
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where R,R0, t0 are arbitrary numbers such that R ≥ 1, 0 < R0 < R/2, t0 ∈ R.
We fix arbitrary numbers R0 > 0, t0 ∈ R, and pass to the limit in (17) as R→ +∞. As

a result we obtain that u1 = u2 almost everywhere on Qt0−R0,t0 . Since R0, t0 are arbitrary
numbers, we get u1 = u2 almost everywhere on Q. The obtained contradiction proves our
statement.

Now we are turning to a proof of the existence of a weak solution of problem (1), (2). For
each m ∈ N we consider an initial-boundary value problem for equation (1) in the domain
Qm = Ω × (−m,+∞) with homogeneous initial condition and boundary conditions (2),
namely: we are searching a function um ∈ W̃ 1,0

p(·),loc(Qm)∩C([−m,+∞);L2(Ω)), which satisfies
the initial condition: um|t=−m = 0 and the integral equality∫∫

Qm

{( n∑
i=1

ai|um,xi |pi(x)−2um,xiψxi + a0|um|p0(x)−2umψ
)
ϕ− umψϕ′

}
dxdt =

∫∫
Qm

fmψϕdxdt

(18)
for each ψ ∈ W̃ 1

p(·)(Ω), ϕ ∈ C1
0(−m,+∞), where fm(x, t) := f(x, t) if (x, t) ∈ Qm, and

fm(x, t) := 0 if (x, t) ∈ Q \ Qm. The existence and uniqueness of the function um follows
from the well-known fact (see, for example, [14]).

We extend um to Q by zero and this extension is denoted by um again. Further, we prove
that the sequence {um} converges in Up,loc to a weak solution of problem (1), (2). Indeed,
note that for each m ∈ N the fuction um is a weak solution of the problem, which differs
from problem (1), (2) in fm instead of f . Using Lemma 2 for each natural numbers m and
k we have

max
t∈[t0,t0−R0]

∫
Ω

|um(x, t)− uk(x, t)|2dx+

∫ t0

t0−R0

∫
Ω

[ n∑
i=1

|um,xi−uk,xi |pi(x) + |um−uk|p0(x)
]
dxdt ≤

≤ C4

{
R−2/(p+0 −2) +

∫ t0

t0−R

∫
Ω

|fm − fk|p0(x)dxdt
}

(19)

where R,R0, t0 are arbitrary numbers such that t0 ∈ R, R ≥ 1, 0 < R0 < R/2.
We show that for fixed t0 and R0 the left hand side of inequality (19) converges to zero

as m, k → +∞. Actually, let ε > 0 be an arbitrary indefinitely small number. We choose
R ≥ max{1, 2R0} to be large enough such that the following inequality holds

C4R
−2/(p+0 −2) < ε. (20)

It is possible as p+
0 − 2 > 0. Under (20) for arbitrary m, k ∈ N such that max{−m,−k} ≤

t0−R (then fm = fk almost everywhere on Ω× (t0−R, t0)) the right hand side of inequality
(19) is less then ε. Hence the restriction of the terms of the sequence {um} to Qt0−R0,t0

is a Cauchy sequence in W̃ 1,0
p(·)(Qt0−R0,t0) ∩ C([t0 − R0, t0];L2(Ω)). Therefore, since t0 and

R0 are arbitrary, it follows that there exists a function u ∈ Up,loc such that um → u in
Up,loc. Taking into account that in (18) the integration on Qm can be replaced with the
integration on Q, we pass to the limit in this equality as m → ∞. As a result we get (4)
for all ψ ∈ W̃ 1

p(·)(Ω) and ϕ ∈ C1
0(R). It means that the function u is a weak solution of

problem (1), (2). Estimate (5) directly follows from Lemma 2 when putting u1 = u, u2 = 0,
f0,1 = f, fi,1 = 0 (i ∈ {1, . . . , n}), fj,2 = 0 (j ∈ {0, . . . , n}). Continuous dependence of
a weak solution of problem (1), (2) on input data is easily proved using Lemma 2 with uk
and fk instead of u1 and f0,1 respectively, and also u and f instead of u2 and f0,2 respectively,
putting fi,1 = fi,2 = 0 (i ∈ {1, . . . , n}).
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Proofs of Corollaries 1–3. These statements follow from estimate (5).

Proof of Theorem 2. Let u denote a weak solution of problem (1), (2). Put u(µ)(x, t) :=

u(x, t + µ), f (µ)(x, t) := f(x, t + µ, ) a
(µ)
j (x, t) := aj(x, t + µ), (x, t) ∈ Q, where µ ∈ R.

Substitute t by t + µ (µ ∈ R is arbitrary at present) in (4). As a result we get an identity,
which we will write in the form∫∫

Q

{( n∑
i=1

a
(0)
i |u(µ)

xi
|pi(x)−2u(µ)

xi
ψxi + a

(0)
0 |u(µ)|p0(x)−2u(µ)ψ

)
ϕ− uψϕ′

}
dxdt =

=

∫∫
Q

( n∑
i=1

(a
(0)
i − a

(µ)
i )|u(µ)

xi
|pi(x)−2u(µ)

xi
ψxi + (a

(0)
0 − a

(µ)
0 )|u(µ)|p0(x)−2u(µ)ψ

)
ϕdxdt (21)

for all ψ ∈ W̃ 1
p(·)(Ω), ϕ ∈ C1

0(R). From this, putting µ = σ and using periodicity of functions
aj(j ∈ {0, . . . , n}) and f , we get that the function u(σ) is a weak solution of problem (1), (2).
Taking this into consideration and the fact of uniqueness of a weak solution of the problem
(1), (2), we get u(0) = u(σ) almost everywhere on Q. Therefore the statement of Theorem 2
is correct.

Proof of Theorem 3. Similarly as in the proof of Theorem 2 we pass to equality (21). Let
δ∗ := min{1;K1/2} and σ ∈ Fδ∗ , where Fε is defined in the theorem statement. We consider
identity (21) at first for µ = 0 and afterwards for µ = σ. Then using Lemma 2 with u1 =

u(0), u2 = u(σ), aj = a
(0)
j (j ∈ {0, . . . , n}), f0,1 = f (0), f0,2 = (a

(0)
0 −a

(σ)
0 )|u(σ)|p0(x)−2u(σ)+f (σ),

fi,1 = 0, fi,2 = (a
(0)
i − a

(σ)
i )|u(σ)

xi |pi(x)−2u
(σ)
xi (i ∈ {1, . . . , n}), t0 = τ ∈ R, R0 = 1, R = l ∈

N (l ≥ 2), we get

max
t∈[τ−1,τ ]

∫
Ω

|u(σ)(x, t)− u(0)(x, t)|2dx+

∫ τ

τ−1

∫
Ω

[ n∑
i=1

|u(σ)
xi
− u(0)

xi
|pi(x) + |u(σ) − u(0)|p0(x)

]
dxdt ≤

≤ C4

(
l−2/(p+0 −2) +

∫ τ

τ−l

∫
Ω

{(
|f (σ) − f (0)|+ |a(σ)

0 − a
(0)
0 ||u(σ)|p0(x)−1

)p0′(x)
+ (22)

+
n∑
i=1

|a(σ)
i − a

(0)
i |pi

′(x) · |u(σ)
xi
|pi(x)

}
dxdt

)
.

Under the inequality (a+ b)q ≤ 2q−1(aq + bq), a ≥ 0, b ≥ 0, q ≥ 1, we have∫ τ

τ−l

∫
Ω

(
|f (σ) − f (0)|+ |a(σ)

0 − a
(0)
0 ||u(σ)|p0(x)−1

)p0′(x)
dxdt ≤ 21/(p−0 −1)

∫ τ

τ−l

∫
Ω

(
|f (σ) − f (0)|p0′(x)+

+|a(σ)
0 − a

(0)
0 |p0

′(x)|u(σ)|p0(x)
)
dxdt ≤ 21/(p−0 −1)

∫ τ

τ−l

∫
Ω

(
|f (σ) − f (0)|p0′(x)dxdt+ (23)

+
(

sup
t∈R
‖a(σ)

0 (·, t)− a(0)
0 (·, t)‖L∞(Ω)

)(p+0 )′
∫ τ

τ−l

∫
Ω

|u(σ)|p0(x)dxdt,∫ τ

τ−l

∫
Ω

( n∑
i=1

|a(σ)
i − a

(0)
i |pi

′(x) · |u(σ)
xi
|pi(x)

)
dxdt ≤

≤ max
i∈{1,...,n}

(
sup
t∈R
‖a(σ)

i (·, t)− a(0)
i (·, t)‖L∞(Ω)

)(p+i )′
∫ τ

τ−l

∫
Ω

n∑
i=n

|u(σ)
xi
|pi(x)dxdt, (24)
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where (p+
j )′ := p+

j /(p
+
j − 1) (j ∈ {0, . . . , n}).

Since σ belongs to Fδ∗ and f is Stepanov almost periodic, then a(σ)(x, t) ≥ K1/2 (j ∈
{0, . . . , n}) for a. e. (x, t) ∈ Q and sups∈R

∫ s
s−1

∫
Ω
|f (σ)(x, t)|p0(x)dxdt ≤ C6, where C6 > 0 is

a number independent on σ. Hence, by Corollary 2 we have

sup
s∈R

∫ s

s−1

∫
Ω

[
|u(σ)|p0(x) +

n∑
i=1

|u(σ)
xi
|pi(x)

]
dxdt ≤ C7, (25)

where C7 > 0 is a constant independent on σ.
Thus, from (22) using (23) and (24), we obtain∫
Ω

|u(σ)(x, τ)− u(0)(x, τ)|2dx+

∫ τ

τ−1

∫
Ω

[ n∑
i=1

|u(σ)
xi
− u(0)

xi
|pi(x) + |u(σ) − u(0)|p0(x)

]
dxdt ≤

≤ C8

{
l−2/(p+0 −2) +

l∑
k=1

∫ τ−k+1

τ−k

∫
Ω

|f (σ) − f (0)|p0′(x)dxdt+ (26)

+ max
j∈{0,...,n}

(
sup
t∈R
||a(σ)

j (·, t)− a(0)
j (·, t)||L∞(Ω)

)(p+j )′
l∑

k=1

∫ τ−k+1

τ−k

∫
Ω

[
|uσ|p0(x) +

n∑
i=1

|u(σ)
xi
|pi(x)

]
dxdt

}
,

where C8 is a constant independent on τ, σ and l.
Let ε > 0 be an arbitrary small fixed number. We show that the set

Uε :=
{
σ ∈ R

∣∣∣ sup
t∈R

∫
Ω

|u(x, t+ σ)− u(x, t)|2dx ≤ ε,

sup

∫ τ

τ−1

∫
Ω

[ n∑
i=1

|uxi(x, t+ σ)− uxi(x, t)|pi(x) + |u(x, t+ σ)− u(x, t)|p0(x)|
]
dxdt ≤ ε

}
contains a set Fδ for some δ ∈ (0, δ∗] implying the relative density of the set. Indeed, choose
large enough l ∈ N (l ≥ 2) satisfying the following inequality C8l

−2/(p+0 −2) ≤ ε/2, and fix this
value l. Then take δ ∈ (0, δ∗] such that the following inequality remains true

C8

(
l · δ + max

j∈{0,...,n}
δ(p+j )′ · l · C7

)
≤ ε

2
. (27)

Therefore, if δ ∈ Fδ, then the right hand side of inequality (26) is less than or equal to ε.
This implies that Fδ ⊂ Uε, that is the fact we had to prove.

REFERENCES

1. Tihonov A.N. Uniqveness theorems for the heat equation// Matem. sbornik. – 1935. – №2. – P. 199–216.
2. Lions J.-L. Quelques methodes de resolution des problems aux limities non lineaires. – Gauthier-Villars,

Paris, 1969.
3. Olejnik O.A., Iosifjan G.A. Analog of Sen-Venan principle and uniqueness of solutions of boundary

problems for parabolic equations in unbounded domains// Uspehi matem. nauk. – 1976. – V.31, №6. –
P. 142–166. (in Russian)



UNBOUNDED, PERIODIC AND ALMOST PERIODIC SOLUTIONS 91

4. Pankov A.A. Bounded and almost periodic solutions of nonlinear differential operator equations. – Kyiv:
Naukova dumka, 1985. – 184 p.

5. Bokalo N.M. On problem without initial conditions for some classes of nonlinear parabolic equations//
Trudy Seminara imeni I.G. Petrovskogo. – 1989. – V.14. – P. 3–44. (in Russian)

6. Pukach P.Ja. On problem without initial conditions for some nonlinear degenarated parabolic system//
Ukr. Mat. Jour. – 1994. – V.46, №4. – P. 454–456. (in Ukrainian)

7. Showalter R.E., Monotone operators in Banach space and nonlinear partial differential equations. –
Mathematical surveys and monographs, 49. – Amer. Math. Soc., Providence, 1997.

8. Bokalo M.M. Well-posedness of problems without initial conditions for nonlinear parabolic variational
inequalities// Nelinejnye granichnye zadachi. – 1998. – V.8. – P. 58–63.

9. Bokalo M.M., Sikorskyy V.M. About properties of solutions of problem without initial conditions for
equations generalized politropic filtration equation// Visnyk Lviv. Universytetu. Serija meh.-mat. – 1998.
– V.51. – P. 85–98. (in Ukrainian)

10. Bokalo M.M., Pauchok I.B. On the well-posedness of a Fourier problem for nonlinear parabolic equations
of higher order with variable exponents of nonlinearity// Mat. Stud. – 2006. – V.24, №1. – P. 25–48. (in
Ukrainian)

11. Bokalo M., Lorenzi A. Linear evolution first-order problems without initial conditions// Milan Journal
of Mathematics. – 2009. – V.77. – P. 437–494.
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