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An optimal control problem for systems described by Fourier problem for nonlinear
parabolic equations is studied. Control function occur in the coefficients of the state equations.
Different types of observation is considered. The existence of the optimal control is proved.

Introduction. Optimal control of determined systems governed by partial differential equa-
tions (PDEs) is currently of much interest. Many ideas and methods of solving different
optimal control problems for systems governed by evolutionary equations and variational
inequalities were considered in monograph [25]. Numerous generalizations of problems consi-
dered there were investigated in many papers. In particular, papers [1], [4], [5], [6], [16]-[18],
[19], [21], [26], [27], [32], [33] are devoted to this topic. In all these papers the state of
controlled system is described by the initial-boundary value problems for parabolic equati-
ons.

Optimal control problems for PDEs are most completely studied for the case in which
the control functions occur either on the right-hand sides of the state equations, or the
boundary or initial conditions (see for example, [13], [30], [34]). So far, problems in which
control functions occur in the coefficients of the state equations are less studied (see for
example, [1], [27], [32], [33]). A simple model of such type problem is the following.

Let Ω be a bounded domain in Rn with piecewise smooth boundary Γ, T > 0, Q :=
Ω× (0, T ), Σ := Γ× (0, T ). A state of controlled system for given control v ∈ U := L∞(Q) is
defined by a weak solution y = y(v) = y(x, t; v), (x, t) ∈ Q, from the space L2(0, T ;H1

0 (Ω))∩
C([0, T ];L2(Ω)), of the following problem

yt −∆y + vy = f, y
∣∣∣
Σ
= 0, y

∣∣∣
t=0

= y0,

where y0 ∈ L2(Ω) and f ∈ L2(Q).
The cost functional is J(v) := ∥y(·, T ; v)− z0(·)∥2L2(Ω) + µ∥v∥2L∞(Q) ∀v ∈ U , where µ > 0,

z0 ∈ L2(Ω) are given. An optimal control problem is to find a function u ∈ U∂ :=
{
v ∈ U :

v ≥ 0 a. e. on Q
}

such that
J(u) = inf

v∈U∂

J(v).
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In [1] and [27] control functions appears as coefficients at lower derivatives, and in [32],
[33] the control functions are coefficients at higher derivatives. In [27] the existence and uni-
queness of optimal control in the case of final observation was shown and a necessary opti-
mality condition in the form of the generalized rule of Lagrange multipliers was obtained. In
paper [1] authors proved the existence of at least one optimal control for system governed by
a system of general parabolic equations with degenerate discontinuous parabolicity coeffici-
ent. In papers [32], [33] the authors consider cost function in general form, and as special case
it includes different kinds of specific practical optimization problems. The well-posedness of
the problem statement is investigated and a necessary optimality condition in the form of
the generalized principle of Lagrange multiplies is established in this papers.

In papers [4], [16]–[19], [21], [26] authors investigate optimal control of systems governed
by nonlinear PDEs. In particular, in [4] the problem of allocating resources to maximize
the net benefit in the conservation of a single species is studied. In [17] the optimal control
problem is converted to an optimization problem which is solved using a penalty functi-
on technique. Paper [21] presents analytical and numerical solutions of an optimal control
problem for quasilinear parabolic equations. In [23] the authors consider the optimal control
of a degenerate parabolic equation governing a diffusive population with logistic growth
terms. In paper [26] optimal control for semilinear parabolic equations without Cesari-type
conditions is investigated.

In this paper, we study an optimal control problem for systems whose states are descri-
bed by problems without initial conditions or, other words, Fourier problems for nonlinear
parabolic equations.

The problem without initial conditions for evolution equations describes processes that
started a long time ago and initial conditions do not affect on them in the actual time
moment. Such problem were investigated in the works of many mathematicians (see [7, 12, 31]
and bibliography there). Fourier problem for linear and a plenty of nonlinear evolution equati-
ons are correct only under some restrictions on the growth of solutions and input data as
the time variable leads to −∞ ([7], [24], [28], [29], [31]). However, there are some nonlinear
parabolic equations for which the Fourier problem are uniquely solvable without any condi-
tions at infinity ([8]–[10]). In our paper the state of control system is governed by Fourier
problem for a nonlinear parabolic equation of such type. The model example of considered
optimal control problem is a problem which differs from the previous one (see beginni-
ng of this section) by the following facts: the initial moment is −∞ and, correspondingly,
the state equation and control functions are considered in the domain Q = Ω × (−∞, T ),
a boundary condition is given on the surface Σ = ∂Ω × (−∞, T ). A state of controlled
system for given control v ∈ U := L∞(Q) is defined by a weak solution y from the space
L2

loc(−∞, T ;H1
0 (Ω)) ∩ L

p
loc(−∞, T ;Lp(Ω)) ∩ C((−∞, T ];L2(Ω)), of the following problem

yt −∆y + |y|p−2y + vy = f, y
∣∣∣
Σ
= 0,

where p > 2 is constant and f ∈ Lp′

loc(−∞, T ;Lp′(Ω)), 1/p+ 1/p′ = 1.
As we know among numerous works devoted to the optimal control problems for PDEs,

only in papers [5], [6] the state of controlled system is described by the solution of Fourier
problem for parabolic equations. In the current paper, unlike the above two, we consider
optimal control problem in case when the control functions occur in the coefficients of the
state equation and cost functional unites observations of different types (final, distributed,
etc.). The main result of this paper is existence of the solution of this problem.
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The outline of this paper is as follows. In Section 1, we give notations, definitions of
function spaces and auxiliary results. In Section 3, we formulate the optimal control problem.
In Section 2, we prove existence and uniqueness of the solutions for the state equations.
Furthermore, we obtain a priori estimates for the weak solutions of the state equations.
Finally, the existence of the optimal control is presented in Section 4.

1. Preliminaries. Let n be a natural number, Rn be the linear space of ordered collections
x = (x1, . . . , xn) of real numbers with the norm |x| := (|x1|2+ . . .+ |xn|2)1/2. Suppose that Ω
is a bounded domain in Rn with piecewise smooth boundary Γ. Set S := (−∞, 0], Q := Ω×S,
Qt1,t2 := Ω× (t1, t2) for all t1, t2 ∈ R (t1 < t2), Σ := Γ× S.

For every q ∈ [1,∞] denote by Lq
loc(Q) the linear space of measurable functions on Q

such that their restrictions to any bounded measurable set Q′ ⊂ Q belong to the space
Lq(Q′). The sequence {zk} is said to be strongly (resp., weakly) convergent to z in Lq

loc(Q)
(q ∈ [1,∞)) if it is strongly (resp., weakly) convergent to z in Lq(Q′) for every Q′ ⊂ Q.

Let X be an arbitrary Banach space with the norm ∥ · ∥X . Denote by Lq
loc(S;X) (q ∈

[1,∞]) the linear space of measurable functions defined on S with values inX, whose restricti-
ons to any segment [a, b] ⊂ S belong to the space Lq(a, b;X). We say that zm −→

m→∞
z strongly

(resp., weakly) in Lq
loc(S;X) if for each t1, t2 ∈ S (t1 < t2) we have zm −→

m→∞
z strongly (resp.,

weakly) in Lq(t1, t2;X).
Denote by C1

c (a, b), where −∞ ≤ a < b ≤ +∞, the linear space of continuously di-
fferentiable functions on (a, b) with compact supports. By C(S;X) we denote the space of
continuous functions determined on S with values inX. We say that zm −→

m→∞
z in C(S;X)

if for each t1, t2 ∈ S (t1 < t2) we have maxτ∈[t1,t2] ∥z(τ)−zk(τ)∥X −→
k→∞

0.

Let H1(Ω) := {v ∈ L2(Ω) | vxi
∈ L2(Ω) (i = 1, n)} be a Sobolev space, which is a Hilbert

space with respect to the scalar product (v, w)H1(Ω) :=
∫
Ω

{∑n
i=1 vxi

wxi
+ vw

}
dx and the

corresponding norm ∥v∥H1(Ω) := (
∫
Ω

{∑n
i=1 |vxi

|2 + |v|2
}
dx)1/2. Under H1

0 (Ω) we mean the
closure in H1(Ω) of the space C∞

c (Ω) consisting of infinitely differentiable functions on Ω
with compact supports.

Also define ∂0z := z, ∂jz := zxj
if j ∈ {1, . . . , n}.

We denote V q(Ω) := H1
0 (Ω) ∩ Lq(Ω), where q > 1 is arbitrary.

It is well known that(
V q(Ω)

)′
:= H−1(Ω) + Lq′(Ω), q′ =

q

q − 1
.

Also we define Y q
loc(Q) := L2

loc(S;H
1
0 (Ω)) ∩ Lq

loc(Q) ∩ C(S;L2(Ω)). We say that zm −→
m→∞

z

strongly in Y q
loc(Q) if for each t1, t2 ∈ S(t1 < t2) we have zm −→

m→∞
z strongly in L2(t1, t2;

H1
0 (Ω))∩ Lq(Qt1,t2) ∩ C([t1, t2];L2(Ω)).

2. Formulation of the optimal control problem and the main result. Let U be
a closed linear subspace of L∞(Q), and one be a space of controls, for example, U := L∞(Q)
or U := {u ∈ L∞(Q) | v(x, t) = 0 for a.e. (x, t) ∈ Q \Qt∗,0}, where t∗ < 0 is arbitrary fixed.
Assume that U∂ := {v ∈ U |v ≥ 0 a. e. in Q} be the set of admissible controls.

We assume that the state of the investigated evolutionary system for a given control
v ∈ U∂ is described by a weak solution of the problem

yt −
n∑

i=1

d

dxi
ai(x, t, y,∇y) + â0(x, t, y,∇y) + v(x, t)g(x, t, y) = f(x, t), (x, t) ∈ Q, (1)
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y
∣∣
Σ
= 0, (2)

where functions a0, a1, . . . , an, f and g satisfy the following conditions:

(A1) functions

Q× R× Rn ∋ (x, t, s, ξ) 7→ ai(x, t, s, ξ) ∈ R (i = 1, n),

Q× R× Rn ∋ (x, t, s, ξ) 7→ â0(x, t, s, ξ) ∈ R

are Caratheodory functions, i.e., â0(x, t, ·, ·), ai(x, t, ·, ·) : R × Rn → R are continuous
functions for a.e. (x, t) ∈ Q, and â0(·, ·, s, ξ), ai(·, ·, s, ξ) : Q → R is the measurable
function for every (s, ξ) ∈ R×Rn; moreover, â0(x, t, 0, 0) = 0, ai(x, t, 0, 0) = 0 (i = 1, n)
for a. e. (x, t) ∈ Q;

(A2) there exists p > 2 such that for every i ∈ {1, . . . , n}, for every (s, ξ) ∈ R× Rn, and for
a.e. (x, t) ∈ Q the following estimates are valid

|â0(x, t, s, ξ)| ≤ C1

(
|s|p−1 + |ξ|2(p−1)/p

)
+ h0(x, t),

|ai(x, t, s, ξ)| ≤ C2

(
|s|p/2 + |ξ|

)
+ hi(x, t), i = 1, n,

where C1, C2 = const > 0, h0 ∈ Lp′

loc(Q), hi ∈ L2
loc(Q) (i = 1, n);

(A3) for every (s1, ξ
1), (s2, ξ2) ∈ R×Rn and for a.e. (x, t) ∈ Q the following inequality holds

n∑
i=1

(
ai(x, t, s1, ξ

1)− ai(x, t, s2, ξ
2)
)
(ξ1i − ξ2i )

+
(
â0(x, t, s1, ξ

1)− â0(x, t, s2, ξ
2)
)
(s1 − s2) ≥ K

[
|s1 − s2|p + |ξ1 − ξ2|2

]
,

where K = const > 0;
(F) f ∈ Lp′

loc(Q);

(G1) the function Q× R ∋ (x, t, s) 7→ g(x, t, s) ∈ R is the Caratheodory function, i.e.,
g(x, t, ·) : R → R is the continuous function for a.e. (x, t) ∈ Q, g(·, ·, s) : Q→ R
is the measurable function for every s ∈ R; moreover, g(·, ·, 0) ∈ L2

loc(Q);
(G2) for every s1, s2 ∈ R and for a.e. (x, t) ∈ Q the following inequalities hold

0 ≤
(
g(x, t, s1)− g(x, t, s2)

)(
s1 − s2

)
≤M |s1 − s2|2,

where M > 0 is a constant.

Hereafter p′ = p
p−1

, i.e., 1
p
+ 1

p′
= 1; ∇y = (yx1 , . . . , yxn), |∇y|2 =

∑n
i=1 |yxi

|2.

Remark 1. Example of g : g(x, t, s) = g0(x, t)g1(s), where g0 ∈ L∞(Q), g0 ≥ 0 for a.e.
(x, t) ∈ Q, and g1 : R → R and |g1(s1)− g1(s2)| ≤M |s1 − s2| for all s1, s2 ∈ R.

Definition 1. The function y is called a weak solution of problem (1), (2) if it belongs to
Y p

loc(Q) and the following integral equality holds∫∫
Q

{
− yψφ′ +

n∑
i=1

ai(x, t, y,∇y)∂iψφ+ â0(x, t, y,∇y)ψφ+ vg(x, t, y)ψφ
}
dxdt

=

∫∫
Q

fψφdxdt, ψ ∈ V p(Ω), φ ∈ C1
c (−∞, 0). (3)
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Remark 1. Research methodology of problems similar to problem (1), (2) is quite well
developed, in particular, in papers of one of the authors ([8]–[10], [12]). But exactly the
same problem as considered here, more precisely, Fourier problem for semilinear parabolic
equation in bounded spatial variables domains, is not investigated in literature. Beside this
local estimates of the weak solution are important for us. So, for a complete presentation of
the material, in Section 3 we give full proof of existence and uniqueness of the weak solution
and its local estimates.

A weak solution y of the specified problem will be called a weak solution of problem
(1), (2) for control v, and will be denoted by y, or y(v), or y(x, t), (x, t) ∈ Q, or y(x, t; v),
(x, t) ∈ Q. The existence and uniqueness of a weak solution of problem (1), (2) (for a given
v ∈ U∂) is shown in Section 3 (see Theorem 2).

We assume that the cost functional has the form

J(v) := G(y(·, ·; v)) + µ∥v∥L∞(Q), (4)

where µ > 0 is arbitrary fix and functional G satisfies following condition:

(J ) G : Y p
loc(Q) → [0,+∞) is lower semicontinuous in L2

loc(S;L
2(Ω)), or C(S;L2(Ω)), or

L2
loc(S;L

2(Ω)) ∩ C(S;L2(Ω)).

Remark 2. For example we may choose functional G as following

G(y(·, ·; v)) := µ1

∫
S

γ(t)∥y(·, t; v)− yd,1(·, t)∥2L2(Ω)dt

+µ2max
t∈S

[
ρ(t)∥y(·, t; v)− yd,2(·, t)∥2L2(Ω)

]
+

N∑
i=1

µ3,i∥y(·, ti; v)− zd,i(·)∥2L2(Ω), v ∈ U,

where N ∈ N, yd,1 ∈ L2
loc(S;L

2(Ω)), yd,2 ∈ C(S;L2(Ω)), zd,i ∈ L2(Ω) (i = 1, N), γ ∈ L∞(S)
and ρ ∈ C(S) are nonnegative functions, which vanish outside some bounded interval, µ1 ≥
0, µ2 ≥ 0, µ3,i ≥ 0 (i = 1, N) are given and µ1 + µ2 +

∑N
i=1 µ3,i > 0, and ti ∈ S (i = 1, L) are

any fixed points for some L ∈ N.

We consider the following optimal control problem: find a control u ∈ U∂ such that

J(u) = inf
v∈U∂

J(v). (5)

We briefly call this problem (5), and its solutions will be called optimal controls.

The main result of this paper is the following statement.

Theorem 1. Suppose that conditions (A1)–(A3), (F), (G1), (G2) and (J ) hold. Then prob-
lem (5) has a solution.

3. Well-posedness of the problem without initial conditions for nonlinear para-
bolic equations.
3.1. Formulation of the problem and corresponding results.
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Theorem 2. Suppose that conditions (A1)–(A3), (G1), (G2) and (F) hold. Then there exists
a unique weak solution of (1), (2). In addition, the estimate

max
t∈[t0−R0,t0]

∫
Ω

|y(x, t)|2dx+
∫ t0

t0−R0

∫
Ω

[
|∇y|2 + |y|p

]
dxdt ≤

≤ C
{
R−2/(p−2) +

∫ t0

t0−R

∫
Ω

|f |p′dxdt
}

(6)

holds for each t0, R0 and R such that t0 ∈ S, R0 > 0 and R > max{1; 2R0}. Here C is
a positive constant which depends on K, p and mesnΩ only.

Hereafter mesnΩ means the Lebesgue measure of Ω.

Remark 3. Note that Theorem 2 has no conditions imposed on the behaviour of the solution
and the growth of the functions aj (j = 0, . . . , n) as well as on the behaviour of f as t→ −∞.
However, the theorem is not true for the case when p = 2 (see, for example, [12]). Therefore
the condition p > 2 is essential.

3.2. Auxiliary statements.

Lemma 1. Suppose that a function z ∈ L2(t1, t2;H
1
0 (Ω))∩Lp(Qt1,t2), where t1, t2 ∈ R (t1 <

t2), satisfies the identity∫ t2

t1

∫
Ω

{
− zψφ′ +

n∑
i=0

gi∂iψφ
}
dxdt = 0, ψ ∈ V p(Ω), φ ∈ C1

c (t1, t2), (7)

for some gi ∈ L2(Qt1,t2) (i = 1, n), g0 ∈ Lp′(Qt1,t2).
Then

(i) the function z belongs to the space C([t1, t2];L2(Ω)) and for every θ ∈ C1([t1, t2]) and
for all τ1, τ2 ∈ [t1, t2] (τ1 < τ2) we have

1

2
θ(t)

∫
Ω

|z(x, t)|2dx
∣∣∣t=τ2

t=τ1
− 1

2

∫ τ2

τ1

∫
Ω

|z|2θ′dxdt+
∫ τ2

τ1

∫
Ω

n∑
i=0

gi∂izθdxdt = 0; (8)

(ii) the derivative zt of the function z in the sense D′(t1, t2; (V p(Ω))′
)

(the distributions
space) belongs to Lp′

(
t1, t2; (V

p(Ω))′
)
, furthermore∫ t2

t1

∥zt(·, t)∥p
′

(V p(Ω))′dt ≤ C3

[ n∑
i=1

∥gi∥p
′

Lp′ (t1,t2;L2(Ω))
+ ∥g0∥p

′

Lp′ (Qt1,t2 )

]
, (9)

where C3 > 0 is a constant depending on t1, t2, p and n only.

Proof. The first statement follows directly from Lemma 2 of [11]. Let us prove the second
statement. Firstly note that the following continuous and dense embeddings hold

V p(Ω) ⊂ L2(Ω) ⊂
(
V p(Ω)

)′
. (10)

Since the spaces L2(t1, t2;V
p(Ω)), Lp′(t1, t2; (V

p(Ω))′) can be identified with subspaces of
the space of distributions D′(t1, t2; (V

p(Ω))′), then it allows us to speak about derivatives of
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functions from L2(t1, t2;V
p(Ω)) in the sense of D′(t1, t2; (V

p(Ω))′) and their belonging to the
space Lp′(t1, t2; (V

p(Ω))′).
Let us rewrite equality (7) in the form

−
∫ t2

t1

∫
Ω

zψφ′dxdt = −
∫ t2

t1

∫
Ω

n∑
i=0

gi∂iψφdxdt, ψ ∈ V p(Ω), φ ∈ C1
c (t1, t2). (11)

According to the definition of the derivative of distributions from D′(t1, t2;
(
V p(Ω)

)′
), (11)

implies that zt belongs to the space Lp′(t1, t2; (V
p(Ω))′), and for almost all t ∈ (t1, t2)

⟨zt(·, t), ψ(·)⟩V p(Ω) = −
∫
Ω

n∑
i=0

gi(x, t)∂iψ(x)dx,

where ⟨· , ·⟩V p(Ω) denotes the canonical scalar product between (V p(Ω))′ and V p(Ω).
From this, using the Cauchy-Schwarz inequality, for almost all t ∈ (t1, t2) we obtain

|⟨zt(·, t), ψ(·)⟩V p(Ω)| ≤
n∑

i=1

∥gi(·, t)∥L2(Ω)∥∂iψ(·)∥L2(Ω) + ∥g0(·, t)∥Lp′ (Ω)∥ψ(·)∥Lp(Ω)

≤
( n∑

i=1

∥gi(·, t)∥2L2(Ω)

)1/2

∥ψ(·)∥H1(Ω) + ∥g0(·, t)∥Lp′ (Ω)∥ψ(·)∥Lp(Ω). (12)

From (12) it follows that for almost all t ∈ (t1, t2) the following estimate is valid

∥zt(·, t)∥(V p(Ω))′ ≤
( n∑

i=1

∥gi(·, t)∥2L2(Ω)

)1/2

+ ∥g0(·, t)∥Lp′ (Ω) ≤ (13)

≤
n∑

i=1

∥gi(·, t)∥L2(Ω) + ∥g0(·, t)∥Lp′ (Ω).

Hölder’s inequality implies( n∑
i=0

ai
)p′ ≤ (n+ 1)p

′/p
n∑

i=0

ap
′

i if ai ≥ 0, i = 0, n. (14)

From (13), using (14), we obtain

∥zt(·, t)∥p
′

(V p(Ω))′ ≤ C4

( n∑
i=1

∥gi(·, t)∥p
′

L2(Ω) + ∥g0(·, t)∥p
′

Lp′ (Ω)

)
, (15)

where C4 := (n+ 1)p
′/p.

Integrating (15) we get (9).

Lemma 2. Suppose that conditions (A1)–(A3) and (G1), (G2) hold. Given t1, t2 ∈ R such
that t2 − t1 ≥ 1, we suppose that functions yl (l = 1, 2) from L2(t1, t2;H

1
0 (Ω)) ∩ Lp(Qt1,t2) ∩

C([t1, t2];L
2(Ω)) satisfy the following identities∫ t2

t1

∫
Ω

(
−ylψφ′ +

n∑
i=1

ai(x, t, yl,∇yl)∂iψφ+ â0(x, t, y,∇y)ψφ+ vg(x, t, y)ψφ
)
dxdt =

=

∫ t2

t1

∫
Ω

flψφdxdt, ψ ∈ V p(Ω), φ ∈ C1
c (t1, t2), (16)
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with the functions fl ∈ Lp′(Qt1,t2) (l = 1, 2).
Then the inequality

max
t∈[t0−R0,t0]

∫
Ω

|y1(x, t)− y2(x, t)|2dx+
∫ t0

t0−R0

∫
Ω

(
|∇(y1 − y2)|2 + |y1 − y2|p

)
dxdt

≤ C
{
R−2/(p−2) +

∫ t0

t0−R

∫
Ω

|f1 − f2|p
′
dxdt

}
(17)

holds for each t0, R0 and R such that, R0 > 0, R ≥ max{1; 2R0} and t1 ≤ t0 −R < t0 ≤ t2.
Here C is such as in (6).

Proof. Let t0, R0, R be such as in the formulation of the lemma, and η(t) := t− t0+R, t ∈ R.
For given ψ ∈ V p(Ω), φ ∈ C1

c (t1, t2) we subtract equality (16) when l = 1, and the same
equality when l = 2. Then, putting

y12(x, t) := y1(x, t)− y2(x, t), f12(x, t) := f1(x, t)− f2(x, t),

g12(x, t, y1) := g(x, t, y1)− g(x, t, y2),

â0,12(x, t) := â0(x, t, y1(x, t),∇y1(x, t))− â0(x, t, y2(x, t),∇y2(x, t)),
ai,12(x, t) := ai(x, t, y1(x, t),∇y1(x, t))− ai(x, t, y2(x, t),∇y2(x, t))

(i = 1, . . . , n; (x, t) ∈ Q),

we receive an equality. From this equality using Lemma 1 with w = y12, g0 = â0,12+vg12−f12,
gj = aj,12 (j = 1, . . . , n), θ = ηs, s := 2p/(p − 2), τ1 = t0 − R, τ2 = τ ∈ (t0 − R, t0], we get
the equality

ηs(τ)

∫
Ω

|y12(x, τ)|2dx+ 2

∫ τ

t0−R

∫
Ω

[ n∑
i=1

ai,12(y)(∂iy12) + â0,12y12 + vg12y12

]
ηsdxdt (18)

= s

∫ τ

t0−R

∫
Ω

|y12|2ηs−1dxdt+ 2

∫ τ

t0−R

∫
Ω

f12y12η
sdxdt.

We make the corresponding estimates of the integrals of equality (18).
From conditions (A3) and (G2) we obtain∫ τ

t0−R

∫
Ω

[ n∑
i=1

ai,12(y)(∂iy12) + â0,12y12 + vg12y12

]
ηsdxdt ≥ K

∫ τ

t0−R

∫
Ω

(
|∇y12|2 + |y12|p

)
ηsdxdt.

(19)
Further we need the following inequality:

ab ≤ ε|a|q + ε−1/(q−1)|b|q′ , a, b ∈ R, q > 1, 1/q + 1/q′ = 1, ε > 0, (20)

which is a corollary from standard Young’s inequality: ab ≤ |a|q/q + |b|q′/q′.
Putting q = p/2, q′ = p/(p − 2), a = |y12|2ηs/q, b = ηs/q

′−1, ε = ε1 > 0, under (20) we
obtain∫ τ

t0−R

∫
Ω

|y12|2ηs−1dxdt ≤ ε1

∫ τ

t0−R

∫
Ω

|y12|pηsdxdt+ ε
−2/(p−2)
1

∫ τ

t0−R

∫
Ω

ηs−p/(p−2)dxdt, (21)

where ε1 > 0 is an arbitrary number.
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Again using inequality (20), we obtain∫ τ

t0−R

∫
Ω

f12y12η
sdxdt ≤ ε2

∫ τ

t0−R

∫
Ω

|y12|pηsdxdt+ ε
−1/(p−1)
2

∫ τ

t0−R

∫
Ω

|f12|p
′
ηsdxdt, (22)

where ε2 > 0 is an arbitrary number.
From (18) using (19), (21), (22) and (G2), if ε1 = K/(2s) and ε2 = K/4, we obtain the

following

ηs(τ)

∫
ΩR

|y12(x, τ)|2dx+K

∫ τ

t0−R

∫
Ω

{
|∇y12|2 + |y12|p

}
ηsdxdt ≤

≤ C5

[ ∫ τ

t0−R

∫
Ω

ηs−p/(p−2)dxdt+

∫ τ

t0−R

∫
Ω

|f12|p
′
ηsdxdt

]
, (23)

where C5 > 0 is a constant depending on K and p only.
Note that 0 ≤ η(t) ≤ R, if t ∈ [t0−R, t0], and η(t) ≥ R−R0, if t ∈ [t0−R0, t0]. Using this

and that R ≥ max{1; 2R0} (then, in particular, we have R/(R−R0) = 1+R0/(R−R0) ≤ 2),
from (23) we obtain the required statement.

3.3. Proof of Theorem 2.

Proof. First we prove that there exists at most one weak solution of problem (1), (2). Assume
the contrary. Let y1, y2 be (distinct) weak solutions of this problem. Using Lemma 2 we get

max
t∈[t0−R0,t0]

∫
Ω

|y1(x, t)− y2(x, t)|2dx ≤ CR−2/(p−2), (24)

where t0, R0, R are arbitrary numbers such that such that t0 ∈ S, R0 > 0, R > max{1; 2R0}.
We fix numbers R0 > 0, t0 ∈ S, and take the limit when R → +∞ in (24). As a result we

receive that y1 = y2 almost everywhere on Qt0−R0,t0 . Since R0 and t0 are arbitrary numbers,
we obtain y1 = y2 almost everywhere on Q. The obtained contradiction proves our statement.

Now we are turning to the proof of the existence of a weak solution of problem (1), (2). For
each m ∈ N we consider an initial-boundary value problem for equation (1) in the domain
Qm = Ω × (−m, 0) with a homogeneous initial condition and boundary conditions (2),
namely: we are searching a function ym ∈ L2(−m, 0;H1

0 (Ω)) ∩ Lp(Qm) ∩ C([−m, 0];L2(Ω))
which satisfies the initial condition ym|t=−m = 0 and the integral equality∫∫

Qm

{
− ymψφ

′ +
n∑

i=1

ai(ym)∂iψφ+ â0(ym)ψφ+ vg(ym)ψφ
}
dxdt =

=

∫∫
Qm

fmψφdxdt, ψ ∈ V p(Ω), φ ∈ C1
c (−m, 0), (25)

where fm(x, t) := f(x, t) if (x, t) ∈ Qm, and fm(x, t) := 0 if (x, t) ∈ Q \Qm.
The existence and uniqueness of the function ym follows from a well-known fact (see, for

example, [22, p. 539]).
We extend ym on Q by zero and for this extension we keep the same notation ym. Further

we prove that the sequence {ym} converges in Y p
loc(Q) to a weak solution of problem (1), (2).

Indeed, note that for each m ∈ N the fuction ym is a weak solution of the problem which
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differs from problem (1), (2) in fm instead of f . Using Lemma 2 for each natural numbers
m and k we have

max
t∈[t0,t0−R0]

∫
Ω

|ym(x, t)− yk(x, t)|2dx+
∫ t0

t0−R0

∫
Ω

[
|∇(ym − yk)|2 + |ym − yk|p

]
dxdt ≤

≤ C
{
R−2/(p−2) +

∫ t0

t0−R

∫
Ω

|fm − fk|p
′
dxdt

}
, (26)

where t0, R0, R are arbitrary numbers such that t0 ∈ S, R0 > 0, R > max{1; 2R0}.
Now we show that for fixed t0 and R0 the left side of inequality (26) converges to zero

when m, k → +∞. Actually, let ε > 0 be an arbitrary small number. We choose R to be big
enough such that the following inequality holds

CR−2/(p−2) < ε. (27)

This is possible as p > 2. Under (27) for arbitrary m, k ∈ N such that max{−m,−k} ≤ t0−R
(then fm = fk almost everywhere on Ω × (t0 − R, t0)) the right side of inequality (26) is
less than ε. From this it follows that the restriction of the terms of the sequence {ym} on
Qt0−R0,t0 is a Cauchy sequence in L2(t0−R0, t0;H

1
0 (Ω))∩Lp(Qt0−R,t0)∩C([t0−R0, t0];L

2(Ω)).
Therefore, since t0 and R0 are arbitrary, it follows that there exists a function y ∈ Y p

loc(Q)
such that ym → y strongly in Y p

loc(Q). From this and [20, Lemma 2.2] it easily follows∫∫
Q

( n∑
i=1

ai(ym)∂iψφ+ â0(ym)ψφ+ vg(ym)ψφ
)
dxdt −→

m→∞

−→
m→∞

∫∫
Q

( n∑
i=1

ai(y)∂iψφ+ â0(y)ψφ+ vg(y)ψφ
)
dxdt.

Taking into account that in (25) integration on Qm can be replaced by integration on Q, we
pass to the limit in equality (25) as m→ ∞. So, we abtain (52). It means that the function
y is a weak solution of problem (1), (2). Estimate (6) directly follows from Lemma 2 putting
y1 = y, y2 = 0, f1 = f, f2 = 0.

4. Proof of the main result.

Proof of Theorem 1. Since the cost functional J is bounded below, there exists a minimizing
sequence {vk} for J in U∂, i.e., J(vk) −→

k→∞
inf
v∈U∂

J(v). This and (4) imply that the sequence

{vk} is bounded in the space L∞(Q), that is

ess sup
(x,t)∈Q

|vk(x, t)| ≤ C6 ∀k ∈ N, (28)

where C6 > 0 is a constant, which does not depend on k.
Since for each k ∈ N the function yk := y(vk) (k ∈ N) is a weak solution of problem (1),

(2) for v = vk, the following identity holds∫∫
Q

{
− ykψφ

′ +
n∑

i=1

ai(yk)∂iψφ+ â0(yk)ψφ+ vkg(yk)ψφ
}
dxdt =

=

∫∫
Q

fψφdxdt, ψ ∈ V p(Ω), φ ∈ C1
c (−∞, 0). (29)
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According to Theorem 2 for each k ∈ N we have the estimate

max
t∈[t0−R0,t0]

∫
Ω

|yk(x, t)|2dx+
∫ t0

t0−R0

∫
Ω

[
|∇yk|2 + |yk|p

]
dxdt ≤

≤ C
{
R−2/(p−2) +

∫ t0

t0−R

∫
Ω

|f |p′dxdt
}
, (30)

where t0, R0, R are arbitrary such that t0 ∈ S, R0 > 0, R ≥ max{1, 2R0} and constant C is
independent on k ∈ N.

Let τ1, τ2 ∈ S(τ1 < τ2) be arbitrary. From (30) and condition (F) we obtain

∥∇yk∥L2(Qτ1,τ2 )
≤ C7, ∥yk∥Lp(Qτ1,τ2)

≤ C7, k ∈ N, (31)

where C7 > 0 is a constant independent on k.
From (A2) and (31) it follows∫ τ2

τ1

∫
Ω

|â0(yk)|p
′
dxdt ≤ C8

∫ τ2

τ1

∫
Ω

(
|yk|p + |∇yk|2 + |h0|p

′)
dxdt ≤ C9, (32)∫ τ2

τ1

∫
Ω

|ai(yk)|2dxdt ≤ C10

∫ τ2

τ1

∫
Ω

(
|yk|p + |∇yk|2 +

n∑
i=1

|hi|2
)
dxdt ≤ C11, i = 1, n, (33)

where C8, . . . , C11 are positive constants independent on k.
Since p > 2, then 1 < p′ < 2. Hence we have continuous embeddings

Lp(Qτ1,τ2) ⊂ L2(Qτ1,τ2) ⊂ Lp′(Qτ1,τ2). (34)

According to (33) and (34), we have(∫ τ2

τ1

∥ai(yk)∥p
′

L2(Ω)dt
)1/p′

≤
(∫ τ2

τ1

∥ai(yk)∥2L2(Ω)dt
)1/2

≤
√
C11, (35)

∥yk∥Lp′ (Qτ1,τ2 )
≤ C12∥yk∥Lp(Qτ1,τ2 )

≤ C13, (36)

where C12, C13 are positive constants independent on k.
From (G1), (G2) we easily get

|g(x, t, yk)| ≤M |yk|+ |g(x, t, 0)| для м. в. (x, t) ∈ Q.

Thus, using previous inequality, (14), (28), (31) and (36) we obtain∫ τ2

τ1

∫
Ω

|vkg(yk)|p
′
dxdt ≤ (C6)

p′
∫ τ2

τ1

∫
Ω

|g(yk)|p
′
dxdt (37)

≤ C14

∫ τ2

τ1

∫
Ω

(|yk|p
′
+ |g(x, t, 0)|p′)dxdt ≤ C15,

where C14, C15 are positive constants independent on k.
Taking into account statement (ii) of Lemma 1 and (14), according to condition (F),

(32), (35), (37) from (29) we obtain∫ τ2

τ1

∥yk,t∥p
′

(V p(Ω))′dt ≤ C3

[ n∑
i=1

∥ai(yk)∥p
′

Lp′ (t1,t2;L2(Ω))
+ ∥a0(yk) + vkg(yk)− f∥p

′

Lp′ (Qt1,t2 )

]
≤ C16,

(38)

where C16 > 0 is a constant independent on k.
Further, we will need the following statement.
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Proposition 1. (Aubin theorem, see [2] and [3, p. 393]). If q > 1, r > 1 are any real numbers,

t1, t2 ∈ R (t1 < t2), W ,L,B are any Banach spaces such that W
K
⊂L 	 B, then

{u ∈ Lq(t1, t2;W) | u′ ∈ Lr(t1, t2;B)}
K
⊂
(
Lq(t1, t2;L) ∩ C([t1, t2];B)

)
,

that is, if {u′m}m∈N is bounded sequence in the space Lq(t1, t2;W) and {u′m}m∈N is bounded
sequence in the space Lr(t1, t2;B), then there exists a subsequence {umj

}j∈N ⊂ {um}m∈N and
function u ∈ Lq(t1, t2;L) ∩ C([t1, t2];B) such that umj

−→
j→∞

u strongly in Lq(t1, t2;L) and in

C([t1, t2];B).

Since V p(Ω) � H1
0 (Ω)

K
⊂L2(Ω) (see [25], p. 245), then V p(Ω)

K
⊂L2(Ω). According to

Proposition 1 with W = V p(Ω), L = L2(Ω), B = (V p(Ω))′, q = 2, r = p′, estimates
(28), (31), (32), (33), (38) yield that there exists a subsequence of the sequence {vk, yk} (still
denoted by {vk, yk}) and functions u ∈ U∂, y ∈ L2

loc(S;H
1
0 (Ω)) ∩ L

p
loc(Q) and χ0 ∈ Lp′

loc(Q),
χi ∈ L2

loc(Q) (i = 1, n) such that

vk −→
k→∞

u ∗ -weakly in L∞(Q), (39)

yk −→
k→∞

y weakly in L2
loc(S;H

1
0 (Ω)), (40)

yk −→
k→∞

y weakly in Lp
loc(Q), (41)

yk −→
k→∞

y strongly in L2
loc(S;L

2(Ω)), (42)

â0(yk) −→
k→∞

χ0 weakly in Lp′

loc(Q), (43)

ai(yk) −→
k→∞

χi weakly in L2
loc(Q), i = 1, n. (44)

Note that (40) implies the following

∂iyk −→
k→∞

∂iy weakly in L2
loc(Q), i = 0, n. (45)

Let us show that (39) and (42) yield∫∫
Q

vkg(yk)ψφdxdt −→
k→∞

∫∫
Q

ug(y)ψφdxdt ∀ψ ∈ V p(Ω),∀φ ∈ C1
c (−∞, 0). (46)

Indeed, let φ be an arbitrary, and t1, t2 ∈ S be such that suppφ ⊂ [t1, t2]. Then we have∫∫
Q

vkg(yk)ψφdxdt =

∫ t2

t1

∫
Ω

(vkg(yk)− vkg(y) + vkg(y))ψφdxdt =

=

∫ t2

t1

∫
Ω

vkg(y)ψφdxdt+

∫ t2

t1

∫
Ω

vk(g(yk)− g(y))ψφdxdt. (47)

Using condition (G2) we easily obtain |g(yk) − g(y)| ≤ M |yk − y|. Hence, using Cauchy-
Schwarz inequality, (28) and (42), we obtain∣∣∣ ∫ t2

t1

∫
Ω

vk(g(yk)− g(y))ψφdxdt
∣∣∣ ≤M

∫ t2

t1

∫
Ω

vk|yk − y||ψφ|dxdt

≤M
(∫ t2

t1

∫
Ω

|vkψφ|2dxdt
)1/2(∫ t2

t1

∫
Ω

|yk − y|2dxdt
)1/2

−→
k→∞

0. (48)
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Thus, using (39) and (48), (47) implies (46).
Similarly to (46) it can be easily shown that (39) and (42) yield∫∫

Q

vkg(yk)ykφdxdt −→
k→∞

∫∫
Q

ug(y)yφdxdt ∀ φ ∈ C1
c (−∞, 0). (49)

Indeed, ∫∫
Q

vkg(yk)ykφdxdt =

∫∫
Q

(
vkg(yk)yk − vkg(y)yk + vkg(y)yk

)
φdxdt =

=

∫∫
Q

vkyk(g(yk)− g(y))φdxdt+

∫∫
Q

vkg(y)ykφdxdt.

Similarly to (46), from (39) and (42), we easily get∫∫
Q

vkg(y)ykφdxdt −→
k→∞

∫∫
Q

ug(y)yφdxdt. (50)

Condition (G2), Cauchy-Schwarz inequality, (28), (31) and (42) imply∣∣∣ ∫∫
Q

vkyk(g(yk)− g(y))φdxdt
∣∣∣ ≤M

∫∫
Q

vk|yk||yk − y||φ|dxdt −→
k→∞

0. (51)

From (50) and (51) we obtain (49).
Letting k → ∞ in (29), using (43)–(46) we obtain∫∫

Q

{
− yψφ′ +

n∑
i=0

χi∂iψφ+ ug(y)ψφ
}
dxdt =

=

∫∫
Q

fψφdxdt, ψ ∈ V p(Ω), φ ∈ C1
c (−∞, 0). (52)

According to Lemma 1, identity (52) implies that y ∈ C(S;L2(Ω)). This and the fact that
y ∈ L2

loc(S;H
1
0 (Ω)) ∩ L

p
loc(Q) imply y ∈ Y p

loc(Q).
Now let us show that the equality∫

Ω

{ n∑
i=0

χi∂iψ
}
dx=

∫
Ω

{ n∑
i=1

ai(y)∂iψ + â0(y)ψ
}
dx (53)

is valid for every ψ ∈ V p(Ω) and for a. e. t ∈ S. For this we use the monotonicity method
(see [24, Section 2]).

Let us take an arbitrary functions w ∈ L2
loc(S;H

1(Ω)) and θ ∈ C1
c (−∞, 0), θ(t) ≥ 0 for

all t ∈ (−∞, 0). Using condition (A3) for every k ∈ N we have

Wk :=

∫∫
Q

{ n∑
i=1

[
(ai(yk)− ai(w))(∂iyk − ∂iw) + (â0(yk)− â0(w))(yk − w)

]}
θ dxdt ≥ 0.

From this we obtain

Wk =

∫∫
Q

( n∑
i=1

ai(yk)∂iyk + â0(yk)yk

)
θdxdt− (54)

−
∫∫

Q

( n∑
i=1

[
ai(yk)∂iw + ai(w)(∂iyk − ∂iw)

]
+ â0(yk)w + â0(w)(yk − w)

)
θ ≥ 0, k ∈ N.
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According to Lemma 1, (29) implies

−1

2

∫∫
Q

|yk|2θ′dxdt+
∫∫

Q

{ n∑
i=1

ai(yk)∂iyk + â0(yk)yk + vkg(yk)yk

}
θdxdt =

∫∫
Q

fykθdxdt.

(55)

From (54), using (55), we obtain

Wk =

∫∫
Q

{1

2
|yk|2θ′+

(
fyk−vkg(yk)yk

)
θ
}
dxdt− (56)

−
∫∫

Q

( n∑
i=1

[
ai(yk)∂iw + ai(w)(∂iyk − ∂iw)

]
+ â0(yk)w + â0(w)(yk − w)

)
θdxdt ≥ 0, k ∈ N.

Taking into account (42) and (49) we have

lim
k→∞

∫∫
Q

{1

2
|yk|2θ′+

(
fyk−vkg(yk)yk

)
θ
}
dxdt =

∫∫
Q

{1

2
|y|2θ′+

(
fy−ug(y)y

)
θ
}
dxdt. (57)

By (43)–(45) and (57) from (56) we get

0 ≤ lim
k→∞

Wk =

∫∫
Q

{1

2
|y|2θ′+

(
fy−ug(y)y

)
θ
}
dxdt−

−
∫∫

Q

( n∑
i=1

[
χi∂iw + ai(w)(∂iy − ∂iw)

]
+ χ0w + â0(w)(y − w)

)
θdxdt. (58)

From (52), using Lemma 1, we obtain∫∫
Q

n∑
i=0

χi∂iyθ dxdt =

∫∫
Q

{1

2
|y|2θ′+

(
fy−ug(y)y

)
θ
}
dxdt. (59)

Thus, (58) and (59) imply that∫∫
Q

{ n∑
i=1

(χi − ai(w))(∂iy − ∂iw) + (χ0 − â0(w))(y − w)
}
θdxdt ≥ 0. (60)

Substituting w = y−λψ in the above inequality, where ψ ∈ H1
0 (Ω), λ > 0 are arbitrary, and

dividing the obtained inequality by λ we get∫∫
Q

{ n∑
i=1

(χi − ai(u− λψ))∂iψ + (χ0 − â0(u− λψ))ψ
}
θ dxdt ≥ 0. (61)

Letting λ → 0+ in (61), using condition (A2) and the Dominated Convergence Theorem
(see [15, p. 648]), we have∫∫

Q

{ n∑
i=1

(χi − ai(y))∂iψ + (χ0 − â0(y))ψ
}
θ dxdt = 0. (62)

Since ψ ∈ H1
0 (Ω), θ ∈ C1

c (−∞, 0) are arbitrary functions, then (62) impliest (53). Identity
(52) and (53) imply (3) with v = u.
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Therefore y is a weak solution of problem (1), (2) with v = u. Hence, we have shown that
y = y(u) = y(x, t;u), (x, t) ∈ Q, is the state of the controlled system for the control u. Now
we are going to show that u is an optimal control. First we prove that

yk −→
k→∞

y in C(S;L2(Ω)), (63)

i.e., for every closed interval [α, β] ⊂ S,

max
τ∈[α,β]

∫
Ω

|y(x, τ)−yk(x, τ)|2dx −→
k→∞

0. (64)

For this purpose, we subtract identity (29) from identity (3) with v = u∫∫
Q

{
− (y − yk)ψφ

′ +
n∑

i=1

(
ai(y)− ai(yk)

)
∂iψφ+

(
â0(y)− â0(yk)

)
ψφ+

+(ug(y)− vkg(yk))ψφ
}
dxdt = 0, ψ ∈ V p(Ω), φ ∈ C1

c (−∞, 0). (65)

To the resulting identity (65), we apply Lemma 1 with θ(t) = 2(t − τ + 1), τ1 = τ − 1,
τ2 = τ, where τ ∈ S is any fixed. Consequently, we get∫

Ω

|y(x, τ)− yk(x, τ)|2dx−
∫ τ

τ−1

∫
Ω

|y − yk|2dxdt+
∫ τ

τ−1

∫
Ω

[ n∑
i=1

(
ai(y)− ai(yk)

)
(∂iy − ∂iyk)+

+
(
â0(y)− â0(yk)

)
(y − yk) + (ug(y)− vkg(yk))(y − yk)

]
θdxdt = 0. (66)

From (66), taking into account conditions (A3) and (G2), we obtain∫
Ω

|y(x, τ)− yk(x, τ)|2dx ≤ (67)

≤
∫ τ

τ−1

∫
Ω

[
|y − yk|2 −(ug(y)− vkg(y) + vkg(y)− vkg(yk))(y − yk)θ

]
dxdt ≤

≤
∫ τ

τ−1

∫
Ω

[
|y − yk|2 − (u− vk)g(y)(y − yk)θ − vk(g(y)− g(yk))(y − yk)θ

]
dxdt ≤

≤ 2

∫ τ

τ−1

∫
Ω

[
|y − yk|2 + |u− vk||g(y)||y − yk|

]
dxdt.

Using (28), (G1), (G2) and Cauchy-Schwarz inequality, from (67) we obtain∫
Ω

|y(x, τ)− yk(x, τ)|2dx ≤ C17

([ ∫ τ

τ−1

∫
Ω

|y − yk|2dxdt
]1/2

+

∫ τ

τ−1

∫
Ω

|y − yk|2dxdt
)
, (68)

where C17 > 0 is a constant which does not depend on k.
For every τ ∈ [α, β], we obviously have [τ − 1, τ ] ⊂ [α− 1, β]. Hence, from estimate (68)

we easily get for ∀τ ∈ [α, β]

max
τ∈[α,β]

∫
Ω

|y(x, τ)−yk(x, τ)|2dx ≤C17

([∫ β

α−1

∫
Ω

|y − yk|2dxdt
]1/2

+

∫ β

α−1

∫
Ω

|y − yk|2dxdt
)
. (69)
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Thus, according to (42), estimate (69) implies (64).
It remains to prove that u is a minimizing element of the functional J . Indeed, since func-

tionalG : Y p
loc(Q) → [0,+∞) is lower semicontinuous in either L2

loc(S;L
2(Ω)), or C(S;L2(Ω)),

or in both and we have convergence (42), (64), then

lim
k→∞

inf G(yk) ≥ G(y). (70)

Also, (39) and properties of ∗-weakly convergent sequences (see [14, Proposition 3.13, p. 63])
yield limk→∞ inf ∥vk∥L∞(Q) ≥ ∥u∥L∞(Q).

From (4), (70) and previous inequality it easily follows that

lim
k→∞

J(vk) ≥ lim
k→∞

inf G(yk) + µ lim
k→∞

inf ∥vk∥L∞(Q) ≥ J(u).

Thus, we have shown that u is a solution of problem (5), i.e., an optimal control.
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