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Assume that a family of (non-normal) matrices has stable spectra contained in the complex
unit circle. This does not necessarily imply that the 2-norm of such matrices is small, and the
question is under what ‘natural’ similarity transformation the transformed matrices will have
2-norm smaller or equal to 1. Already for the 2×2 - case this is a nontrivial question, involving
the analysis of a function in two complex variables (the eigenvalues) and a positive scaling
parameter. We discuss and explain an approach to this problem which has been used before in
the analysis of companion matrices. For the 3D case we present a numerical example.

1. Introduction and motivation. In the analysis of difference equations, in particular
arising from multistep methods applied to initial value problems, the property of step-
by-step stability is essential. A standard approach is to reformulate an n-step difference
equation as a one-step recursion for n-dimensional vectors representing n successive iterates,
see [3]. For linear constant coefficient problems the iteration matrix of this one-step recursi-
on is a nonderogatory companion matrix C whose eigenvalues coincide with the roots of
the characteristic polynomial of the multistep method under consideration. The asymptotic
stability of the method depends on the location of these roots, i.e., they are required to be
contained in the complex unit disc. On the other hand, for quantitative convergence investi-
gations the norm of the iteration matrix C is of interest. But since a companion matrix is
not normal, its norm (e.g., its spectral norm) will be larger (and possibly significantly larger)
than 1 in general, even if the spectrum of C is stable.

In [2] a special bidiagonal normal form was derived for companion matrices C, which
for the case of a stable spectrum yields stability in the maximum norm for the transformed
system. This transformation is an alternative to the Jordan form of C and – in contrast to the
Jordan form – it behaves in a regular, continuous way when transition between diagonalizable
and non-diagonalizable situations is taken into consideration.

For spectral-type norms this question is much more difficult: What ‘natural’ transformati-
on leads to the desired result, namely contractivity in the Euclidean norm for the transformed
system?
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In this short note we concentrate on some technical issues arising in such a stability
investigation which were used in [1] without further comment. In Sec. 2 we explain how to
proceed for the case of dimension n = 2. This purely symbolic approach is very difficult to
generalize to higher dimensions n, but it may be used as the basis for an algorithm involving
solution of a polynomial system, see Sec. 3.

Of course there is abundant literature dealing with similar questions. Here we only note
the connection of our problem with the so-called Kreiss Matrix Theorem (see, e.g., [4]):
This theorem implies that for any matrix A ∈ Cn×n with a stable spectrum there exists a
similarity transformation X such that ∥X−1 AX∥2 < 1. However, there is no general purpose
algorithm to find X.

2. Problem setting and approach. The two-dimensional case. We consider a family
of companion matrices

C =

 0 1
−c0 −c1

 =

 0 1
−ζ1 ζ2 ζ1 + ζ2

 ∈ C2×2,

with complex spectra {ζ1, ζ2} satisfying a stability condition w.r.t. the complex unit circle,
i.e.,

|ζ1| ≤ 1, |ζ2| ≤ 1, and |ζ1| < 1 if ζ1 = ζ2. (1)

We impose no other conditions on the eigenvalues ζ1 and ζ2, and they are also allowed to
coincide. This is called the confluent case, where C not diagonalizable, and this special case
is seamlessly integrated in our analysis.

Since the matrices C from our family are not normal, we generally have ∥C∥2 > 1. Now
we aim for finding a similarity transformation of C, depending on ζ1 and ζ2, such that the
transformed matrix T satisfies ∥T∥2 ≤ 1. For ζ1 ̸= ζ2, a straightforward idea would be use
the diagonalization of C,

C = V Z V −1, (2a)

with
V =

 1 1
ζ1 ζ2

 , a Vandermonde matrix, and Z =

 ζ1 0
0 ζ2

 . (2b)

Here ∥Z∥2 = max{|ζ1|, |ζ2|} < 1. However, For ζ1 = ζ2 (the non-diagonalizable case) this
does not work, and also for ζ1 ≈ ζ2 it is unnatural because V is very ill-conditioned in this
case and becomes singular for ζ1 → ζ2, see Example 1 below.

The following alternative transformation was proposed in [1]. It is based on a modified
QR-decomposition of the transposed Vandermonde matrix V T ,

V T = P TR, with P =

 1 1
1
2
(ζ1 − ζ2)

1
2
(ζ2 − ζ1)

 , R =

 1 1
2
(ζ1 + ζ2)

0 1

 ,

where the rows of P are orthogonal to each other. (However, P is not unitary.)
Assume ζ1 ̸= ζ2 for the moment. Then, with Z from (2b), we have

C = LTL−1, (3a)

with L = RT and T = P Z P−1, which evaluate to

L =

 1 0
µ 1

 , T =

 µ 1
σ µ

 , with µ = 1
2
(ζ1 + ζ2), σ = 1

4
(ζ1 − ζ2)

2. (3b)
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Moreover, it is easy to verify that the identity (3a), with L and T defined by (3b), also
remains valid for the confluent case ζ1 = ζ2 (even though V and P are singular)!

We also introduce a scaling parameter δ > 0. With

∆ :=

 1 0
0 δ

 (4)

we replace L by L∆ and T by ∆−1 T ∆. For simplicity of notation we denote these re-scaled
versions again by L and ∆, i.e., we have C = LTL−1 with

L =

 1 0
µ δ

 , T =

 µ δ
σ
δ

µ

 .

Now the aim is to choose the scaling parameter δ > 0 in dependence of ζ1 and ζ2, balancing
the off-diagonal entries of T in a nontrivial way, such that the desired property

∥T∥22 = ρ(T T ∗) ≤ 1 (5)

holds. A ‘brute-force’ approach to this problem would be to symbolically compute the
spectrum of T T ∗ in dependence of ζ1, ζ2 and δ and to analyze its behavior in dependence of
these parameters. However, this leads to rather complicated symbolic expressions.

Here we propose an alternative, more convenient approach. We proceed from the fact
that (5) is equivalent to ⟨

T T ∗u, u
⟩
2
≤

⟨
u, u

⟩
2

for all u ∈ C2, (6a)

or equivalently, ⟨
T T ∗Xv,Xv

⟩
2
≤

⟨
Xv,Xv

⟩
2

for all v ∈ C2, (6b)

for any regular matrix X ∈ C2.
The matrix T T ∗ contains an entry with a factor 1/δ2. In order to simplify our problem

we use a trick:
In (6b) we choose X = ∆ from (4), where the parameter δ is still unspecified.

Then, for any δ ̸= 0,1 ⟨
T T ∗u, u

⟩
2
≤

⟨
u, u

⟩
2

⇔
⟨
T T ∗∆v,∆v

⟩
2
≤

⟨
∆v,∆v

⟩
2

⇔
⟨
(∆T )(∆T )∗v, v

⟩
2
≤

⟨
∆2 v, v

⟩
2
, (7)

which is equivalent to the requirement

S := ∆2 − (∆T )(∆T )∗ ≥ 0 positive semidefinite. (8a)

The matrix S evaluates to

S =

 1− |µ|2 −µσ

−µσ −|σ|2
+ δ2

 −1 −µ

−µ 1− |µ|2
 , (8b)

There is a typing error in [1, equation (3.4)]. Equation (7) is the correct version.
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with µ, σ from (3b). The determinant

detS = −δ4 +
(
1− 2 |µ|2 + |µ2 − σ|2

)
δ2 − |σ|2,

is a strictly concave quadratic polynomial in δ2 and assumes its maximal value for

δ = δopt(ζ1, ζ2) =
√

1
2
(1− |ζ1|2)(1− |ζ2|2) + 1

4
|ζ1 − ζ2|2, (9a)

and, indeed, as shown in [1], under the stability assumption (1) we have

δopt(ζ1, ζ2) > 0, (9b)

and with this choice for δ it can be verified that

S is positive [semi]definite,

as required in (8a). Thus, for δ from (9a) we indeed obtain ∥T∥2 ≤ 1.

Example 1. A numerical example with real data: Let ζ1 = 0.9999, ζ2 = 0.99990001. Here,
∥C∥2 ≈ 2.4. For the Vandermonde matrix V we have ∥V ∥2 ∥V −1∥2 ≈ 4 · 108, i.e., the
transformation (2) to diagonal form is very ill-conditioned.

Proceeding as described above we obtain C = LTL−1 with δopt(ζ1, ζ2) ≈ 2.8 · 104, and

T ≈
 0.999900005 0.1414072 e–3

0.1767944 e–12 0.999900005

 , with ∥T∥2 ≈ 0.99997 < 1.

The basis transformation matrix L = RT∆ has a significantly smaller condition number
than V , namely ∥L∥2 ∥L−1∥2 ≈ 1.4 · 104.

In the limit ζ1 → ζ2 (confluent case) this converges to a properly rescaled Jordan form
of the non-diagonalizable matrix C; see [1].

We also note the effect of non-normality and near-confluence for this example, which gives
rise to a significant, approximately linear growth of ∥Ck∥2 over a long range of values of k.
Although ρ(C) < 1, we have ∥Ck∥2 > 1 up to k ≈ 10000. The maximal value ∥Ck∥2 ≈ 735
is attained near k = 1000, and it becomes smaller than 1 only beginning with k ≈ 10000.

Remark. In [1] an analogous analysis was performed for companion matrices with spectra
satisfying a stability condition with respect to the left complex half-plane.

3. A numerical 3×3 example. The symbolic computations described Sec. 2, for dimension
n = 2 and for arbitrary ζ1, ζ2 ∈ C satisfying (1), are already rather intricate and cannot
readily be generalized to higher dimensions n > 2. In particular, the confluent case where
two or more roots ζj are identical cannot be dealt with in a uniform way for n > 2.

For the case where the different roots ζj are numerically specified, we now propose
a numerical procedure and we describe it for the case n = 3.

Let pairwise distinct values ζ1, ζ2, ζ3 ∈ C be given numerically, satisfying the stability
condition |ζj| ≤ 1, j = 1, 2, 3.
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1. Compute the QR-decomposition, V T = QTR, with Q unitary, of the transpose V T of
the Vandermonde matrix V associated with the given roots ζj,

V =


1 1 1
ζ1 ζ2 ζ3

ζ21 ζ22 ζ23

 ,

Then, with

Z :=

 ζ1 0 0
0 ζ2 0
0 0 ζ3

 ,

the companion matrix C associated with the ζj satisfies

C = V Z V −1 = RTQZ Q∗R−T .

2. With the 2-parameter ansatz for the diagonal scaling matrix

∆ :=

 1 0 0
0 δ1 0
0 0 δ2

 ,

we write C in the form 2

C = (RT∆) (∆−1QZ Q∗∆) (RT∆)−1 =: LT L−1.

Now, using the same trick as in Sec. 2, the desired property ∥T∥2 ≤ 1 is seen to be
equivalent to

S := ∆2 − (∆T )(∆T )∗ ≥ 0 positive semidefinite, (10)
where the parameters δ1, δ2 are still unspecified. The matrix S depends in s simple
way on δ2j =: ωj, j = 1, 2, and detS =: φ(ω1, ω2) is a polynomial of degree 3 in the
parameters ωj.

3. In general, φ(ω1, ω2) will not be globally concave, but we propose to perform a numerical
search for local maxima (ω1, ω2) of φ satisfying ωj > 0, j = 1, 2, and to check whether
the resulting parameter values δj =

√
ωj, j = 1, 2, result in a matrix S satisfying (10).

Example 2. For
{ζ1, ζ2, ζ3} =

{
9
10
, −2

3
+ 2

3
i, 2

3
− 1

2
i
}
,

the associated companion matrix C has the norm ∥C∥2 ≈ 2.05. Using the approach described
above we find a local maximum of φ at (ω1, ω2) ≈ (1.07, 2.06), and for the resulting parameter
values (δ1, δ2) ≈ (1.03, 1.44) we obtain S > 0 and ∥T∥2 ≈ 0.96 < 1.

Remark 1. It is not guaranteed that this ‘searching algorithm’ always leads to the desired
result, but we have tested it successfully on some more examples.

For the case where at least two of the roots ζj coincide, this does not work in its present
form since L becomes singular. In this respect the case n = 2 is rather special, see Sec. 2.
The generalization the approach from Sec. to higher dimension (perhaps at least n = 3)
seems to be an interesting problem in symbolic computation.

R. Stolyarchuk gratefully acknowledges financial support by TU Wien, Austria, and the
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It can be shown (for arbitrary dimension n) that T is lower Hessenberg. If all ζj are real, T is tridiagonal.
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