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Nanoparticles of various materials (up to 100 nm in size) are characterized by a large surface area, 
which significantly increases their reactive properties. This makes promissing the studies of their possible 
application in different technologies, including those in the agricultural production sector. This review 
summarizes the literature on the distribution and properties of natural nanoparticles in the environment. 
The features of the interaction between various types of microorganisms, nanoparticles of natural mine
rals, oxides of metals and carbon nanoparticles are analyzed. The review also summarizes the data on 
the effect of nanoparticles of different origin on microorganisms, plant growth and development. It also 
presents the information on the effectiveness of the use of clay mineral nanoparticles in the production 
of complex bacterial preparations for plant growing and the prospects of using nanoparticles of metal 
oxides in this industry. 
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Огляди літератури

The world population is projected to increase 
to about 8 billion by 2025 and to 9 billion by 
2050 [1]. As such, global agricultural productivity 
must rise substantially to feed the world’s rapidly 
growing population. It is constantly in the public 
eye because climate change, energy and resource 
constraints and the increasing population of the 
planet are putting unprecedented pressure on 
food and water resources [1]. The demand of the 
growing global population for wheat may grow by 
60 % by 2050 [2].

Intensive use of chemical fertilizers and plant 
protection products is accompanied with a decrease 
in soil fertility, plant productivity, quality of the 
products obtained and an increase in environmental 
pollution [3]. The UN warns that if current trends 
in land use persist, significant areas of natural land, 
roughly the size of Brazil, could be degraded [4].

It seems promising to use nanotechnology 
in agriculture for the intensification growth and 
development of plants, their protecting against 
phytopathogens, phytophages and increasing of 
their productivity [5–8]. The term “nanotechnology” 
was proposed in 1974 by the Japanese physicist 
Norio Taniguchi for technologies based on the use 
of objects, which did not exceed 100 nm in size in 

at least one dimension [9] It should be noted that 
the unique properties of highly dispersed particles 
of clay minerals and other materials have attracted 
the attention of researchers for a long time and 
were used in many technologies [10].

However, in recent decades, the researchers 
have especially focused on nanomaterials due 
to special properties of their surface, which 
significantly increases with the decrease of particle 
size. The specific surface area of cubic particles can 
be determined from the ratio: S = 6/d, where d is 
the size of the particle [11]. Spherical particles of 
3.5–5.0 nm have a surface area exceeding 900 m2/g 
[12]. 

Nanotechnologies can be used in various 
spheres of life. They are promising for the industrial 
production of materials with highly specified 
characteristics, for transport and semiconductor 
industries, for pharmaceuticals and medicine, for 
agriculture to protect plants, monitor their growth, 
identify plant and animal diseases, increase 
food production, and improve quality [13–15]. 
Currently, nanoparticles of natural minerals are 
successfully used in biotechnology in manufacture 
of highly effective microbial preparations for crop 
production [6, 16].
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The properties of nanomaterials, their reactivity, 
solubility, mechanical (elasticity, hardness, etc.), 
electronic (conductivity, redox behavior, etc.), and 
nuclear (magnetic) traits and, therefore, their effect 
on ecology and biological objects, often change 
depending on the size of the particles. These 
changes may be unforeseen [17].

Nanoparticles in the environment
There is an exceptionally wide variety of 

nanoparticles on the Earth, which are actually 
distributed both in the abiotic regions of our planet 
and in the biotic environment [18–19]. Nature 
itself creates a large number of nanoparticles. It 
provides us with a range of small particles, from 
inorganic ash, soot, sulfur and mineral particles 
found in the air or in wells, to nanoparticles of 
sulfur and selenium, produced by many bacteria 
and yeast [20]. Microbes interact with minerals, 
since minerals support the growth of microbial 
populations, and the latter change the solubility 
of minerals in the process of metabolism and the 
degree of oxidation of some of their components 
[21]. The most common nanoparticles are those 
from volcanoes and forest fires, sea salt aerosols, 
and oxides of iron and other transition metals 
in soils, rivers and oceans [17, 22–25]. They 
are always present even in interplanetary and 
interstellar space [22]. Thus, at the influence of 
number of factors, a significant amount of natural 
nanomaterials accumulate in the environment [26].

 The clouds of volcanic ash contain a wide 
variety and amount of polydisperse micro- and 
nanoparticles range from 100 to 200 nm and 
mainly composed of silicate and iron compounds. 
They are easily suspended in the air and can cause 
serious breathing problems when inhalation. 
Indeed, although the particles in the lower 
micrometer range are deposited in the upper 
airways, nanoparticles penetrate and settle in the 
tracheobronchial and alveolar regions, where they 
can cause serious respiratory distress [27]. The soot 
“Carbon Nanotube” produced by burning Texas 
pine Piǹon has been shown to contain multi-walled 
carbon nanotubes ranging in size from 15 to 70 nm. 
These carbon-based objects are easily air-borne and 
pose a serious health hazard to animals and humans 
[28].

Due to the desertification of many regions [29], 
the burning of biomass, engine exhaust, mining and 
other types of anthropogenic activities, the release 
of nanoparticles into the environment, inadvertently 
produced by humans, increases significantly [17]. 

The soil is the main habitat for microorganisms 
and contains a considerable amount of organic and 
inorganic particles [30–31]. Each gram contains 
billions of bacteria that belong to several thousand 
species [32], millions of actinomycetes, hundreds 
of thousands of fungi and algae [33], a significant 
number of protozoa, nematodes and representatives 
of the mesofauna [34].

Interaction between microorganisms and 
natural nanomaterials

It has been shown that many organisms can 
synthesize nanomaterials and are capable of 
transferring electrons and energy [35]. Most 
microorganisms in the soil are in the sorbed state. 
This process is largely determined by the size of 
soil particles, the charge of exchangeable cations, 
the concentration of the electrolyte, and other 
properties [31].

The results of microelectrophoresis methods 
that the surface of various types of bacteria also 
contains negatively and positively charged groups 
due to the presence of carboxyl, amino acid and 
other groups. When nanoparticles of silicon 
dioxide, montmorillonite, palygorskite, and other 
natural minerals are added to bacterial suspension, 
the cells come into contact with these particles, 
during which nanoparticles cover a large part of the 
cell surface, which significantly changes the charge 
of their surface [5, 36].

Minerals and microbes have coexisted for much 
of the Earth’s history. The close interaction between 
microbes and clay minerals, which has been 
occurring on a geological time scale, is a complex, 
simultaneously developing system [37]. They 
interact on a microscopic scale, but their effects 
are macroscopic. Minerals support the growth 
of microbes providing essential nutrients, and 
microbial activity changes the mineral solubility 
and oxidation state of some of the constituent 
elements of minerals [21].

Microbes play a key geoactive role in the 
biosphere, especially in biotransformation and 
biogeochemical cycles, the transformation of metals 
and minerals in soils and sediments. Geomicrobial 
processes are transformations of metals and 
minerals under the influence of microorganisms 
[38]. All types of microbes, including prokaryotes 
and eukaryotes, and their symbiotic associations 
can contribute to geological phenomena. It has 
been shown that many organisms can synthesize 
nanomaterials and transfer electrons and energy 
[35]. 
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Certain types of bacteria are capable of frac
tionating sulfur isotopes, precipitating pyrite 
[39], promoting the accumulation of carbonate 
in shallow seas [39], and participating in the 
synthesis of various minerals [41–42], including 
deposits of clay minerals [43–46]. Microbes 
promote the transformation of minerals, release of 
phosphorus and other nutrients necessary for the 
growth of microbial populations [47]. Along with 
microorganisms, clays are among the most catalytic 
surfaces in sedimentary media, which are important 
for various biogeochemical cycles [48].

Microbes, especially bacteria, affect the kinetics 
and course of reactions including the formation of 
many minerals in the lithosphere and hydrosphere 
of the Earth [49–51]. On the other hand, minerals 
strongly affect the survival of microorganisms, their 
physiological and biochemical activity [52–53].

The interaction between various types of 
microorganisms and nanoparticles of natural 
minerals is accompanied with a noticeable increase 
in the resistance of cells to the effects of adverse 
environmental factors. The interaction between 
bacteria Methylomonas rubra 15s, Azotobacter 
chroococcum and other microorganisms, and 
nanoparticles of clay minerals montmorillonite, 
palygorskite, and bentonite increased their viability 
significantly during long-term storage [54–56].

It was shown that the addition of 10 g/L of 
palygorskite nanoparticles to the suspension of 
many bacterial species significantly increased the 
yield of viable cells upon spray drying [57]. It was 
found that when a suspension of A. chroococcum 
20 was heated for 10 minutes at 45 0C, no more 
than 30 % of cells remained viable. However, the 
addition of 1 % of montmorillonite nanoparticles 
to the suspension of these bacteria, followed by 
exposure to the same temperature, increased the 
number of viable cells to 68 % [58]. The addition 
of 1 % of palygorskite had a similar effect on the 
survival of Agrobacterium radiobacter 204 when 
the suspension of these bacteria was heated [59]. 
A significant protective effect was exerted by 
nanoparticles of clay minerals on the survival of 
Pseudomonas aureofaciens UKMV-III during their 
long-term storage [60].

The interaction between minerals and micro
organisms is important for the ecology of the 
soil and the environment [61]. This process is 
ubiquitous in natural conditions, but the general 
consequences of such interactions often remain 
unknown due to the lack of standard assessment 
methods [62].

Physiological and biochemical activity of 
microorganisms during their interaction with 
nanoparticles of natural minerals

Experimental studies have shown that pH, 
temperature, ionic strength, types of bacteria, and 
properties of minerals strongly affect the degree of 
bacterial adsorption on mineral surfaces [61, 63]. It 
has been demonstrated that the interaction between 
bacteria and clay minerals has a great effect on the 
physiological properties of microbial populations 
in aquatic systems [64]. It should be noted that as 
a rule, this interaction between microorganisms 
and particles of silicon dioxide, clay minerals, 
significantly stimulates the growth activity of 
microbial populations. For instance, in the presence 
of 20 mg/L of SiO2 nanoparticles, the number of 
soil bacteria increased significantly [65].

When A. radiobacter 10 was cultivated in a 
nutrient medium containing 10 g/L of palygorskite 
or montmorillonite nanoparticles, the growth 
activity of the strain increased by 80 and 70 %, 
respectively, compared to the control [59]. A similar 
effect was observed when bacteria A. chroococcum 
20 and Azotobacter vinelandii 56 were cultivated 
with these clay minerals [66].

It has been shown that the introduction of 
0.2–1.0 % of clay minerals of montmorillonite or 
palygorskite into the nutrient medium significantly 
stimulates the growth of phosphate-mobilizing 
bacteria Bacillus subtilis in a medium containing 
hardly soluble calcium phosphate as the only 
source of phosphorus. Nanoparticles of these 
minerals had a more pronounced stimulating effect 
on the growth of these bacteria than particles of 
colloidal dispersion. An increase in the content 
of nanoparticles of these minerals in the medium 
up to 2 % was accompanied by a decrease in the 
stimulation of bacterial growth, which could be 
due to the sorption of glucose and phosphate on 
minerals [67]. A similar effect was exerted on 
the growth of B. subtilis IMV B-7023 by their 
cultivation in a medium containing 1 g/L of 
bentonite or saponite particles [68]. When these 
bacteria were cultivated in a medium containing  
5 g/L of vermiculite particles, the number of bacilli 
increased by 49 % as compared with the control 
[69].

Silicon dioxide nanoparticles had a significant 
effect on the growth activity of many yeast 
species, A. radiobacter 204, bacteria of the 
genus Azotobacter and other species. Thus, upon 
cultivation of Azotobacter chroococum 20 in 
Ashby’s medium with sucrose, with the introduction 
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of 0.05 % of these nanoparticles, the number of 
bacteria increased by 100 % as compared with the 
indicator without silicon dioxide [54].

One of the mechanisms of nanomaterials stimu
lating the growth activity of aerobic microorganism 
can be the effect of these particles on the mass 
transfer of oxygen into the culture medium. It 
was shown that upon stirring a liquid medium 
containing 1 % of palygorskite nanoparticles, the 
oxygen mass transfer increased by 17 % [70].

It should be noted that the cultivation of bacteria 
in media containing nanoparticles of clay minerals 
significantly affects the biochemical activity of 
populations. Thus, when A. chroococcum 20 was 
grown in Ashby’s medium containing sucrose and 
2 g/L of palygorskite nanoparticles, the synthesis 
of thiamine (vitamin B1) increased by 116 %, and 
when A. vinelandii 56 was cultivated under such 
conditions, the synthesis of pyridoxine increased 
7 times as compared with the medium without this 
mineral [66].

The cultivation of B. subtilis IMV B-7023 in 
a medium, containing nanoparticles of SiO2, had 
a significant effect on the antioxidant potential of 
these bacteria [71]. Their cultivation in a medium 
containing 0.05–0.5 g/L of SiO2 nanoparticles or 
1.5–2.5 g of vermiculite was accompanied with an 
increase in the extracellular peroxidase activity of 
bacilli [72]. At low concentrations, silicon dioxide 
nanoparticles have no toxic effect on the biota, 
and also reduce the toxicity of surfactant solutions  
[73].

It was found that the accumulation of amino 
acids in the culture medium of A. vinelandii IMV 
B-7023 increased 5–6 times in the nutrient medium 
containing 5 g/L of glauconite or saponite particles. 
After the introduction of SiO2 nanoparticles into 
the nutrient medium of B. subtilis IMV B-7023 
the content of zeatin in the culture increased by 
85 % as compared with the control. A visible 
stimulating effect of these bacteria on the synthesis 
of phytohormones was observed in the case of 
vermiculite nanoparticles using. It was found, 
that during the cultivation of bacilli with 5 g/L of 
this minerals the content of zeatin in the culture 
increased by 17 %, that of zeatin riboside – by  
20 %, and zeatin glucoside – by 144 % [69]. These 
nanoparticles had a significant stimulating effect 
on the synthesis of phytohormones by the bacteria  
A. vinelandii IMV B-7076 [74].

The interaction between these strains of bac
teria and vermiculite nanoparticles significantly 
increased their dehydrogenase activity along with 
the activity of antioxidant enzymes. After the 

introduction of 0.5–10.0 g/L of this mineral into the 
nutrient medium with A. vinelandii IMV B-7076 
there was an increased in the dehydrogenase 
activity by more than 40 %. However, the silica 
nanoparticles did not have a stimulating effect 
on the dehydrogenase activity of this strain. The 
vermiculite nanoparticle had a positive impact on 
the antioxidant enzyme activity of B. subtilis IMV 
B-7023. It was shown, that after the addition of 
1.5–2.5 g/L of this nanomaterial into a nutrient 
medium the peroxidase activity of bacteria 
increased 3 times [69]. The addition of saponite 
and especially bentonite nanoparticles led to 
considerable stimulation of superoxide dismutase 
activity of these bacteria [68].

Prospects for the use of synthetic nanoma
terials in agrobiotechnology

Nanotechnology provides opportunities for 
the development of new means and mechanisms 
delivering of agrochemical agents (synthetic 
nanomaterials) to increase crop yields and 
reduce the use of pesticides. They can be used 
to create nanobiosensors in plant protection, to 
detect residues of agrochemicals, diagnose plant 
diseases, and in other fields [75–78]. At the same 
time, there are concerns about the safety of using 
nanomaterials due to insufficient research on their 
possible negative impact on the environment, and 
unknown consequences [75, 79–80]. Different 
kinds of nanoparticles may have different effects 
on plants.

It was shown that the use of ZnO and TiO2 
nanoparticles in the doses of 100–1000 ppm did 
not affect the germination of Cicer arientinum 
seeds. The treatment of seeds with zinc oxide 
nanoparticles was accompanied with a higher level 
of chlorophyll accumulation in plants compared 
to the use of TiO2 nanoparticles [81]. Foliar 
treatment of winter wheat plants grown under 
drought conditions (30 % out of full moisture 
capacity) with Avatar microelement complex 
containing nanoparticles obtained by chelation 
of several compounds (magnesium, copper, iron, 
zinc, molybdenum, and cobalt) with carboxylic 
acids increased the resistance of the photosynthetic 
apparatus of plants to soil drought, and contributed 
to a significant increase in their productivity. The 
stimulating effect of these microelements on grain 
yield was manifested to a greater extent in varieties 
less resistant to drought [82].

Research results indicate that when carbon 
nanoparticles and metal oxides are used in crop 
production, they can accumulate in the soil and 
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plant tissues, exerting both a favorable and a 
negative effect on their growth and productivity 
[83–84]. It was shown that pretreatment of wheat 
seeds with silicon nanoparticles protected wheat 
seedlings from ultraviolet radiation, regulating 
oxidative stress by increasing the activity of the 
antioxidant defense system [85].

At the same time, nanoparticles of metals and 
metal oxides can be highly toxic to soil biota. 
This can have a negative effect on microbial 
communities of soils and their fertility [86]. In 
accordance with the data [87], the introduction of 
metal nanoparticles into the soil causes a decrease 
in the microbial biomass, enzymatic activity, 
and affects the composition of the microbial 
community, including bacteria, yeast, and fungi. 
Such nanoparticles can pose a hazard to human 
health [87].

It was shown that the introduction of silver 
nanoparticles into the soil was accompanied by a 
change in the number of dominant microorganisms 
of the phyla Proteobacteria, Actinobacteria, 
and Femicutes important for the agriculture by 
25–45 %. Silver nanoparticles can disrupt the 
morphology of membranes, significantly increase 
their permeability, which can lead to uncontrolled 
transportation of compounds across the membrane 
and to the death of cells [88].

Cerium oxide (CeO2) nanoparticles are a 
striking example of potential capabilities of metal 
oxide nanoparticles. They find their applications 
in industry and biomedicine. These nanoparticles 
are widely used as an abrasive in the production 
of semiconductors, as components of catalytic 
converters for automobile exhaust gases, as a fuel 
additive for accelerating combustion, and in other 
technologies [89–90]. Recently, it was demonstrated 
that CeO2 nanoparticles have antioxidant activity at 
physiological pH values and therefore can be useful 
in biomedicine, protecting cells from oxidative 
stress or inflammation [91–92]. However, the use 
of nanoparticles of metal oxides is associated with 
their possible toxic effect on the environment [93]. 
It was found that cerium nanoparticles inhibited the 
growth of Escherichia coli and Bacillus subtilis, 
while they did not affect Shewanella oneidensis 
[62]. The study of the toxicity of CuO and TiO2 
nanoparticles indicated that TiO2 nanoparticles 
did not have any toxic effect on Saccharomyces 
cerevisiae even at the concentration of 20  000 
mg/L. At the same time, CuO nanoparticles showed 
high toxicity to this type of yeast [94].

Zinc oxide nanoparticles did not have a 
significant effect on the bacterial community of the 
soil [95], but caused a decrease in plant biomass 
and a change in the shape of roots [96]. It was 
shown that Zn and ZnO nanoparticles were more 
toxic than Al2O3, Fe3O4, and SiO2 nanoparticles 
[97]. ZnO nanoparticles negatively affected the 
development of rice seedlings, inhibiting the 
development of roots and reducing their number. 
At the same time, TiO2 nanoparticles did not affect 
these parameters of rice plants [98]. According 
to the results of other researchers, ZnO and TiO2 
nanoparticles in concentrations of 100–1000 ppm 
also had different effects on the germination of 
Cicer arietinum seeds. It was shown that ZnO 
nanoparticles did not affect this process, but 
reduced the weight of roots and shoots. However, 
the content of chlorophylls and carotenoids in the 
leaves increased. At the same time, when using 
TiO2 nanoparticles, the opposite effects were 
observed – stimulation of seed germination and a 
decrease in the content of pigments in the leaves of 
these plants [81].

Studying the effect of palladium (Pd) nano
particles on the growth of barley, it was shown 
[99] that nanoparticles accumulating in a given 
plant remain in plant tissues. It should be noted that 
different plants may differ in their interaction with 
metal nanoparticles. Thus, Zhu et al. [100] found 
that when using Fe2O3 nanoparticles in growing 
pumpkin and beans, this oxide accumulated in all 
pumpkin tissues, while it was not found in beans.

A study of the toxicity of fullerenes C70 showed 
that when they were used to treat plants, these 
nanoparticles entered the tissues and were passed 
on to the offspring through seeds [101], creating 
oxidative stress and leading to a decrease in the 
viability of rice cells [102]. Carbon nanotubes can 
penetrate the cell membrane [101]. Hydrophobic 
fullerenes are characterized by a higher penetrating 
ability, whereas their derivatives, hydrophilic 
nanoparticles, can only be adsorbed on the surface 
of cell membranes [103]. Nanomaterials can 
damage cell membranes by generating reactive 
oxygen species (ROS), which can oxidize 
double bonds on fatty acid tails of membrane 
phospholipids during lipid peroxidation. This 
process can affect membrane permeability, making 
the cell more susceptible to osmotic stress and 
unable to assimilate substrates [104]. In addition, 
peroxide fatty acids can transform free radicals that 
can damage DNA [105].
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Conclusions
The creation of new types of nanoparticles, 

the study of their properties and the creation of 
new nanotechnologies, including those for agro-
industrial applications, attract the attention of 
many scientists around the world. However, the 
information on the properties of many nanomaterials 
of metal oxides and others elements, the levels of 
their toxicity, is still insufficient. Therefore, the 
use of these materials is limited due to the lack of 
knowledge about the assessment of consequences 
for the environment and human health. The use of 
these technologies requires the development of a 
comprehensive database and signaling system, as 
well as international cooperation in the field of 
regulation and legislation [76].

At present, clay minerals nanoparticles appear 
to be more predictable for the use in biotechno
logy to produce highly effective complex micro
bial preparations for plant growing. The use of 
such preparations can significantly increase the 
availability of nitrogen and phosphorus for plants, 
improve their growth and development, limit 
the spread of phytopathogens and phytophages 
in the phytocenosis and increase productivity. 
Based on the interaction of highly efficient strains 
of nitrogen-fixing bacteria A. vinelandii IMV 
B-7076 and phosphate-mobilizing B. subtilis IMV 
B-7023 with bentonite particles, we have created 
various forms of a highly stable complex bacterial 
preparation Azogran (granular, free-flowing and 
nanocomposite), which significantly increases 
the growth of decorative plants, the development 
of floral and other types of plants, the yield of 
industrial crops, vegetables and cereals by 18– 
37 % [6, 16]. However, the prospects of widespread 
use of nanoparticles of different origin in human 
activity are beyond doubt.

ПРИРОДНІ ТА СИНТЕТИЧНІ  
НАНОМАТЕРІАЛИ В МІКРОБНИХ 

БІОТЕХНОЛОГІЯХ ДЛЯ  
РОСЛИННИЦТВА

І.К.Курдиш

Інститут мікробіології і вірусології 
ім.Д.К.Заболотного НАН України, 
вул. Академіка Заболотного,154,  

Київ, 03143, Україна

Наночастки різних матеріалів (що мають розмі-
ри до 100 нм) характеризуються значною поверх-
нею, що значно підвищує їх реакційні властивості. 
Це викликає інтерес дослідження особливостей 
наноматеріалів з метою їх застосування в різних 
технологіях, в тому числі в аграрному секторі ви-
робництва. Даний огляд присв›ячений узагаль-
ненню літературних відомостей про поширення в 
навколишньому середовищі наночасток природно-
го походження та їх властивостей. Аналізуються 
особливості взаємодії різних видів мікроорганіз-
мів з наночастками природних мінералів, оксидів 
металів та наночасток вуглецю. Узагальнені ві-
домості про вплив наночасток різної природи на 
мікроорганізми, ріст і розвиток рослин. Наведені 
відомості щодо ефективності застосування нано-
часток глинистих мінералів у створенні комплек-
сних бактеріальних препаратів для рослинництва 
і перспективності використання в цій галузі на-
ночасток оксидів металів.

Ключові слова: наночастки природного і син-
тетичного походження, взаємодія наночасток з 
мікроорганізмами і рослинами.
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