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У роботі представлено модель взаємодії двох штамів вірусу. Модель ґрунтується на системі диференціальних 
рівнянь і враховує популяції уразливих, вперше та повторно інфікованих осіб відповідно до двох штамів. На основі 
чисельного моделювання отримано складні хаотичні розв’язки моделі. Отримано умови на параметри розповсю-
дження інфекційного захворювання, що забезпечують стійкі ендемічні стани.
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Background. The model of interaction of two strains of the virus is considered in the paper. The model is based on a 

system of differential equations and takes into account populations of susceptible, first-time and re-infected individuals 
across two strains. The objective of the work was to offer and investigate the model of coexistence of two virus strain from 
viewpoint of stability, periodicity and predictability of the epidemiological curves. 

Materials and methods. Results. As a mathematical object a system of seven ordinary differential equations was 
proposed. At the same time, more sophisticated models based on delayed differential equations, stochastic differential 
equations, partial differential derivative equations can be used in the study of the spatial spread of the epidemic. Of great 
importance in all these cases is a qualitative study of the nonlinear behavior of the model. We see from numerical studies 
that at certain values of the parameters of the solution, large values of periods are obtained. Such solutions are called 
quasi-periodic and correspond to a situation called in the theory of dynamical systems as “deterministic chaos”.

The obtained solution trajectories of the proposed model also indicate the complexity of epidemic prediction. Even in 
the simplest case of describing a model based on deterministic equations, we get chaotic solutions. This is due to the 
complexity of nonlinear interaction between subpopulations of the epidemiological model. 

Conclusions. The model of coexistence of two strains of viruses was investigated. Such a model can be used to 
investigate the spread of infectious diseases. Of great importance in the model are the subpopulations of individuals 
susceptible to the virus, given its two strains. It is undoubted that further studies should address the use of a seasonal 
spread of epidemiologically relevant disease that is consistent with the use of non-stationary dynamic models. Also of great 
importance is the inclusion in the model of populations of symptomatically and asymptotically infected persons.
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В статье рассмотрена модель взаимодействия двух штаммов вируса. Модель базируется на системе 
дифференциальных уравнений и учитывает популяции восприимчивых к заражению, впервые и повторно 
зараженных лиц двумя штаммами. На основе численного моделирования получены сложные хаотические ре-
шения модели. Получены условия распространения инфекционного заболевания при стабильных эндемических  
условиях.
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Introduction. Vaccines are being developed for 
annual seasonal epidemics. Flu strains are mutated 
very quickly and the question, of which most likely 
strain of influenza is invaded, is solved annually. 
Distributed vaccines protect against the three strains 
that are considered the most dangerous. However, if 
the strain is radically different from previously known 
strains, then the vaccine has little or no protection, 
which poses a threat of a pandemic. Since it takes at 
least 6 months to develop a vaccine that can protect 
against a new strain, there is no ready vaccine to 
protect against the attack of a new pandemic strain. 
There are antiviral drugs for the treatment of pandemic 
influenza, they also have some preventive effect, but 
this effect will only occur when providing antiviral 
treatment. Therefore, it is important to find ways of 
effective vaccination in the presence of different strains 
of the virus.

In previous studies [1-4], we have studied the use of 
models based on delayed differential equation systems 
in the case of a single strain of virus with a population 
of symptomatically and symptomatically infected 
individuals, paying particular attention to endemic 

stability studies. For this purpose, linearization 
methods and the direct method of lyapunay were 
used. At the same time, the model of interaction of 
subpopulations in the case of the spread of several 
virus strains and the question of nonlinear analysis of 
such models are of considerable interest [5-8].

Thus the objective of the work is to offer and 
investigate the model of coexistence of two virus 
strain from viewpoint of stability, periodicity and 
predictability of the epidemiological curves.

Theoretical Results. The model is intended to 
describe the spread of various strains of the virus 
(such as pandemic and seasonal influenza). The model 
makes assumptions.

1. The compartments of latent persons are not 
considered.

2. It is believed that the course of the flu is necessarily 
accompanied by the presence of symptoms. That is, 
there is no compartment asymptomatically infected.

3. The total population size of N is considered 
constant.

So, a transition state diagram is considered (see 
Fig. 1):
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Figure 1. Transition diagram for two virus strains

Here we have compartments that meet subpopulations 
S — susceptible, I1 — infected with the 1st strain of 
the virus, I2 — infected with the 2nd strain of the 
virus, R1 — recovered after the 1st strain of the virus, 

R2 — recovered after the 2nd strain of the virus, Y1 
— re-infected (but already the first strain), Y2 — re-
infected (but already the second strain of the virus), 
R — recovering after double infection of persons.
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Equilibrium states have the following epidemiological interpretation: 

 0E  - the state of absence of the disease, 

 1E - the presence of strain 1 only, 

 2E - the presence of strain 2 only. 

Let us denote },max{ 210  . If 10   then it is the only equilibrium state 

in  . If 10   then, either 1E , or 2E , or both belong  . 

Fig. 2, 3 show the regions of existence and stability of equilibrium states iE . 
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That is 21   and all the conditions, which were mentioned above, hold. 

Computational modeling of (1) has been implemented (see Fig. 4). 

 

 
Fig. 4. Phase plot of S , 1I , and 2I  during 8000 days 

 

We see a complex nonlinear behavior of the system trajectory. Such nonlinear 

behavior is caused by a change in a number of model parameters. The fig. 4 shows 

the effect of changes in the incubation period on the trajectory and solutions of the 

equation system. 

We see that increasing the incubation period for the two strains of virus under 

consideration affects the complexity of the trajectories obtained. It should be noted 
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We see that increasing the incubation period for the two 
strains of virus under consideration affects the complexity 
of the trajectories obtained. It should be noted that for 
small values of the incubation period, the obtained 
solutions tend to a certain melt value called the endemic 
solution. At the same time, an increase in the incubation 
period leads to a periodic solution of the system. Such 
phenomena in the theory of dynamical systems have been 
called bifurcation, which occurs when the values of the 
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Fig. 4. Phase plot of S, I1, and I2 during 8000 days

system parameters change and affect the change in the 
qualitative behavior of the whole model. 

In this case, we transform from a steady endemic 
focus to a limit cycle. Such a limit cycle corresponds to 
the situation of periodic epidemics. The impact of other 
parameters on the change in the qualitative behavior 
of system trajectories should also be investigated. 
A further change in the incubation period affects 
the complexity of such a periodic solution. From  
a certain value of the incubation periods corresponding 
to different strains of the virus, there is a doubling 
of the period, and then the period increases 4 times,  
8 times and so on.

Conclusions. Therefore, the model of coexistence of 
two strains of viruses was investigated. Such a model 
can be used to investigate the spread of infectious 
diseases. Of great importance in the model are the 
subpopulations of individuals susceptible to the virus, 
given its two strains. 

It is clear that the model can be developed for the 
cases of three strains, four, etc. In this case, a system 
of seven ordinary differential equations was proposed 
as a mathematical object. At the same time, more 
sophisticated models based on delayed differential 
equations, stochastic differential equations, partial 
differential derivative equations can be used in the 
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study of the spatial spread of the epidemic. Of great 
importance in all these cases is a qualitative study 
of the nonlinear behavior of the model. We see 
from numerical studies that at certain values of the 
parameters of the solution, large values of periods 
are obtained. Such solutions are called quasi-periodic 
and correspond to a situation called in the theory of 
dynamical systems as «deterministic chaos».

The obtained solution trajectories of the proposed 
model in fig. 4 also indicate the complexity of 
epidemic prediction. Even in the simplest case 

of describing a model based on deterministic 
equations, we get chaotic solutions. This is due to 
the complexity of nonlinear interaction between 
subpopulations of the epidemiological model. It 
is undoubted that further studies should address 
the use of a seasonal spread of epidemiologically 
relevant disease that is consistent with the use 
of non-stationary dynamic models. Also of great 
importance is the inclusion in the model of 
populations of symptomatically and asymptotically 
infected persons.


