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DYNAMICAL EXCHANGE INTERACTION BETWEEN  
LOCALIZED SPINS OUT OF EQUILIBRIUM 

 
 

The electron mediated exchange interaction between local spins adsorbed 
on two-dimensional surface is studied under non-equilibrium conditions. The 
effective spin-spin interaction is found to depend both on the spin-polarization 
of the substrate and the excitation spectrum of the local spins. Features of 
spatially anisotropic spin-polarization of the substrate and the spatial 
dependence of the interaction are considered. 

 
The excitation spectra of spin systems strongly depend of the type of 

interactions that are involved. The magnetic moment of e.g. single Co [1,8], Fe [9, 
10], Cr [10], and Mn [11] atoms become strongly anisotropic due to symmetry 
reduction in the interaction with electron medium. Studies of inelastic scattering 
processes of layered materials [8] and single atoms [3,7,9,13] have given deepened 
insight to the excitation spectra of various elements, which then provide further 
detail to the understanding of the involved interactions.  For magnetic systems, the 
interactions between the local spins can be of different character, which is often 
modeled using e.g. the Ising and Heisenberg Hamiltonians, but also anisotropic 
models such as e.g. XY, or anisotropic Heisenberg Hamiltonians.  

Regardless of model, the interaction parameters describe a physical 
interaction between the spins, which result from different mechanisms. The spin-
spin interaction may be direct in the sense that the exchange Coulomb integral 

'' ( ) ( ) ( , ')d d V� �� �� �� r r r r' r r  ( ) ( )� �� �� r' r  is nonnegligible, or of indirect nature, 

e.g. super-exchange or double-exchange. Of particular interest is the Ruderman-
Kittel-Kasuya-Yosida (RKKY) interaction [14,16], which is generated by a 
coupling between the local spins and the surrounding electron medium, such that 
the spin-spin exchange interaction is mediated by the electronic environment. 

In this paper, we address the electron mediated exchange interaction between 
localized spin under nonequilibrium conditions in two-dimensional systems. The 
question is pertinent to recent measurements using e.g. scanning tunneling 
microscopy (STM) where local nonequilibrium conditions are created by the 
tunneling current. It is demonstrated that the resulting spin-spin exchange 
interaction depends on the spin-polarization of the electron medium and on the 
excitation spectrum of the localized spins. For spatially anisotropic spin-polarized 
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surface electrons the spin-spin interaction comprise the Ising, Heisenberg, and 
Dzyaloshinski-Moriya interactions, where the latter is shown to asymptotically 
decay as sin(2 )/2F Fk R k R . In contrast to previous studies of the non-equilibrium 
RKKY interaction [17,18], we here also include the proper time-dependence of the 
local spins.  

The presence of the local spin (or magnetic) moments, results in a spatially 
inhomogenous surface electron spin-polarization which can be transformed into a 
spatially non-uniform spin bias distribution between the spin-projections of the 
surface electrons. Under the spin biased conditions, electrons flow between the 
local spin moments, however, different spin projections travel in different 
directions, thus, establishing a net equilibrium. The setup is, hence, reminiscent of 
the electron spin resonance situation [19, 20], and is ideal for investigating the 
electron mediated exchange interaction in terms of non-equilibrium formalism.  

We begin by considering localized spins rS  at the positions r interacting with 
a continuum, treated in the closed time-path Green function formalism which was 
recently applied to spin dynamics in a Josephson junction and three-dimensional 
metallic systems. We calculate the partition function (in units: 1c� ��  

[ ( )] Tr , [ ]iS
n C WZ ext K T

C

Z t T e S S S dt H H� � � � ��S .                      (1) 

( ( ) ( ) ( )
C
dt dt dt

�� ��

� 	
	� 	�


 � 
 	 
� � � ), where we have omitted unimportant contributions 

from the electron gas with quadratic dispersion and isotropic effective mass m, as 
we are considering conduction electrons in the continuum approximation. The 
STM tip is assumed to have negligible effect on the spin cluster. Besides 

.
2( ) ( ) ( ) /S ,S | |,rWZ r r r r rr

S t t t� �� 
 � �
 �� �
� �dtS S S S  

is the Wess-Zumino-Witten-Novikov (WZWN) term describing the Berry phase 
accumulated by the local spins. The trace runs over the degrees of freedom for the 
electrons in the tip and substrate in order to provide an effective spin action, which 
in the present situation represents the interaction of the magnetic spins with a 
nonequilibrium environment. Sext represents the coupling between the system with 
the external electromagnetic field. The Hamiltonians inside the contour integral 
define the (Kondo) coupling between the local spins and the surface 
electrons, ( ) ( , )K u rr

H v t r t�	 
� S s , and the coupling to external electrodes TH  

which generates a tunneling current in and/or out from the two-dimensional 
surface. For example, recent STM measurements motivates to model the tunneling 
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current between the tip and surface [13] using  

' 0 1 ' '( ) . .i t
T rH c T T c e H c�

� �� �� �
��

� ��� � 
 ��� kr+i ( )
p k

r pk '
S  

where p(k) denotes the momentum for electrons in the tip (substrate), whereas 

0T , 1T  are the ( p  and k  dependent) rates for the direct and exchange coupled 

tunneling. Here, ( , )r ts  is the electron spin density, whereas uv  and KJ  defines a 
unit surface element and the Kondo coupling to the electrons. Besides 

( ) 'V ( ')
t

sdt e dt t�
	�

� �  gives the energy shift due to the bias voltage V ( )sd t  applied 

between the tip and surface and �  is the vector of Pauli spin matrices. 
The procedure in [22,24] yields the effective action 
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where 1 1 1( ) [ ( ) ( )]/2t t t� 	� �S S S  and 2 ( ) [ ( ) ( )]t t t� 	� 	S S S , whereas 

( , '; , ') ( ) ( ') ( , ) ( , ')r
i jF t t i t t s t s t��	 	 � �r r r r'  is the retarted spin GF og the 

surfaceelectrons, (1) (1)j ( ) ( ),t j ,t�r r z�  and (2)j ( ),t,t'r,r'  are the spin-polarized current 
density and spin current density, respectively, between the tip and the substrate 
generated by the spin-imbalance and non-equilibrium conditions in the electrodes. 
This, general, formulation of the action is motivated from the perspective of recent 
tunneling experiments. In this paper the focus, however, is on the third term to the 
right in Eq. (2), which represents the RKKY interactions as it emerges from the 
(Kondo) coupling between the localized spin moments and the surface electrons. 

Owing to the general non-equilibrium conditions, the retarded spin GF is 

expressed in terms of the lesser and greater surface electron GFs 0 0G ( ),t,t
�
� r,r , that 

is, 

  
( , '; , ') ( ) ( ')Tr G ( ' ') G ( )

- G ( ' ') G ( ) ,

r i j

i j

F t t i t t ,t,t ,t',t

,t,t ,t',t

� � �

� �

� �

� �

��	 	 �
��

r r r,r r',r

r,r r',r
                 (3) 

where the trace Tr is taken over spin space of the surface electrons. For non-
interacting but spin-polarized surface electrons we write the real space GFs 
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according to 2G ( ; ) G (R; )e /(2 )id� � �
� �
� �� kRR k , where -R=r r' ,�  't t� 	 . The lesser 

and greater forms of the GF can be written 

  � �0
'G ( ; )= G ( ; )/2,z

�� �
�

� � � � �
� �
� �� 
��k k  (4) 

where G ( ; )=( ) ( )exp( )i f -i� �� � � �
�
� � � k kk  with | |/2�� � �� � �k k , whereas 0�  is the 

identity matrix, and ( )f x  is the Fermi function. The effective spin-splitting �  is 
generated by the surface electrons due to coupling to internal and/or external spin 
degrees of freedom. � can partially be due to e.g. the spatially inhomogeneous 
mean field u Rv J	 � �� rr

S  which is generated by the adsorbed spins, and partially 

due to e.g. spin-orbit interactions in the surface, pertinent to recent STM 
measurements of Co/Pt(111) [3]. Using Eq. (4) and the identity 

0( (� � � �
 
 
 � 
A )(B )= A B) +i(A B) [26] we find, after some algebra, 
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         (5) 

where the dynamical range functions 'F��  are given by  

 '( - )( )
' ' 2 2( ) ( ) ( ) [ ( )- ( )]e .

(2 ) (2 )
i d dF i f f e � �� � �

�� � �� � � � �
� �

� 	 �� k k'k-k' R
k' k

k k'R;  (6) 

Below, we shall calculate those functions explicitly. Before we proceed, however, 
we note that the electron mediated spin-spin interaction described in Eq. (5) 
comprise three different kinds of interactions; Ising, Heisenberg, and 
Dzyaloshinski-Moriya (DM) types of interactions, respectively.  

The first term ( [ ( ) ][ ( ') ]q ct t
� 
�r r'S S is a generalized Ising-type of interaction. 
That it is of Ising-type can be understood since it provides the interaction between 
the spins projected onto the direction of the field � . By rotating the reference 
frame such that ��z�  at [ ( ) ][ ( ') ]q ct t
� 
�r r'S S = 2� ( ) ( ')qz czt tr r'S S . The Ising 
interaction vanishes for non-spin polarized conduction electrons, since the range 
functions are spinindependent, i.e. 'F F�� � , under such conditions. 

The first two contributions are expected to be present between spins 
interacting via metallic or semi-conducting medium. The last contribution is, on 
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the other hand, expected to arise in anisotropic systems. Here, this anisotropy is 
generated by the spin polarized surface electrons. For non-chiral spin-polarization 
of the surface electrons, the range functions F F!" "!� , which leads to that the DM 

interaction vanishes, as expected. It is interesting to note, that the DM interaction is 
non-vanishing whenever the local spins create a spatially inhomogeneous spin-
polarization of the surface electrons. In this sense, the induced spin-polarization 
can be viewed as an effective defect induced spin-orbit interaction.  

Next, we calculate the dynamical range functions. The angular integrals in 
Eq. (6) results in the factors 0 ( )J kR , where 0 ( )J x ) is the Bessel function. The 

Fourier transform of the exponential '( - )e � �� � �k k'  is given by 
1 1

'( ) ( ' )i i� �# � � # � �	 		 � 	 	k k' . Thus, for quadratic dispersion 2
0/2k N� �k , changing 

momentum to energy integrations, and carrying out those energy integrals, give 
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where (1)
0 ( )H x  is the Hankel function, ' | |( ')/2�� � �$ � � 	 , and 

( )= ( | |/2)f f� # # �� � .  Using that  
1

( ) ( ) ( ) /(2 )ix ii e x i e d� �� � � �
		 	 $	 � $	 � $� , 

we can finally write  

' '( ) ( ) /(2 )iF F e d�
�� ��� �	 $� $ $�R; R; , 
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showing that the dynamical range function depends on time �  , the spin bias '��$  

__0 , and on the spin-chemical potential | |/2F F� � �� 	 � . Eq. (8) is the central 
result of this paper and below we analyze a few of its consequences to the electron 
mediated spin-spin exchange interaction.  

The static regime, which corresponds to assuming frozen spin moments, is 
de_ned for  0$� . For small spin biases ' / 1F�� �$ � , such that 

(1) (1)
0 ' 0( ) (H R H R��# #�$ %  the integral in Eq. (8) can be analytically calculated 
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for low temperatures ( 0T& ), for which  

 '2 2 20
'

0,1
( ) ( ) ( ) [ ( ) ( )] ,

2 2n n n n
n

N iF k J Rk Y Rk J Rk Y Rk�� � � � � �� �

�� 	 	 ��
�R  (9) 

where 2
0| |Fk k N� �� 	 �  with Fermi vertor 02F Fk N �� , whereas ( )nY x  is the 

Neumann function. Here, the real part captures previous results [30{32], in the 
spin-degenerate limit Fk k� & , whereas the imaginary part accounts for the 
retardation and damping e_ects of the interaction due to the electron medium.  

For 2 1Fk R� , the asymptotic expansion of Eq. (9) leads to that 
2

'Re sin(2 )/(2 )F FF k R k R�� (  in agreement with previous results, which provides the 
usual spatial decay for the isotropic electron mediated Heisenberg-like exchange, 
see Eq. (5). Analogously, the asymptotic expansion of the imaginary part of Eq. (9) 
gives 2

'Im cos(2 )/(2 )F FF k R k R�� ( . In contrast, the electron mediated DM 

interaction asymptotically decays as sin(2 )/(2 )F Fk R k R , which can be seen from 
the following observation. The DM interaction depends on the range functions as 
F F!" "!	 , see Eq. (5). By Taylor expanding the imaginary part of this difference 

and using that 0| | /(2 )F Fk k N k� �% 	 � ), one finds that it asymptotically reduces to  

 0
2

| | sin2
Im

22
z F

FF

N k RF
k Rk��

�

� !"

�� ~ , (10) 

which to the best of our knowledge has not been reported previously. Hence, 
despite the DM interaction depends quadratically on the anisotropy field � , it 
tends to dominate over the Heisenberg, and Ising, exchange for sufficiently large 
distances between the spins. Thus, in absence of effective magnetic fields acting on 
the local spins, two spins configure themselves perpendicular to one another when 
being separated by a sufficiently large distance since the DM interaction dominates 
their coupling. A collinear alignment of the spins is typically favorable whenever 
the spins are close to one another, sincethe Heisenberg interaction provides the 
strongest contribution to the coupling. The cross over distance at which the DM 
interaction begins to dominate over the Heisenberg interaction is roughly given by 

0/(2| | )C FR k N% � . This cross over distance is obtained under the assumption that 
2

0 | |/ 1FN k� � . 
For the remainder of this paper, we consider the local spin moments to be 

time-dependent, i.e.  0$) , as they would be under the inuence of e.g. an effective 
magnetic field. In Eq. (5), the dynamical range function ' ( )F�� R  mediates the 
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interaction between the spins signified by 1( ')tS  and 2 ( )tS , which have different 

time-arguments. Using that e.g. 1 1( ) ( ) /(2 )ixtt x e dx ���S S  and integrating over t  

and 't  [c.f. Eq. (2)], we can write, for instance, the Heisenberg type of exchange 
interaction between two spins located at r and 'r  as  

2 2 1
' ' '( ) [1 | | ] ( , ) ( ) ( )/(4 )z z

u Kv J d F�� � � ��
��

� � �	 	 � $ $ $ 
 	$� � r rR S S , 

and analogously for the other two types of interactions. The exchange interaction 
between the localized spins, hence, strongly depends on the excitation spectra of 
the spins. As expected from previous results, and from the above discussion, in the 
regime near  = 0, F__0 acquires an oscillatory decaying behavior as function of R. 
The expression given in Eq. (8) suggests to interpret the effective exchange 
interaction as the interference between (spin-dependent) charge density waves with 
their frequencies set by the spin-chemical potential �� , the spin bias ��$ , and the 
excitation spectra of the localized spins.  

In conclusion, we have studied the electron mediated spin-spin exchange 
interaction under non-equilibrium conditions for localized spins embedded in a 
twodimensional system. It was demonstrated that the range function depends 
dynamically on time, the spin excitation spectrum, and the spin-bias between the 
spin channels in the electron medium. This leads to that the electron mediated 
exchange interaction between the localized spins is determined by the spin-
polarization of the electron medium as well as of the excitation spectra of the local 
spins. In the case of spatially anisotropic spinpolarized surface electrons, the 
electron mediated spinspin exchange interaction comprise the Ising, Heisenberg, 
and Dzyaloshinski-Moriya type of interactions, capturing the static case previously 
reported. It was, moreover, shown that earlier results for the range function, which 
were derived for systems in the static regime, can be straightforwardly extended to 
slowly uctuating spins. Particularly, the Dzyaloshinski-Moriya interaction was 
shown to decay as sin(2kFR)=(2kFR) for weakly spin-polarized electrons. 
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