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The Cartan-Monge geometric approach to the characteristic me-
thod for Hamilton-Jacobi type equations and nonlinear partial differen-
tial equations of higher orders is analyzed. The Hamiltonian structure
of characteristic vector fields related with nonlinear partial differential
equations of first order is analyzed, the tensor fields of special structure
are constructed for defining characteristic vector fields naturally related
with nonlinear partial differential equations of higher orders. The ge-
neralized characteristic method is developed in the framework of the
symplectic theory within geometric Monge and Cartan pictures. Based
on their inherited geometric properties, the related functional-analytic
Hopf-Lax type solutions to a wide class of boundary and Cauchy prob-
lems for nonlinear partial differential equations of Hamilton-Jacobi
type are studied. For the non-canonical Hamilton-Jacobi equations
there is stated a relationship between their solutions and a good posed
functional-analytic fixed point problem, related with Hopf-Lax type
solutions to specially constructed dual canonical Hamilton-Jacobi
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equations. Functional-analytic solutions to a Hamilton-Jacobi equati-
on of Riccati type are obtained and investigated reducing them to the
classical Brouwer-Banach type fixed point theory.

1. INTRODUCTION: GEOMETRIC BACKGROUNDS OF THE
CLASSICAL CHARACTERISTIC METHOD

Solutions to linear partial differential equations, as is well known [12,15,17],
can be studied enough effectively using many classical approaches, such as
Fourier method, spectral theory and Green function method. Nevertheless,
all of them, regrettably, can not be applied for analyzing solution mani-
folds of general nonlinear partial differential equations even of the first and
second orders. Since the classical Cauchy works on the problem by now there
exist [5,12,16,17] only a few approaches to treating such equations, among
which the famous characteristics method proved to be the most effective
and fruitful. During the last century this method was further developed
by many mathematicians, amongst them such as P.Lax, H.Hopf, O.Oleinik,
S.Kruzhkov, V.Maslov, P.Lions, L.Evans, D.Blackmore [6,12,13,16-19, 21,
30] and others. Still long ago it was observed the deep connection of the
characteristics method with Hamiltonian analysis, reducing the problem to
studying some systems of ordinary differential equations. This aspect was
prevailing in works of H.Hopf, P.Lax and Q.Oleinik (see [6,11,12]), who
described doing this way a wide class of so called generalized solutions to
first order nonlinear partial differential equations. The most known result
within this field is attributed to H.Hopf and P.Lax, who have found for
the first time a very interesting variational representation for solutions of
first order nonlinear partial differential equations called a Hopf-Lax type
representation. As these results were strongly based on some geometric no-
tions, it was natural to analyze the Cauchy characteristics method from the
differential-geometric point of view, initiated still in the classical works of
G.Monge and E.Cartan [10]. Within the framework of the Monge geometric
approach to studying solutions of partial differential equations we proposed
in [25] a generalization of the classical Cauchy characteristic method for
equations of first and higher orders, making use of the special tensor fi-
elds, intimately related with them. These tensor fields appear very naturally
within a developed Monge approach as some geometric objects, generali-
zing the classical Hamilton type equations for characteristic vector fields.
Moreover, this geometric approach jointly with some Cartan’s compatibi-
lity considerations [3, 4, 10] is also naturally extended to a wide class of
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nonlinear partial differential equations of first and higher orders. And even
more, if an introduced tensor field is chosen in such a way that it carries an
assoclated symplectic structure, the corresponding solutions to generalized
Hamilton-Jacobi equations can be found, in general, effectively in the impli-
cit functional-analytic Hopf-Lax type form, which is equivalent {26] to some
good posed fixed point problem.

The characteristic method [4, 12,17, 30] proposed in XIX century by
A. Cauchy was very nontrivially developed by G. Monge, having introduced
the geometric notion of characteristic surface, related with partial differential
equations of first order. The latter, being augmented with a very important
notion of characteristic vector fields, appeared to be fundamental [16, 23,24,
30] for the characteristic method, whose main essence consists in bringing
about the problem of studying solutions to our partial differential equation
to an equivalent one of studying some set of ordinary differential equations.
'This way of reasoning succeeded later in development of the Hamilton-Jacobi
theory, making it possible to describe a wide class of solutions to partial dif-
ferential equations of first order of the form

H(z;u,uz) =0, (1.1)

where H € C2(R™"1 x R™R), ||H,|| # 0, is called a Hamiltonian function
and u € C%(R™;R) is unknown function under search. The equation (1.1) is
endowed still with a boundary value condition

ulpv = ug, (1.2)

with up € C*(I'y;R), defined on some smooth almost everywhere hypersur-
face

Ty i={z € R™: (@) =0, lpsll # 0}, (1.3)

where ¢ € C'(R™R) is some smooth function. Following to the Monge’s
ideas, let us introduce the characteristic surface Sy € R**! x R™ as

Sy = {(z;u,p) € R™' x R": H(z;u,p) =0}, (1.4)

where we put, by definition, p := u, € R" for all £ € R". The characteristic
surface (1.4) was effectively described by Monge within his geometric appro-
ach by means of the so called Monge cones K C T(R"*!) and their duals
K* C T*(R™*1) [24,30]. The corresponding differential-geometric analysis of
this Monge scenario was later done by E. Cartan, who reformulated [10,30]
the geometric picture, drown by Monge, by means of the related compatibi-
lity conditions for dual Monge cones and the notion of integral submanifold
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Yy C Su, naturally assigned to special vector fields on the characteristic
surface Sy. In particular, Cartan had introduced on Sy the differential 1-
form

aV) = du— < p,dz >, (1.5)

where < -, - > is the usual scalar product in R®, and demanded its vanishing
along the dual Monge cones K* C T*(R"*1), concerning the corresponding
integral submanifold imbedding mapping

g — Sg. (1.6)

This means that the 1-form

'rr*agl) =du— <p,dz > |g, =0 (1.7)

for all points (x;u,p) € Xy of a solution surface Xy, defined in such a way
that K* = T*(Xy). The obvious corollary from the condition (1.7) is the
second Cartan condition

d'rr*agl) = ﬂ'*dagl) =< dp, Ndz > |p, = 0. (1.8)

These two Cartan’s conditions (1.7) and (1.8) should be still augmented with
the characteristic surface Sy invariance condition for the differential 1-form
ol € Al(Sy)
2 H) as
oY :=dH|g, = 0. (1.9)

The conditions (1.7), (1.8) and (1.9), when imposed on the characteristic
surface Sy C R™*! x R®, make it possible to construct the proper characteri-
stic vector fields on Sg, whose suitable characteristic strips {24, 30] generate
the searched solution surface X g. Thereby, having solved the correspondi-
ng Cauchy problem related with the boundary value conditions (1.2) and
(1.3) for these characteristic vector fields, considered as ordinary differenti-
al equations on Sg, one can construct a solution to our partial differential
equation (1.1). And what is interesting, this solution in many cases can be
represented [12,26] in exact functional-analytic Hopf-Lax type form. The
latter is a natural consequence from the related Hamilton-Jacobi theory,
whose main ingredient consists in proving the fact that the solution to our
equation (1.1) is exactly the extremal value of some Lagrangian functional,
naturally associated [3,4,23] with a given Hamiltonian function.

Below we will construct the proper characteristic vector fields for partial
differential equations of first order (1.1) on the characteristic surface Sy,
generating the solution surface X g as suitable characteristic strips related
with the boundary conditions (1.2) and (1.3), and next generalize the Cartan-
Monge geometric approach for partial differential equations of second and
higher orders.
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2. THE CHARACTERISTIC VECTOR FIELDS METHOD:
FIRST ORDER PARTIAL DIFFERENTIAL EQUATIONS

Consider on the surface Sy C R®t! x R™ a characteristic vector field Ky :
Sy — T(Sy) in the form

dCC/dT = aH(il?; uap)v

dp/dr = by (z;u,p), ¢ := Ky(z;u,p), (2.1)
du/dr = CH("B; u,p),

where 7 € R is a suitable evolution parameter and (z;u,p) € Sy. Sin-
ce, owing to the Cartan-Monge geometric approach, there hold conditions
(1.7), (1.8) and (1.9) along the solution surface Xy, we can satisfy them,
applying the interior anti-differentiation operation ig, : A(Sg) — A(Sy) of
the Grassmann algebra A(Sy) of differential forms [3, 14, 28] on Sy to the
corresponding differential forms agl) and dagl) € A(Sw) :

ikgol) =0, ig,dolt) =0. (2.2)
As a result of simple calculations one finds that
cy =<pag >, PBYi=<by,dr>—<ap,dp>|s; =0 (2.3)

for all points (z;u,p) € Sy. The obtained 1-form ) € Al(Sy) must be,
evidently, compatible with the defining invariance condition (1.9) on Sg.
This means that there exists a scalar function x € C'(Sy;R), such that the
condition

post = g (2.4)
holds on Sy. This gives rise to such final relationships:
ag = pOH/8p, by = —p(0H/0z + pOH/[0u), (2.5)

which together with the first equality of (2.3) complete the search for the
structure of the characteristic vector fields Ky : Sy — T(Sy) :

Ky = (udH [0p; < p,udH [8p >, —u(0H [0z + pOH [Ou))T. (2.6)

Now we can pose a suitable Cauchy problem for the equivalent set of ordinary
differential equations (2.1) on Sy as follows:

dr/dr = pn0H/8p, x|r=0 < zo(z) €Ly, Zlrmg(z) = ¢ € RM\I'y;

du/dr =< p,udH/0p >, ulr=0 = uo(z0(x}), Ulr=t(z) = u(z), (2.7)
dp/dr = —u(OH/9z + pIH/0u), plrmo = duo(zo(z))/dzo,
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where zo(z) € I'y, is the intersection point of the corresponding vector field
orbit, starting at a fixed point z € R™\I'y,, with the boundary hypersurface
'y, C R™ at the moment of ,time“ 7 = t(z) € R. As a result of solving the
corresponding ,inverse“ Cauchy problem (2.7) one finds the following exact
functional-analytic expression for a solution u € C%(R™; R) to the boundary
value problem (1.2) and (1.3):

t(z) _
u(z) = uo(zo(z)) + A L(z;u,p)dr, (2.8)

where, by definition,
L(z;u,p) =< p,udH/0p > (2.9)

for all (z;u,p) € Sy. If the Hamiltonian function H : R**! x R® — R is
nondegenerate, that is HessH := det(6°H/8pdp} # 0 for all (x;u,p) € Sy,

then the first equation of (2.7) can be solved with respect to the variable
p € R™ as

for (z,z) € T(R"), where ¥ : T(R") x R — R" is some smooth mapping.
This gives rise to the followingcanonical Lagrangian function expression:
L(z, &5 u) = L{T; 8, D) | pmyp(z,250) (2.11)

and to the resulting solution (2.8):

t{z)
u(z) = up(zo(z)) + A L(z, &;u)dr. (2.12)

The functional-analytic form (2.12) is already proper for constructing its
equivalent Hopf-Lax type form, being very important for finding so called
generalized solutions {11,12,16] to the partial differential equation (1.1). This
aspect of the Cartan-Monge geometric approach we suppose to analyze in
detail elsewhere.

3. THE CHARACTERISTIC VECTOR FIELDS METHOD:
SECOND ORDER PARTIAL DIFFERENTIAL EQUATIONS

Assume we are given a second order partial differential equation

H(z;u, ug, Ugg) =0, (3.1)
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where solution u € C?(R™;R) and the generalized ,Hamiltonian“ function
H e CEHR™! x R* x(R" @ R™); R). Putting p'V) := ug, p® = uge, z € R?,
one can construct within the Cartan-Monge generalized geometric approach
the characteristic surface

Sy = {(z; u,p(l),p(z)) e R"! x R” x (R" ® R") : H(z; u,p(l),p(z)) = 0}
(3.2)
and a suitable Cartan’s set of differential one- and two-forms:

o) = du— < pWW,dz > |g,, = 0,da{? =< dz, AdplV) > |5, =0,
agl) = dp\V— < p@,dz > |p, =0, dagl) =< dz, Addp? > |5, =0,
(3.3)
vanishing upon the corresponding solution submanifold £y C Sy. The set of

differential forms (3.3) should be augmented with the characteristic surface
Sy invariance differential 1-form

ol == dH|g, = 0, (3.4)

vanishing, respectively, upon the characteristic surface Sg. Let the charac-
teristic vector field Ky : Sy — T(Sy) on Sy is given by expressions

N

dx/dr = aH(m;u,p(l),p(z)),
dp™ /dr = b (;u, pM), p?),
dp® /dr = b (w;u,pV,p®), |

= Ky(z;u,ptY, p?), (3.5)

for all (z;u,pV,p@) € Sy. To find the vector field (3.5) it is necessary to
satisfy the Cartan compatibility conditions in the following geometric form:

isnq 5y =0, ikydy |y = (3.6)
iKHagl)lroH = 0, iKHdag )izﬁ' =0,

where, as above, ix, @ A(Sg) — A(Sy) is the internal differentiation of
differential forms along the vector field Ky : Sy — T(Sg). As a result of
conditions (3.6) one finds that
cy =< pM,ay >, b&}’ =< p¥,ay >,
M =< ag,dpV > — <), dz > |5, = 0, (3.7)
ﬁi(,l) =< ag,dp® > - < bg),dx > |sy = 0,

being satisfied upon Sy identically. The conditions (3.7) must be augmented
still with the characteristic surface invariance condition (3.4). Notice now
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that 1-form ﬁ{l) = 0 owing to the second condition of (3.7) and the third
condition of (3.3). Thus, we need now to make compatible the basic scalar

1-form (3.4) with the vector-valued 1-form Bél) € A(Sy) ® R™. To do this

let us construct, making use of the ﬁél), the following parametrized set of,
respectively, scalar 1-forms:

B ] =< 510 @ agr, dp® > — < b2, i) @ de > |5, =0,  (3.8)

where 219 € C1(Sg;R™) is any smooth vector-valued function on Sg. The
compatibility condition for (3.8) and (3.4) gives rise to the next relationships:

i1 ® ay = 8H/3p?),

(3.9)
< ﬁ(”o),bg) >= —8H/8z + pMoH [0u+ < 0H/0p™), p? >,

holding on Sy. Take now such a dual vector function p(1% € C1(Sy; R™)

that < pll® A0 >= 1 for all points of Sy. Then from (3.9) one finds
easily that

ay =< u9, 8H/6p® >,

. (3.10)
b7 = —pl0> @ (9H/0x + pVOH /du+ < OH/opD, p® >).

Combining now the first two relationships of (3.7) with the found above
relationships (3.10) we get the final form for the vector field (3.5):

Ky = (ag; < pV,ap >, < p@,ap >, —p1107@

3.11)
®(0H 0z + pVOH/du+ < OH/opL, p@ >)NT, (

where ag =< p(19 8H/9p® > and pM® e C1(Sy;R™) is some smooth
vector-valued function on Sg. Thereby, we can construct as before solutions
to our partial differential equation of second order (3.1) by means of solving
the equivalent Cauchy problem for the set of ordinary differential equations
(3.5) on the characteristic surface Sy.

4. THE CHARACTERISTIC VECTOR FIELDS METHOD:
PARTIAL DIFFERENTIAL EQUATIONS
OF HIGHER ORDERS

Consider a general nonlinear partial differential equation of higher order
m € Z4 as
H(z; u, Uz, Ugz, - . - Umg) = 0, (4.1)
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where there is assumed that H € C%*R"! x (R™)®™(m+1)/2,R). Within
the generalized Cartan-Monge geometric characteristic method we need to
construct the related characteristic surface Sy as
Sy = {(z;u,pY,p?), ..., pM) € R x (R?)@m(M+1)/2 ,
H(x; uﬁp(1)$p(2)! e ,p(m)) = 0}5

where we put p(V) := u; e R?, p := 4, e R*"®@R",...,p(™ € (R™)®™ for
z € R™. The corresponding solution manifold X C Sy is defined naturally

as the integral submanifold of the following set of one- and two-forms on
Sy :

agl) = du— < P(l),d:c > |z =0, dﬂf(l) =< dz, /\dp(l) > |2y =0,

(4.2)

(4.3)

o) == dpV— < pD dz > |5, = 0,das) =< dz,Adp® > |g,, =0,
(4.4)

all) = dp™ V- < p™ dz > |5y = 0,dald) ;=< dz, Addp'™ > |z, = 0,
(4.5)
vanishing upon Xg. The set of differential forms (4.4) is augmented with the
determining characteristic surface Sy invariance condition

o) | :=dH|s, = 0. (4.6)

Proceed now to constructing the characteristic vector field Ky : Sg —
T(Sg) on the hypersurface Sy within the developed above generalized cha-
racteristic method. Take the expressions

d:c/dT:aH(w;u’p(l),p(z)"'"p(m))7 )
du/dr = cy(x; u, pV, p@ ... ,p(m)),
dp® /dr = b3 (z;u,pM,p@, ..., pm),

= K , (2)
dp® fdr = bg)(m.; u,p®,p®, . pm)y, b o= Ky (o u, p ), (4.7)

dpt™ [dr = b (;u,pD, 9., p™), |

for (z;u,pM),p@, ..., p™) € Sy and satisfy the corresponding Cartan
compatibility conditions in the following geometric form:

zKHa1 )IZH = 0, ’iKHdag”EH =0,
: 1
zKHaz Iz}H = 0, ZKHdag )l‘EH =0, (4.8)
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As a result of suitable calculations in (4.8) one gets the following expressions:

ca =< pM,ag >, bﬁ}) =< pP,ay >,
ﬁgl) =< ag,dp) > — < bg),da: > |gy = 0,
B =< ag,dp® > — < b? dz > |5, =0, (4.9)

.,(,f) =< ag,dp™ > — < bf,}”),d:c > gy = 0,

being satisfied upon Sy identically. It is now easy to see that all of 1-forms
ﬁj(-l) € AY(Sy) ® (R")®, j = 1T,m — 1 are vanishing identically upon Sy
owing to the relationships (4.4). Thus, as a result we obtain the only rela-
tionship

B =< ay,dp™ > — < b8 dz > |5, = 0, (4.10)
which should be compatibly combined with that of (4.6). To do this suitably
with the tensor structure of the 1-forms (4.10), we take a smooth tensor
function ™10 ¢ CY(Sy; (R*)®(m—1)) on Sy and construct the parame-
terized set of scalar 1-forms

B[] :=< G0 @ gy dp™ > — < b(m) ™10 @ dr > |5, =0,
(4.11)

which can be now identified with the 1-form (4.6). This gives rise right away
to the relationships

EmU0) @ gy = dH/0pt™,
< fm=10 g™ ~— _(8H 0z + pVOH /Ou+ (4.12)
+ < 8H/opW pD > ...+ < dH/9pm D pm) ),

holding on Sg. Now we can take such a dual tensor-valued function p(™—1%¢
CH(Sy; (R™)®™=1)) on Sy that < p(m-10) z(m-10) 5= 1 for all points of
Sy. Then from (4.12) we easily get the searched unknown expressions

ay =< u(m—llo),aﬂ/ap(m) >,
B = (10> @ (8H /6T + pVOH /du+ (4.13)
+ < 8H/0pW,p? > +...+ < 8H/8p™ V), p™ ),

The obtained above result (4.13) combined with suitable expressions from
(4.9) give rise to the following final form for the vector field (4.7):

KH = (GH; < p(l):aH >, < p(2)aaH Py, < p(m)’aH >
—pm=10* & (OH |8z + pVOH /Bu+ (4.14)
+ < 0H/0pW, p@ > + ...+ < 0H/8p™1), p(m) S))T,
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where ag =< p™~YU0 5H/9p(™ > and u(m-UD ¢ C(Sy; (R)®(m-1))
is some smooth tensor-valued function on Sy. The resulting set (4.7) of
ordinary differential equations on Sy makes it possible to construct exact
solutions to our partial differential equation (4.1) in a suitable functional-
analytic form, being often very useful for analyzing its properties important
for applications. On these and related questions we plan to stop in detail
elsewhere later.

Namely, if for instance a first order differential equation is given as
H(z;u,ug) = 0, (4.15)

where z € R", H € CY(R?*L;R), ||Hy, || # 0, the characteristics vector
fields on the related Monge hypersurface

Sy = {(z;u,p) € R* x R" : H(z;u,p) := H(z;u, 7r)|,r=¢(x;u,p) = 0}
(4.16)
are represented [25] as follows:

dz/dr = pMVOH /8p, dp/dr = —p1* (8H 0z + OH [du)

_ (4.17)
du/dr =<+, g WeH /op > .

Here uD) = (8y/0p)>~1 € CYR™1;R" ® R") is a nondegenerate
smooth tensor field on the hipersurface Sy, related with its parametrization
7 = YP(z;u,p) € R", and 7 € R is an evolution parameter. Vector field (4.17)
ensures [25] the tangency to the hyper-surface Sy ¢ R™ x R™*! and the
projection compatibility condition with the dual Monge cone K™* upon the
corresponding solution hypersurface Sy C R™*!, (see Fig. 1) generated by
the characteristic strips Xy C Sy through smoothly embedded sets 3 C Sy,
consisting of points carrying the solutions to our problem (4.15). Similar
results were obtained in [25] also for both partial differential equations of
higher orders and systems.

In general, the problem (4.15) is endowed with some boundary condition
on a smooth hypersurface I',, C R™ as

u|r,, = up, (4.18)

where up € C*(T'y;R) is a given function. The hypersurface I'y, C R™ can
be, for simplicity, defined as

'y :={z € R": p(z) = 0}, (4.19)
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zo(e) € TS~ zo(s) € T~
rn-1 . ' o

L2

Fig. 1. The boundary T%~! = {zg € R™ : (o) = 0},
zo(s) € I%~1, s € R*~! - local coordinates.

where ¢ : R® — R is a smooth mapping endowed with some local coordi-
nates s(z) € R"! in the corresponding open neighborhoods O.(z) C T, of
all points z € I', at some &£ > 0. Thus, we are interested in constructing
analytical solutions to the boundary problem (4.15), (4.18) and (4.19) and
studying their properties. This and related aspects of this problem will be
discussed in detail below.

5. BOUNDARY PROBLEM ANALYSIS

Consider the set of characteristic equations (4.17) on the hypersurface Sy C
R x R, which start. at points (z¢; ug, pp) €  under the additional condi-
tion that the corresponding projection ¥ — ¥ upon the subspace R** (see
Fig. 2) coincides with the boundary set (T'y; up) C R®*!, that is

L = (Ty;uo), (5.1)

where up € C'(Ty; R) is our boundary condition. The condition (5.1) assu-
mes evidently that the set £ C Sy can be defined as follows:

X = (X;po) (5.2)
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L1
Fig. 2. Geometric Monge method. The boundary conditions:
Y= (I%1u) C Sy, uo € CH{TT Y R),
the boundary problem solution hypersurface: Sy = {(z,u) € R™"! :u = ¢(z)}

withsome pg € C!(Ty; R™) being yet unknown smooth mappings. For them
to be determined we need to ensure for all points ¥ C Sy the mentioned
above Cartan compatibility conditions, that is the conditions

dulg =<p,dz>|g, <dy,Ndz>|x=0, (5.3)

where X C Sy is given by (5.2). As a result of (5.3) one finds easily that

Buo(s)/0s— < P(zo(s); uo(zo(s)), po(s)), 9zo(s) /88 >= 0,

_ (5.4)
H(zo(s); uo(zo(s)),po(s)) =0

for all points zop = zo(s) € [y, s € R" 1. Here we took into account
that any point = € I, is parametrized by means of the corresponding local
coordinates s = s(zg) € R"!, defined in the corresponding e—vicinities
Oc(z) C Ty, e > 0.

The system of relationships (5.4) must be solvable for a mapping po :
I', — R™ at all points 2o € I'y, what gives rise to the determinant condition

61,!: *6:1:0. BI? T
det [(ap) 63’(6p)]

70 (5.5)

(zo3u0,p0)
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owing to the implicit function theorem {29]. If the condition (5.5) is satisfied
at points (SCQ;UQ,p(()J)) € Sy, where j = 1,N for some N € Z, and all
points (Zo;up) € ¥, the system of equation (5.4) possesses exactly N € Z,
different smooth solution p((f ) ¢ C’I(F(p;R"‘), j = 1, N, thereby determi-
ning the corresponding Cauchy data (5.2) for the characteristic vector fields
(4.17). It is clear enough that our boundary problem (4.15), (4.18) and (4.19)
possesses, in general, many solutions of different functional classes, depending
on the kind of chosen boundary conditions. For instance, as it was studied
and analyzed in [12,17,26] this boundary problem can possess also so called
generalized solutions, which allow at some additional conditions the so called
Hopf-Lax inf-type extremality form, being often very useful for studying their
asymptotic and other properties.

Concerning the important problem of constructing functional-analytic
solutions to our equation (4.15) under the boundary conditions (4.18) and

(4.19) we will ponder it in detail below.

6. THE HOPF-LAX TYPE INF-TYPE
FUNCTIONAL-ANALYTIC REPRESENTATION

Assume now that pp € C'(Ty;R™) is a smooth solution to the system
(5.4), thereby defining completely the sought Cauchy data ¥ ¢ Sy for
the characteristic vector fields (4.17). Thus, making use of suitable classical
methods for solving these ordinary differential equations, one can
find, in particular, that the function u € C?(R™;R) for each reachable point
z = z(t) € R™ can be represented in the analytical form

t ]
u(z(t)) = u(z(0)) + ]0 < (), u(””%%('r) > dr (6.1)

at any moment of ,time" ¢ € R. Since, by definition, £(0) := z¢(s) € [, and
u(z(0)) := ug(zo(s)), s € R®1, the solution (6.1) is rewriten as

i

5, (1) > d1 (6.2)

t
w(@(t)) = uo(zo(s)) + fo < (r), uV

for any t € R, where the integrand function in (6.2) is assumed to be found
analytically. '

Pose now for the vector field equations (4.17) the following ,inverse"
Cauchy problem

Tlr=t(z) = T € R", Z|r=0 = zo(s[z0;7]) €Ty (6.3)
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Fig. 3. Geometric Monge method. The characteristic surface:
Sy = {(z;u,p) € R¥"*! . H(z;u,p) = 0} and intial conditions for the vector field
Ky : Sy — T(Sg), satisfying the Cartan’s comatibility conditions:
du— < p,dz >y, rn-1=0iff Sy|{K* and there exist data ¥ = (X, pp) defining
the characteristic strip Z .

for some local parameter s[zg;z] € R®! at the moment of ,time* t(z) € R
corresponding to an arbitrary reachable point € R™ as it is shown on Fig. 3.

Here we assumed that the evolution mapping (T, R) 3 (x0, 7) = x(7; 20) :
= g € R" is invertible for almost all reachable points z € R™ and, respecti-
vely, for each found above point z¢(s[zg; z]) € 'y, £ € R™ one can suitably
determine the unique point po(s[zg;z]) € R™, £ € R™. As a result, one can
write down, owing to the conditions (6.3), the following expression:

T=t(x)

u(®) = vo(zo([z0; 1)) + ] _ Lrlmlslgaiodn, (64

where £ : R x {T'y, x R") — R is the so called ,quasi-Lagrangian“ function:

£(rlo([z0; 2]); ) =< p(r), u@“)%f-(f) >, (6.5)

which is defined by solutions to the characteristic vector field equations (4.17)
under conditions (6.3). The expression (6.4) on integrating it with respect
the parameter 7 € [0,#(z)} C R reduces to the analytical form

u(z) = uo(zo(s[zo; z])) + P(zo([zo; ]); 2), (6.6)
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where points zo(s(z)) € 'y, z € R®, and, by definition, the ,kernel* function

T=t(z)

P@oslonial)ic) = [ Lrlao(lesadio)dr.  (6)

T=0

The obtained expression (6.6) does solve the equation (4.15) under the boun-
dary conditions (4.18) and can be effective enough for applications, if the
kernel-function (6.7) is constructed analytically. But, in general, if 9H /Ou #
0 identically on Sy, the quasi-Lagrangian function (6.5) depends effectively
on the unknown still solution u € C%(R™; R), that makes the expressions (6.7)
and (6.6) senseless. Since the latter expressions depend, obviously, strongly
on a choice of the parametrisation 7 := ¥(x;u,p) € R", (z;u,p) € Sy, at
which the tensor field p(l) = (8y/8p)*~1 € CYR?™+!; R® @ R") is under
our disposition, one can propose a partial remedy to this problem.

Namely, to make use of this possibility as much as one can, let us assume
additionally that our tensor field p(llt) = (8y/8p)>~1 € CLR*;R" ®
R™) carries the associated symplectic structure. This means, speaking more
generally, the existence of such a ,symplectic* element ¥ := (¢1,92)7 €
C?(R™ x R*™ L. T*(T*(R"))) that for all (z,p) € T*(R") ~ R" x R" the
following equality

(;%w'ﬁmﬁ,- (6.8)
T p
holds, where the co-symplectic operator ¥ : T*(T*(R™)) — T(T*(R™)) in the
form an
_ 0 — 141
V= ( sas o ) (6.9)

is defined as ¥ = Q! under the condition that the symplectic matrix

oYy & oY
o ! 1 %ﬂ Ba Tw— TZ
Q=0 9" = ( %11)_2 31/?* %é o3 ) (6.10)
p Bp
is nondegenerate. This gives rise, in particular, to the next important corol-

lary: the charactersitic vector field system (4.17) is Hamiltonian, allowing
the natural Lagrangian extremality interpretation:

5 [r=tz) _
— L(x,z;u)dr =0, (6.11)
oz 7=0
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holding over the set of all smooth curves = € C%([0, t(z)]; R"), z(0) = 2o €
Ly, z(t(z}) = z € R™\I'y. Here, by definition, we put & := dz/dr for 7 €
[O’ t(m)]’

Lz, &;u) =<1, &>+ <o, p>— fI(a:;u,p)] (6.12)

p=a(z,&;u) ’
P := dp/dr, where the vector p := a(x,z;u) € R™ solves the equivalent to
(6.8) system of equations

(20 08),, (%0, o o

oz Oz ap o0z JPT oz TV ou 6.13)
(awz_aw;')ﬂ Ops Y3\ . OH '
dr Op Op Op dp

at points (z,#;u) € R? x R.

The Lagrangian extremality condition (6.11) makes it possible to intro-
duce a new ,momentum” variable § € R", canonically conjugated with the
variable x € R" as follows:

p = OL/0i. (6.14)

This gives rise to a new canonical Hamiltonian system for conjugated variab-
les (z,p) € R® x R® and a new Hamiltonian function H : R?*"1R,
completely equivalent to the system (6.8)

dr OH dp 6H  OH
= Eo 1
dr 8p’ dr (3&: +¢Bu) (6.15)
p=&(z,;u,P)
together with the compatibility equation
du/dr =< &(z;u,5), B(z; 1, 5) >, (6.16)

where, by definition, we put
d("l"; u, ﬁ) = a(:c’ j“; u)‘m:ﬁ(m,u,ﬁ) WP = &(‘1’.; U, 13) = a(a':) j"; u)‘x:é(m,u,f)) ’

H(z; plu) ;= H(x;u,p)+ < p — ¥1, 8 >—< s, da/dr >|p:=&(x;u7§) ,
(6.17)
based on the following relationships

p= 0L(z,&;u)/0% (6.18)

&=0F(zup)

owing to the implicit function theorem, applied to (6.14) with respect to the
variable £ € R".
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Now we are in a position to write down the corresponding to expressions
(6.15) and (6.17) Hamilton-Jacobi equation on the canonical transformations
~generating® function @ € C*(R™ x R;R) :

ou - ou
5 + H (ﬂ’:, alu) =0, (6.19)

where the sought function u € C%2(R™;R) satisfies equation (6.16).
Assume now for a moment that the function v € C2(R™; R) is constant
along the vector field (6.8), that is

du/dr =< d(w;u,ﬁ),é(m; u,p) >=10 (6.20)

for all (z;u,p) € R® x R"*!, The condition (6.20) involves some constraints
on the ,symplectic® vector ¥ = (1q,92)7T € C?*(R™ x Rt R™ x R7),
which can be satisfied by means of choosing a suitable parametrization 7 :=
Y(z;u,p) € R?, (z;u,p) € Sy, of the characterstic hypersurface Sy. Proceed
now to solving the canonical Hamilton-Jacobi equation (6.19) under some
Cauchy data i|,_q = i € C?(Ty;R). This task can be solved easily enough
via the standard Hopf-Lax type [12,26] scheme. Namely, consider the inverse
Cauchy problem (6.3) for the canonical Hamilton equations (6.15) in the

form _ ) 3

de OH dp 8H _OH
—_— T —— — I - 6.21
dr 9’ dr (815 +a6u)’ (6.21)

where the parameter 7 € [0, t(z)] € R. The corresponding solution to Hamil-
ton-Jacobi equation (6.19) possesses then the functional-analytical Hopf-Lax
type form

i(w,tlu) = inf {do(y) + Ptz ylu)), (6.22)

following right away from the expression analogous to (6.6), where, by defi-
nition, the ,kernel“

g t -~
P(t, x; ylu) :==/ L(t;y,zju)dr (6.23)
0

is obtained from the Lagrangian function

L(r;y,z|w) = L(z, ;)

z=F(riy,ah) (6.24)
L(z, &;u) =< P, 5F > —H(z;u,p),
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calculated on solutions to the equations (6.21) under conditions (6.3). Then,
owing to conditions (6.24), (6.17) and (6.16), the equality

H(z; plu) = H(z;u, p)+ < p— 1,8 > — < o, da/dr >lrt(z),  (6.25)

holds for suitable 2y = zo(z) € Ty and 7 = t(z) € R. Moreover, as
H(z;u,p) = 0 for all points (z;plu) € T*(R") x R, the equality (6.25)
reduces to

ﬂ(.l?;u,ﬁ) =< 71:1: = ¢1aﬁ~ > =< wzsd&/dT >|‘r=t(m) y (626)

which will be used further for determining the sought solution u € C?(R™; R)
in an implicit form. To do this much more effectively, we consider the ex-
pression (6.22) at t = t(z) € R obtained in the following functional analytic
form:

e, te)lw) = inf {do(y) + P(t(z), z; ylw)}, (6.27)

taking into account the boundary condition (4.18) for the corresponding solu-
tion u € C2(R™;R) of the Hamilton-Jacobi equation (4.15) at xo = xo(z|u) €
T, for all reachable points x € R\I',. The Cauchy data iy € C*(I'y; R) can
be taken, in general, arbitrary, but such that the infimum (6.27) exists and
the conditions

fo(zo) = 0(w0, 7/u)/03], g = OL(z, &:u) /03| (6.28)

hold, if equations (6.15) and (6.20) are sataisfied. Therefore, if the point §
:= y(x|u) € Ty, is such that

yiglrfqp{ﬁo(y) + P(t(z), 7 ylw)} = Go(@) + Pt (x), 3 9lw), (6.29)

then the trajectory of the point y(z|u) = xo(z|u) € 'y, along the vector field
(6.21) will necessary satisfy the condition (6.20), which makes it possible

to write down the following implicit expression for the sought solution u €
C?*(R™R) :

u(z) = woly{zlu(z))), (6.30)
where § := y(z|u) € I, satisfies the following determining relationship
po(§) + IP(H(2), z; §lu)/By = 0, (6.31)

stemming from the condition (6.28). Thereby, we can formulate the obtained
result as the following theorem.
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Theorem 1. The implicit expression (6.30) gives rise to a functional-
analytic solution to the boundary problem (4.15) and (4.18), depending on
the given boundary data ug € C?(T'y; R).

Based on the derivation of the result above, we can deduce a corollary
that the statement of the above theorem holds, in general, for any nontrivial
smooth Hamiltonian function H € C?(R?**1;R), for which the following two
conditions

rank =2n, rank ((’fp [1911 (BH 1/1-——-——) 1912%1—:5—}) =n (6.32)

are satisfied almost everywhere on 7*(R"™) x R. The conditions (6.32) should
hold simultaneously with that of (6.20), bringing about the implicit solution
(6.29) to the Hamilton-Jacobi equation (4.15) under the boundary condition
(4.16).

It is easy to see now that expression (6.30) is quivalent to some fixed
point problem P(u) = u, u € C*(R™;R), for an associated nonlinear mapping
P : C?*(R™R) —»C?R";R), where, by definition,

P(u)(z) := uo(y(z(|u(z))) (6.33)

for all reachable points £ € R™. This observation can be formulated as the
following important theorem:.

Theorem 2. A solution to the functional-analytic fized point problem
(6.33) solves simultaneously the boundary problem (4.18) to our generalized
Hamilton-Jacobt equation (4.15).

7. THE STRUCTURE OF HOPF-LAX TYPE FUNCTIONAL-
ANALYTIC SOLUTIONS TO GENERALIZED HAMILTON-JA-
COBI EQUATIONS

Consider the following generalized nonlinear Hamilton-Jacobi equation
Ou/ot + H(x,t;u,uz) =0 (7.1)

with a Hamiltonian function H € C?(R"t! x R**1: R) and pose the Cauchy
problem

u|t=0 = uOT (7‘2)

where up € C}(R™;R) and t € R is an evolution parameter. For investiga-
ting functional-analytic solutions to Hamiton-Jacobi equation (7.1) we will
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apply the generalized characteristic method, proposed above. Namely, consi-
der the following non-canonical Hamiltonian vector field on the cotangent
space T*(R"*1) > (z,t;p,0), generated by a nondegenerate Hamiltonian
function H € C*(R?"*2;R), where the function u € C2(R™*};R) is a priori
assumed to solve the equation (7.1) under condition (7.2), that is

(£)-( 0. ") (#28
Eg ~“(|):* 0 _55

do 0H OH dt (73
(& %)

=1,

ir- \ &%) @

where the tensor field p(11) := (8y/8p)*~1 € CLH(R*2;R" @ R") is chosen
with respect to a suitable parametrization n := ¢¥(z,t;u,p), (z,t;u,p) € SH,
of the charactersitic surface

Sy = {(z,t;u,p,0) € R¥*"*2: ¢ + H(z,t;u,p) = 0},

H(z,t;u,p) := H(z,t;u,m)|, —(oit

compatible with the Cartan condition

up) !

du/dr =< 1, u(lll)%g- > — H(z,t;u,p). (7.4)

Since the flow (7.3) is Hamiltonian, it can be represented [22, 28] dually in
the related Lagrangian variatonal form:
T=t

il f L(z,t; Z|u)dr =0 (7.5)

5.’17 n
oo z(0)=z9€R
z(t)=z€R™

for any ¢ € R and fixed points z(0) = z¢ € R" and z(t) = z € R™. Here, as
before, we denoted by Z := dz/dr, 7 € R, and by

L(z,t;5lu) = < ¢, u(””%[i (7.6)

pr=a(z,t;d|u)

the corresponding quasi-Lagrangian function, and put, by definition, p :=
a(z,t; zju), and p = dp/dr, solving implicitly the system of equations

oH 0H  0H
(1) - (s [ 222 7.7
Wi = 0, p+u ( 5+ Bu) 0 (7.7)
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under the inverse Cauchy data
Tlr=t = = € R", z|r=0 = 20(z,t) € R", plr=o =po(z,t) €R™  (7.8)

for any fixed point (z,t) € R™*1. Note also, that the first equation of (7.7)
is always uniquely solvable with respect to the variable p € R", owing to the
nondegeneracy condition

mOH
Op
assusmed before. Based now on the Lagrangian variational form (7.5), one

can construct the following functional-analytical Hopf-Lax type representa-
tion for the solution of Hamilton-Jacobi equation under condition (7.14):

mnk(—a%k DL (7.9)

u(z,t) = inf {uoy) + Pz, )}, (7.10)
=

where, by definition, the ,kernel function

T=t

Pz, t;ylu) = /E(a:,t;:blu)d'r (7.11)

7=0

is calculated on solutions to the Hamiltonian equations (7.7) under conditions
(7.8). In the case, when 0H/0u # 0 identically on Sy, we need to make the
next step to skirt this problem, as the expression (7.10) becomes senseless,
depending on the unknown solution u € C?(R™*!;R). Assume now that the
parametrization 7 := ¢(z, t;u,p) € R", (x,t;u,p) € Sy, of the charactersitic
surface Sy is taken in such a way that the condition (7.4) is transformed
into identical zero:

dufdr = < @b,ﬂ(m)%% > — H(zx,t;u,p)| =0. (7.12)
SH

Since the infimum (7.10) is then reachable at some point ¢ = § := y(z,t|u) €
R™ for taken arbitrary but fixed point (z,tju) € R®*! xR and constant value
u = up(g) € R, we can write down two important relationships:

Fuo(§)/0y := P(z(1), 73u(1), P(7))| ;=0 = ¥(¥,0,u0(7), po(Flv)), (7.13)

where the initial vector po(z,t) := po(§ju) € R™ depends on the chosen
constant value u = ug(y) € R, and

u(z, t) = uo(y(z, tju(z, ), (7.14)
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holding for all (z,t) € R™. Thereby, having solved the equation(7.13) with
respect to the critical point § := y(z,t|u) € R", one can write down right
away the solution to our Hamilton-Jacobi equation (7.1) with Cauchy data
(7.2) for all (z,t) € R™! in the implicit functional-analytic form (7.14).
The obtained expression (7.14) is, evidently, equivalent to a fixed point
problem P(u) = u, u € C*(R""};R), for an associated nonlinear mapping
P : C*(R™ x R;R) —C?(R" x R;R), where, by definition,

P(u)(z,t) := uo(y(=, t|u(=, 1)) (7.15)

for all reachable points (z,t) € R™"!. The result, obtained above, one can
formulate as the following theorem.

Theorem 3. A solution to the functional-analytic fized point problem
(7.15) solves simultaneously the Cauchy problem (7.1)) to our generalized
Hamilton-Jacobi equation (7.2).

The fixed point problem (7.15), in general, is solved {29} under some weak
enough conditions on the operator (7.15), but its solution is not, as is well
known [12,17,29], often unique, thereby one needs more of its additional
properties to be studied. We hope to investigate in detail such and related
problems elsewhere.

Consider a canonical Hamilton-Jacobi equation

wg + ||ugl{?/2 = 0, (7.16)

where || - || is the standard norm in the Euclidean space E* := (R", < -,- >)
and try to construct its exact functional-analytic [12, 26, 27] generalized
solutions u : E® x Ry — R, satisfying the Cauchy condition

ult=+0 = up (7.17)

for a given function ug : E® — R. One can easily enough to state, making use
of the characteristic method [12,24,26,30], that equation (7.16) possesses for
smooth Cauchy data ug € C'(E™; R) an exact functional-analytic generalized
solution in the form

u(z,t) = uo(y) + |z — ylI2/(28), (7.18)

where a vector y := y(z,t) € E™ for all (x,t) € E® xR, satisfies the following
determining equation

Ouo(y)/0y — (z —y)/t =0. (7.19)
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It was proved in [11,12,26] that in a more general case of convex and below
semicontinuos Cauchy data ug € BSC()(R"; R) the expression (7.19) allows
the completely equivalent to(7.18) so called Hopf-Lax type representation

u(z,t) = yiélEf,,{uo(y) + |z~ yl*/(2t)}, (7.20)

being a generalized [12] solution to the Hamilton-Jacobi equation (7.16). The

solution (7.18) satisfies the following natural asymptotic viscosity property:

lim u(z,t) = ielg {uo(y)} for almost all z € E"™. The Cauchy problem
y ]

t—oo

(7.16), (7.17) for functions ug € BSC(E™;R)NC(E™;R) possesses a uni-
que functional-analytic representation for its generalized solutions and sa-
tisfying the standard viscosity property. Below we consider a generalized
geometric Monge characteristic method of solving noncanonical Hamilton-
Jacobi type equations in the general form u;+ H(z, t; u,uy) = 0 with Cauchy
data (7.17), and give two examples, where H := Hy =< ug,uy > /2 and
H := Hy = (< ug,uz > +u?)/2, an evolution Riccati type equation.

8. A GENERALIZED MONGE CHARACTERISTIC
METHOD: SHORT BACKGROUNDS

A noncanonical Hamilton-Jacobi equation
u + H(z,t;u,uy) =0

within the geometric Monge approach [4,24,25,27,30] can be considered as
a characteristic surface Sy C E* xR, xE"xR? in the following form:

Sy = {(z,t;u,p,0) € E"xRy xE"xR? : ¢ + H(z, t;u,p) = 0, (8.1)
ﬁ(wv t; uvp) = H($7 t; u, ﬂ)l'}r:'zf)(m;u,p)}ﬂ

where a related Monge cones parametrization is taken as m = ¥(x;u,p) €
E", (z;u,p) € Sy, for some nondegenerate mapping ¢ € C'(R*™+1;E"),
that is det(0vy/0p) # 0. We denoted here u; := 0 € R, uy 1= w € E” for
(z,t) € E"xR; and < -, > is the standard scalar product in the Euclidean
vector space E" ;= (E", < -,- >). As an example of equation (7.16), we will
put below

Hi(z,t;u,n) =< m,7 > /2, Ho(z,tju,m):=(<mn>+u?)/2. (82)

Now one can construct [24,25,27)] a solution surface Sy C E® xR, xR, which
is compatible with the characteristic surface Sy C E"xR,.xE" xR?, and
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satisfying the following Cartan’s compatibility relationships:

du=odt+ < 9,dz >, <do,Adt>+ < dp,Ade>=0, (8.3)

holding upon Sy along any solution u : E" xR, — R.
Consider now a related characteristic vector field on the surface Sy in
the form

.gg = (1D H /ap,

B = (N (0H [0z + YOH /du — Hdw/0u), (8.4)
-f,—f,f =< p,pMWoH/8p > —H, do/dr = c8H /Bu, dt/dr =1,
under the following mixed Cauchy data:

Tlr=0 =y = y(z,t), Zl=t =1,

ulr=0 = uo(¥), Plr=0=po(y), ¥(xo;uo,po) := Ouo(zo)/d, (8.5)

where, by definition, the tensor u(tl) := (8¢/8p)*~! and the condition
Ulr=t = u(z, t) for all (z,t) € E"xR, is assumed, owing to the relationships
(8.3), to be satisfied. The equations (8.4) fully ensure [10,24,25,27,30] the
invariance of the characteristic Sy and fulfillment of the related Cartan’s
compatibility conditions (8.3). The problem (8.4) and (8.5) is, actually, an
inverse one subject to the corresponding initial data at 7 = 0 € Ry, if the
corresponding data at 7 =t € R, are a priori given. The general solution
to this inverse problem gives rise [24,25] to the following exact functional-
analytic expression:

w(@,t) = (uo(y) + P&, Y))ly=so(zt) » (8.6)

where a vector y := zo(z,t) € E", defined by (8.5), must belong to the set of
points U(z) C E", reachable at 7 = t € R4 by the vector field (8.4) starting
at x € E™, and the kernel

t
Plativ) = [ Llria(r), s(nldr (87)
¥
% := dx/dr, is defined by the Lagrangian function

L(ra(r), é(n) = (< ¥, w08 /8p > —A(z,75,p))

&=p(IDOH [8p
(8.8)

for all reachable points (z(7), ) € U(z)xR.. The functional analytic expres-

sion (8.6) for the Cauchy problem (7.16) and (7.17) gives rise [27] right away
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to its generalized solution in the Hopf-Lax type form, since the tensor field
p(t) € CHE" xR, ; E*®E™) on the corresponding characteristic surface Sy
is symplectic {3-5,28]. This means, in particular, that the differential 2-form

w? =< dip, Adz > |5, (8.9)

is nondegenerate on the characteristic strip £y C Sy. We can now easily
obtain from (8.4), (8.5) and (8.6) that the Hamilton-Jacobi equation (7.16)
with Cauchy data uo € C*(E™;R) possesses solution (7.18) for all (z,t) €
R™ x R, defined by the vector y = z¢(x,t) € E™, which solves the determi-
ning equation (7.19).

9. EXAMPLES

Example 1. The canonical Hamiltonian function

1
Hi(z,t;u,7) := 5 <mT>.

Actually, the Lagrangian function (8.8) corresponding to this case, owing
to the (8.2), equals the expression

L(r; (), &(7)|u) = ||2]1%/2, (9.1)
where, owing to equations (8.4) and conditions (8.5), the following relation-
ships

(1) — y = ¥(T0; uo, Po)7, ¥(To; uo, Po) := duo(y)/y, (9.2)

hold for all 7 € Ry. Therefore, the expressions (8.6) and (8.7) give rise to
such an exact solution to the equation (7.16):

1
u(z,t) = uoly) + %”x —ylf? , (9.3)
y=zo(z,t)

where a vector y := zo(z,t) € E” for all (z,t) € E™ x R, satisfies the
determining equation (7.19), easily following from (9.2), that is

Ouo(y)/0y — (z —y)/t =0. (9.4)

The result obtained one can interestedly interpret making use of the La-
grangian variational principle: the system (8.4) of characteristic Hamiltonian
vector fields is completely equivalent to the variational equation

5L(r; 2(r), &(7)[w)/6z = 0,
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solving the extremum problem

t

u(z,t) = inf ’ y & '

W= o () + [ L)) 05)
{z(0)=y€E" z(t)=xcE"}

in the space of smooth functions z € C2([0,t];R), t € R4

A very important fact concerning the constructed function (9.5) consists
in that it satisfies [§] the Hamilton-Jacobi equation for all (z,t) € E" x Ry
exactly the same as (7.16), that is

i1 /0t + ||g||2/2 = 0 (9.6)
under the evident initial condition
=0 = up. (9.7)

Thereby, we can identify the obtained function (8.4) with our solution to
the Hamilton-Jacobi equation (7.16) with Cauchy data (7.17), that is u = u.
Since the infimum problem (9.5) is equivalent to that

et = nf {uo) + [ Llma(nsmd) (98)

in the space of solutions to the equations (8.4) with Cauchy data (8.5), we
obtain right away its well known [12,26] the Hopf-Lax type representation -

u(z,t) = inf {uo(y) +llz - ylI*/(20)}, (9-9)
where we took into account that the neighborhood U(z) € R™ and the kernel
(8.7) equals

P(z,tiy) = llz — ul[*/(2t) (9.10)
for all (z,t) € E® x Ry. If the Cauchy data ug € BSC()(E"; R)NCHE™; R),

a vector y = y(z,t) € E”, solving the problem (9.9), satisfies evidently the
equation (9.4), thereby confirming the result, obtained previously.

Example 2. The evolutionary Hamilton-Jacobi equation of the Riccati
type: the Hamiltonian function H := Ha = %—(< T, > +u?).

The corresponding characteristic vector fields equations on the surface
Sy, parametrized as 7 := ¢¥(z;u,p) € E", (z;u,p) € Sy, are given as

dz/dr = (z;u,p),

(84/8p)dp/dr = —up — (8% /0z)y — O /Bul(< ¥, 9 > —u?),  (9.11)
du/dT = %(< v, Y > _u2),
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where parameter 7 € R. It is easy to see that a suitable pramaetrization
of Sg can be given by the trivial mapping, for which ¢(z;u,p) := p for all
(z;u,p) € Sy. Then, the system of equations (9.11) transforms into

dz/dr =p, dp/dr=—up, du/dr=3(<p,p>—u?). (9.12)
Solve now the following inverse Cauchy problem related with system (9.12):

Tir=0 = Zo = Ylx,t), Tlr=t =1,
lr=0 = Zo := y(z, 1) |r=t (9.13)
plr=0 = po(y) = Ouo(y)/0y

for any fixed (z,t) € E® x Ry. The inverse problem (9.12) and (9.13) can be
easily enough solved, giving rise to the following expression for the solution

so(y)({so(y) + cx(y))
[1+ (§s0(y) + cx())?])

u(z,t) = 5 (9.14)

where
y = z + po(y) arctg(%so(y) + c=(¥)),
so(y) == (llpe@)II* + wd(¥))/llpoW)ll, poly) = Buo(y)/dy, (9.15)
c+(¥) = gy 90(¥) = V/55(y) — 16uf(y)].

The unknown function y : E™ x Ry — E" should be found from the exact
functional-analytic expression (9.15), being equivalent, evidently, to the fol-
lowing four finite dimensional fixed point problems:

Pily) =y (0.16)

in E” at any fixed parameters (z,t) € E* x Ry, where the smooth mappings
Py : E™ — E™ are defined as

Paty) =2+ )ty (gouli) +es) (017

for any y € E*. As s3(y) — 16u2(y) > 0 for any y € E", the functions
¢+ : E® — R are positive definite and the fixed point problem (9.16) is well
posed in E" for all (z,t) € E® x R;.

Denote now by Ricc(E™; R, ) the functional subspace of bounded map-
pings up € C*(E™;R,), for which the fixed point problem (9.16) is solvable
owing to the Brouwer-Banach type theorems [12] for all parameters (z,t) €
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E™ x R+. Then, taking into account the exact expression (9.14) and consi-
derations above, we can formulate the following theorem.

Theorem 4. Ezact functional-analytic solutions to the canonical Riccati
type equation
Bu/t + (J|ug||2 +u*)/2=0 (9.18)

under the Cauchy condition uy € Ricc(E™;R,) are given by expression
(9.14), where the function y : E® x R — E" is a fized point of the mapping
(9.17). If the fized point problem (9.16) possesses a unique solution under the
condition up € Ricc(E";Ry), the corresponding solution to the Riccati type
equation (9.18) is given by the following two different branches

_sol(ya)(es) () + $50((y2)))
U8 = o (ex((ra)) £ Seolwe))?]

which owing to expressions (9.15) are regular for all (z,t) € E™ x Ry. Mo-
reover, the viscosity limiting properties

(9.19)

Jim uy(z,t) =0, lm y.(z,8) =7 (9-20)
hold, where the vector §j € E™ satisfies the stationary equation

2(z — ) = mpo(9) (9.21)
for all x € E™.

Owing to Theorem 4 the obtained fixed point of the mapping (9.16)
solves, obviously, our Cauchy problem (7.17) for any given function up €
Ricc(E™; R.), finishing our calculations. In particular, we showed that solu-
tions to the canonical Hamilton-Jacobi equation (7.16) with Cauchy data
(7.17) can be constructed effectively in the functional-analytic form, using
the generalized characteristics method. Within those exact functional-analy-
tic solutions can exist, in particular, such ones, whose asymptotic properties
possess nontrivial asymptotic viscosity behavior, being important for appli-
cations.

10. CONCLUSION

The results of the previous [25,26] and this work convince us firmly that
the geometric Monge-Cartan approach to studying solution of a wide class
of nonlinear partial differential equations of Hamilton-Jacobi type, based on
our generalized characteristic method and complemented with the modern



216 D.Blackmore et al

symplectic theory, is very perspective for many possible applications. The
constructed Hopf-Lax type functional-analytic representation of the corre-
sponding solutions to both boundary and Cauchy problems makes it possible
to find many new, and in some sense, generalized solutions for a wide class of
boundary and Cauchy data. Another still weakly investigated but important
aspect of this approach is related with its applications to analyzing the
suitable multi-dimensional symplectic reductions of boundary and Cauchy
problems, giving rise [7,9, 20, 22] to new types of associated Hamiltonian
nonlinear dynamical systems on functional manifolds of smaller spatial di-
mension. We plan to discuss this topic in another place.
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TEOMETPUYHMN MIOXIJ KAPTAHA-MOHKA 10
METOY XAPAKTEPUCTHUK [OJ1d PIBHSIHb TUITY
TAMIJIBTOHA-SIKOBI TA 1OTO Y3ATAJILHEHHA J1J14
HEJITHINHUX PIBHSIHB I3 YACTUHHUMMU IOXLIHUMU
BUITUX [IOPAIKIB

Hewic BJIEKMOP,! Hamaas IIPHKAPITATCBKA,?
Eyezeniyw BAXHII[KI® Maowcenna IIMTE/b-KYE/ S

1Texnonoriummit Incturyr Heio daxepci,
Hrroapk 07102, Heio Jxepci, CIHA
I"ipauuo-Meranypritina Axkazemis, Kpakiz 30059, ITosbma
STleparoriuma Axanemis, Kpakis 30062, ITomsia

Jano anani3 reomerpuusoro miaxony Kaprana-MoHXa 0 METORY Xapak-
TEPUCTUK JJ18 PiBHAHB | aMiubTOHA- AK00i Ta HeyiHIRHMX piBHsAHb i3 YaCTHH-
HAMH HOXiTHUMM BHIIUX HOpPSAKIB. BHBYE€HO raMiJIbTOHOBY CTPYKTYPY Xa-
PAKTEPUCTHUHKX BEKTOPHHUX IIOJIB, ACOIIAOBAHNX 3 HEJIHIWHUMM DiBHSIHHS-
MH 13 YJACTUHHHMHU [OXiJHUMH MEPIHOro MOPSAAKY, H00yA0BaHO TEH3OPHI I10JId
CHeNiaJTbHOI CTPYKTYPH JJiS BUSHAYEHHS XapPaKTEePHCTHIHMX BEKTOPHHUX IIO-
JiiB, IPUPORHIM YKHOM acOUifOBaHMX 3 HesiHiHAMU PIBHEHHAMM 13 YaCTHUH-
HHMH NOXIJHUMH BHOIMX NMOPA/KiB. PO3BHHYTO y3arajibHEHHN METOH Xapak-
TEPHCTHK Yy PaMKaX CHMILIEKTHIHO! Teopil Ha OCHOB]I F€OMETPHIHHX KapTHUH
Momnxa ta Kaprana. Ha mizcrasi BianmoBijHux reoMeTpHYHHAX BJIACTHUBOCTEN
BUBYEHO (DYHKIIOHAJILHO-aHAAITHYHH]I po3s’s3km Tuny Xonda-Jlakca jis
MIHPOKOT'0 KJacy KpalloBHX 3aJad Ta 33Ja4 Komi 118 HeqiHIRHWX pDIBHSHD
i3 JacTHHHUMH NoXiAHEMHU [aminbToHa- HKkobi. ¥ BHIaAKy HEKAHOHIYHUX DiB-
HaHb [aMinbToHa- HKOGI BCTAHOBJEHO CIIBBiZHOINEHHA MiXK iX PO3B’sS3KaMH
Ta Ao6pe BH3HAYEHOW (PYHKIIOHAJIHHO-aHAJITHIHOO NpobiIeMOo Ipo Hepy-
XOMY TOYKY, acOHioBaHOK0 3 po3B’s3kamu THny Xonda-Jlakca fans cneni-
aJbHO CKOHCTPYHOBAHMX AyalbHUX piBHa#b [amissToHa-Akobi. Ha ocuo-
Bi KJacH4YHOI Teopil mpo HepyxoMy TOd4Ky THoy DBpayepa-Danaxa orpuma-
HO (PYHKIIOHAJIHHO-aHAJITHYHI PO3B’A3KH JuIa piBHaAHHS [amineprona-Akobi
tuny Pikkari Ta mocaigKeHo iX BJIaCTHBOCTI.



