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For initial states of many-particle systems obeying Fermi-Dirac or
Bose-Einstein statistics, which are given in terms of a one-particle
marginal density operator, the equivalence of the Cauchy problem
of the quantum BBGKY hierarchy, and the Cauchy problem of the
generalized quantum kinetic equation for bosons and fermions is
established. The existence of a strong and a weak solution of the
Cauchy problem of stated quantum kinetic equation is proved in the
space of trace class operators.

1 Introduction

Experimental advances in the Bose condensation of dilute atomic gases
and in the strong correlated Fermi systems have stimulated interesting
problems on the quantum theory of many-body systems. Among them it
is a description of collective behavior in such systems by quantum kinetic
equations, i.e. by the evolution equations for a one-particle marginal density
operator [1–4]. Nowadays the considerable progress in the rigorous derivati-
on of quantum kinetic equations in suitable scaling limits [5], in particular
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the nonlinear Schrödinger equation and the Gross-Pitaevskii equation for the
Bose condensate [6–11], as well as the quantum Boltzmann equation [12], [13],
is observed.

The purpose of this paper is to make a generalization of the results of the
paper [14] regarding the description of the evolution of states of quantum
many-particle systems in terms of a one-particle marginal density operator,
obtained in the case of the Maxwell-Boltzmann statistics on the interacting
particles obeying Bose-Einstein or Fermi-Dirac statistics.

We outline the structure of this paper. In the next section we introduce
some preliminary definitions and construct a solution of the Cauchy problem
of the quantum BBGKY hierarchy for bosons and fermions. In section 3 we
formulate the main result related to the describing the evolution of the boson
or fermion states in terms of a one-particle marginal density operator, i.e. the
link between the quantum BBGKY hierarchy and the generalized quantum
kinetic equation for bosons and fermions is established. In the next two
sections the formulated results are proved, namely in section 4 we construct
the marginal functionals of the states of bosons or fermions, and in section 5
we derive the generalized quantum kinetic equation for bosons and fermions.
In section 6 a solution of the Cauchy problem of the obtained generalized
quantum kinetic equation is constructed, and the existence of a strong and
a weak solution is proved in the space of trace class operators. Finally, in
section 7 we conclude with some observations and perspectives for future
research.

2 Dynamics of many-particle systems obeying
quantum statistics

We consider a quantum many-particle system of identical (spinless) particles
with unit mass m = 1 in the space Rν , ν ≥ 1, that obey Fermi-Dirac or
Bose-Einstein statistics. Let H be a one-particle Hilbert space, then the n-
particle spaces H±n are correspondingly symmetric and antisymmetric tensor
products of n Hilbert spacesH that are associated with the systems of bosons
and fermions [15]. We adopt the usual convention that H⊗0 = C. We denote
by F±H =

⊕∞
n=0H±n the Bose or Fermi Fock space over the Hilbert space H.

The Hamiltonian Hn of n-particle system is a self-adjoint operator with
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domain D(Hn) ⊂ H±n :

Hn =
n∑

i=1

K(i) +
n∑

i1<i2=1

Φ(i1, i2), (1)

whereK(i) is the operator of a kinetic energy of the i-th particle and Φ(i1, i2)
is the operator of a two-body interaction potential. The operatorK(i) acts on
functions ψn, that belong to the subspaces L2

0(Rνn) ⊂ D(Hn) ⊂ L2
±(Rνn) of

infinitely differentiable symmetric or antisymmetric functions with compact
supports according to the formula: K(i)ψn = −~2

2 ∆qiψn, where h = 2π~
is a Planck constant. Correspondingly we have Φ(i1, i2)ψn = Φ(qi1 , qi2)ψn.
We shall assume that the function Φ(qi1 , qi2) is symmetric with respect to
permutations of its arguments, translation-invariant and bounded function.

States of many-particle systems of bosons and fermions belong to the
corresponding spaces L1(F±H) = ⊕∞n=0L

1(H±n ) of sequences f = (f0, f1, . . . ,
fn, . . .) of trace-class operators fn ≡ fn(1, . . . , n) ∈ L1(H±n ) and f0 ∈ C, that
satisfy the symmetry condition fn(1, . . . , n) = fn(i1, . . . , in) for arbitrary
(i1, . . . , in) ∈ (1, . . . , n), equipped with the norm:

‖f‖L1(F±H) =
∞∑

n=0

‖fn‖L1(H±
n ) =

∞∑
n=0

Tr1,...,n|fn(1, . . . , n)|,

where Tr1,...,n are partial traces over 1, . . . , n particles [3]. The Bose-Einstein
and Fermi-Dirac statistics endow the states with additional symmetry pro-
perties [15]. We denote by L1

0 the everywhere dense set in L1(F±H) of finite
sequences of degenerate operators with infinitely differentiable kernels with
compact supports.

The evolution of states is described by the sequences F (t) = (F1(t, 1), . . . ,
Fs(t, 1, . . . , s), . . .) of the marginal density operators that satisfy the Cauchy
problem of the quantum BBGKY hierarchy

d

dt
Fs(t, Y ) = −Ns(Y )Fs(t, Y ) + (2)

+
1
v

s∑
i=1

Trs+1

(
−Nint(i, s+ 1)

)
Fs+1(t, Y, s+ 1),

Fs(t)|t=0 = F 0
s , s ≥ 1,

where
1
v

is the density of particles; Y ≡ (1, . . . , s) and the operator Ns is

defined on the subspace L1
0(H±s ) ⊂ L1(H±s ) as follows:
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Nsfs
.= − i

~
(
fsHs −Hs fs

)
(3)

and correspondingly

Nint(i, j)fs
.= − i

~
(
fs Φ(i, j)− Φ(i, j) fs

)
. (4)

Hereinafter, we consider initial data satisfying a factorization property or the
chaos property [4], which means the absence of correlations at initial time.
For a system of identical particles, obeying the Fermi-Dirac or Bose-Einstein
statistics, we have

F (t)|t=0 = F (c) ≡
(
F 0

1 (1), . . . ,S±s
s∏

i=1

F 0
1 (i), . . .

)
, (5)

where the symmetrization operator S+
n and the anti-symmetrization operator

S−n on H⊗n are defined by the formula:

S±n
.=

1
n!

∑
πεSn

(±1)|π|pπ. (6)

In (6) the operator pπ is a transposition operator of the permutation
π from the permutation group Sn of the set (1, . . . , n) and |π| denotes
the number of transpositions in the permutation π. The operators S±n are
orthogonal projectors, i.e. (S±n )2 = S±n , ranges of which are correspondingly
the symmetric tensor product H+

n and the antisymmetric tensor product H−n
of n Hilbert spaces H.

On the spaces L1(H±n ) we define the group of operators:

Gn(−t)fn
.= e−

i
~ tHn fn e

i
~ tHn . (7)

On the spaces L1(H±n ) the mapping: t → Gn(−t)fn is an isometric strongly
continuous group which preserves positivity and self-adjointness of operators
[15]. For fn ∈ L1

0(H±n ) there exists a limit in the sense of a strong convergence
by which the infinitesimal generator of the group of evolution operators (7)
is determined as follows:

lim
t→0

1
t
(Gn(−t)fn − fn) = −Nnfn, (8)
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where the operator (−Nn) is defined by formula (3). Symmetrization and
antisymmetrization operators (6) are integrals of motion and as a consequ-
ence the equalities hold:

Gn(−t)S±n = S±n Gn(−t),
and

NnS±n = S±n Nn,

i.e. the symmetry of states is preserved within evolutionary process [2].

A solution of the quantum BBGKY hierarchy (2) with initial data (5) is
represented by the expansion

Fs(t, Y ) =
∞∑

n=0

1
vn

1
n!

Trs+1,...,s+n A1+n(t, {Y }, s+ 1, . . . (9)

. . . , s+ n)S±s+n

s+n∏
i=1

F 0
1 (i), s ≥ 1,

where the evolution operator A1+n(t), n ≥ 0, is the (n+ 1)th-order reduced
cumulant [3] of the groups of operators (7):

A1+n(t) =
n∑

k=0

(−1)k n!
k!(n− k)!

Gs+n−k(−t). (10)

In case F 0
1 ∈ L1(H) a series (9) converges on the norm of the spaces L1(H±s )

for arbitrary t ∈ R1 [3].

3 Kinetic dynamics of bosons and fermions

Since we consider initial data (5), which is completely characterized by the
one-particle density operator F 0

1 , the initial-value problem of the quantum
BBGKY hierarchy (2),(5) is not completely well-defined Cauchy problem,
because generic initial data is not independent for every unknown operator
Fs(t, 1, . . . , s), s ≥ 1, in the hierarchy of equations. Thus, such initial-value
problem can be naturally reformulated as a new Cauchy problem for the
operator F1(t), that corresponds to the independent initial data F 0

1 and the
sequence of explicitly defined marginal functionals Fs

(
t, 1, . . . , s | F1(t)

)
, s ≥

2, of the solution F1(t) of this Cauchy problem [14].
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We define the restated Cauchy problem. The marginal functionals of the
state Fs

(
t, 1, . . . , s | F1(t)

)
, s ≥ 2, are represented by the following expan-

sions over products of the one-particle density operator F1(t):

Fs

(
t, Y | F1(t)

) .= (11)

.=
∞∑

n=0

1
vn

1
n!

Trs+1,...,s+n V1+n

(
t, {Y }, X \ Y

)
S±s+n

s+n∏
i=1

F1(t, i),

where X \ Y ≡ (s+ 1, . . . , s+ n) and the (n+ 1)th-order evolution operator
V1+n(t), n ≥ 0, is defined as follows:

V1+n(t, {Y }, X \ Y ) .=
n∑

k=0

(−1)k
n∑

n1=1

. . .

n−n1−...−nk−1∑
nk=1

n!
(n− n1 − . . .− nk)!

×

×Â1+n−n1−...−nk
(t, {Y }, s+ 1, . . . , s+ n− n1 − . . .− nk)×

×
k∏

j=1

∑
Dj : Zj =

⋃
lj

Xlj ,

|Dj | ≤ s + n− n1 − · · · − nj

1
|Dj |!

×

×
s+n−n1−...−nj∑
i1 6=... 6=i|Dj |=1

∏
Xlj

⊂Dj

1
|Xlj |!

Â1+|Xlj
|(t, ilj , Xlj ), (12)

and
∑

Dj :Zj=
⋃

lj
Xlj

is the sum over all possible dissections of the linearly

ordered set Zj ≡ (s+n−n1− . . .−nj +1, . . . , s+n−n1− . . .−nj−1) on no
more than s+ n− n1 − . . .− nj linearly ordered subsets. In (12) we denote
by Â1+n(t) the (1 + n)th-order reduced cumulant, i.e.

Â1+n(t, {Y }, X \ Y ) =
n∑

k=0

(−1)k n!
k!(n− k)!

Ĝs+n−k(t),

of the scattering operators:

Ĝn(t) = Gn(−t, 1, . . . , n)
n∏

i=1

G1(t, i), n ≥ 1. (13)

The marginal functionals of the state are represented by converged series

(11) under the condition
1
v
< e−2 [14], [16].

We observe that the kinetic dynamics of states is described in terms of
cumulants of scattering operators (13) in contrast to the evolution of states
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described by the BBGKY hierarchy (2). We give a few examples of the
evolution operators Vn, n ≥ 1, of the lower orders:

V1(t, {Y }) = Â1(t, {Y }), (14)
V2(t, {Y }, s+ 1) = Â2(t, {Y }, s+ 1)−

−Â1(t, {Y })
s∑

i=1

Â2(t, i, s+ 1).

The one-particle density operator F1(t) is a solution of the following initial-
value problem of the generalized quantum kinetic equation for bosons and
fermions:

d

dt
F1(t, 1) = −N1(1)F1(t, 1) +

1
v
Tr2

(
−Nint(1, 2)

)
× (15)

×
∞∑

n=0

1
vn

1
n!

Tr3,...,n+2V1+n

(
t, {1, 2}, 3, . . . , n+ 2

)
S±n+2

n+2∏
i=1

F1(t, i),

F1(t, 1)|t=0 = F 0
1 (1), (16)

where the evolution operator V1+n(t) is defined by formula (12) and the
operator Nint(1, 2) is defined by formula (4). For systems of classical particles
such a kinetic equation was formulated in [17] and for quantum systems
of particles obeying Maxwell-Boltzman statistics in [14] (see also reviews
[18], [19]).

4 Marginal functionals of the states of bosons
or fermions

Using kinetic cluster expansions of reduced cumulants of scattering operators
(13), we construct the expansions of the marginal functionals of the state
Fs(t, 1, . . . , s | F1(t)), s ≥ 2, on the basis of solution expansions (9) of the
quantum BBGKY hierarchy. Indeed, taking into account relations:

Â1+n(t, {Y }, X \ Y ) = (17)

=
n∑

n1=0

n!
(n− n1)!

V1+n−n1

(
t, {Y }, s+ 1, . . . , s+ n− n1

)
×

×
∑

D : Z =
⋃

l Xl,
|D| ≤ s + n− n1

1
|D|!

s+n−n1∑
i1 6=... 6=i|D|=1

∏
Xl⊂D

1
|Xl|!

Â1+|Xl|(t, il, Xl),
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where
∑

D:Z=
⋃

l Xl, |D|≤s+n−n1
is the sum over all possible dissections D of

the linearly ordered set Z ≡ (s + n − n1 + 1, . . . , s + n) on no more than
s+ n− n1 linearly ordered subsets, we represent series over the summation
index n and the sum over the summation index n1 as the two-fold series

Fs(t, 1, . . . , s) =
∞∑

n=0

1
vn

1
n!

∞∑
n1=0

1
vn1

Trs+1,...,s+n+n1V1+n

(
t, {Y }, X \ Y

)
×

×
∑

D : Z =
⋃

k Xk,
|D| ≤ s + n

1
|D|!

s+n∑
i1 6=... 6=i|D|=1

∏
Xk⊂D

1
|Xk|!

A1+|Xk|(t, ik, Xk)×

×
s+n∏
l = 1,

l 6= i1, . . . , i|D|

A1(t, l)S±s+n+n1

n+s+n1∏
j=1

F 0
1 (j),

where Z ≡ (s+n+1, . . . , s+n+n1) is the linearly ordered set and the notati-
ons introduced above are used. The series in the right-hand side converges

under the condition
1
v
< e−2. In view of the formula

∞∑
n1=0

1
vn1

Trs+n+1,...,s+n+n1

∑
D : Z =

⋃
k Xk,

|D| ≤ s + n

s+n∑
i1<...<i|D|=1

∏
Xk⊂D

1
|Xk|!

×

×A1+|Xk|(t, ik, Xk)
s+n∏
l = 1,

l 6= i1, . . . , i|D|

A1(t, l)S±n+s+n1

n+s+n1∏
j=1

F 0
1 (j) =

= S±s+n

s+n∏
i=1

F1(t, i), (18)

where
∑

D:Z=
⋃

k Xk, |D|≤s+n is the sum over all possible dissections D of the
linearly ordered set Z ≡ (s + n + 1, . . . , s + n + n1) on no more than s + n
linearly ordered subsets, we identify the series over the summation index
n1 with the products of one-particle density operators, and consequently for
s ≥ 2 the following equality holds:

Fs(t, Y ) =
∞∑

n=0

1
vn

1
n!

Trs+1,...,s+n A1+n(t, {Y }, X \ Y )S±s+n

s+n∏
i=1

F 0
1 (i) =
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=
∞∑

n=0

1
vn

1
n!

Trs+1,...,s+nV1+n

(
t, {Y }, X \ Y

)
S±s+n

s+n∏
i=1

F1(t, i) =

= Fs(t | F1(t)),

i.e., if kinetic cluster expansions (17) of cumulants of scattering operators
(13) hold, then solution expansions (9) for s ≥ 2 can be represented in the
form of marginal functionals of the state (11).

We make a few examples of relations (17) of the kinetic cluster expan-
sions:

Â1(t, {Y }) = V1(t, {Y }),

Â2(t, {Y }, s+ 1) = V2(t, {Y }, s+ 1) + V1(t, {Y })
s∑

i1=1

Â2(t, i1, s+ 1).

It is evident that solutions of these relations are given by expressions (14),
which determine evolution operators (12) of the first, and second order
correspondingly in the expansions of marginal functionals of the state (11). In
the general case, solutions of recurrence relations (17) are given by expressi-
ons (12) [14], [16].

It should be emphasized, that in case under consideration, i.e. the absence
of correlations at initial time, the correlations generated by the dynamics of a
system are completely governed by evolution operators (12). Typical kinetic
properties of constructed marginal functionals of the state (11) are induced
by the properties of evolution operators (12).

Summarizing, we observe that in the case of initial data (5), which is
completely characterized by the one-particle density operator F 0

1 , solution
(9) for s ≥ 2 of the quantum BBGKY hierarchy (2) and marginal functionals
of the state (11) give two equivalent approaches for describing the states of
quantum many-particle systems obeying quantum statistics.

5 The generalized quantum kinetic equation
for bosons and fermions

Let us construct an evolution equation, which satisfies expression (9), (10) in
the case of s = 1 . Taking equality (8) into account and observing the validity
of the equalities for reduced cumulants (10) of groups (7) for f ∈ L1

0(F
±
H) in

the sense of the pointwise convergence (for n ≥ 2 it is a consequence that we
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consider a system of particles interacting by a two-body potential (1)):

lim
t→0

1
t

Tr2 A2(t, 1, 2)f2(1, 2) = Tr2
(
−Nint(1, 2)

)
f2(1, 2),

lim
t→0

1
t

Tr2,...,n+1 A1+n(t, 1, . . . , n+ 1)fn+1 = 0, n ≥ 2,

we will differentiate over the time variable expression (9), (10) for s = 1 in
the sense of pointwise convergence in the space L1(H). As result it holds:

d

dt
F1(t, 1) = −N1(1)F1(t, 1) +

1
v
Tr2(−Nint(1, 2))× (19)

×
∞∑

n=0

1
vn

1
n!

Tr3,...,n+2 A1+n(t, {1, 2}, 3, . . . , n+ 2)S±n+2

n+2∏
i=1

F 0
1 (i).

In the second summand in the right-hand side of equality (19) we expand
reduced cumulants (10) of groups (7) into kinetic cluster expansions (17) and
represent series over the summation index n and the sum over the summation
index n1 as the two-fold series. Then the following equalities take place:

∞∑
n=0

1
vn

1
n!

Tr2,...,n+2(−Nint(1, 2))A1+n(t, {1, 2}, 3, . . . , n+ 2)×

×S±n+2

n+2∏
i=1

F 0
1 (i) =

∞∑
n=0

1
vn

1
n!

Tr2,...,n+2(−Nint(1, 2))
n∑

n1=0

n!
(n− n1)!

×

×V1+n−n1

(
t, {1, 2}, 3, . . . , n+ 2− n1

) ∑
D:Z=

⋃
l Xl

1
|D|!

×

×
n+2−n1∑

i1 6=... 6=i|D|=1

∏
Xl⊂D

1
|Xl|!

A1+|Xl|(t, il, Xl)
2+n−n1∏
m = 1,

m 6= i1, . . . , i|D|

A1(t,m)S±n+2 ×

×
n+2∏
i=1

F 0
1 (i) = Tr2(−Nint(1, 2))

∞∑
n=0

1
vn

1
n!

Tr3,...,n+2V1+n

(
t, {1, 2}, 3, . . .

. . . , n+ 2
) ∞∑

n1=0

∑
D:Z

′
=

⋃
l Xl

1
|D|!

n+2∑
i1 6=... 6=i|D|=1

∏
Xl⊂D

1
|Xl|!

A1+|Xl|(t, il, Xl)×

×
n+2∏

m = 1,
m 6= i1, . . . , i|D|

A1(t,m)S±n+2+n1

n+2+n1∏
i=1

F 0
1 (i),
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where Z ≡ (n+3−n1, . . . , n+2) and Z ′ ≡ (n+3, . . . , n+2+n1) are linearly
ordered sets and the notations accepted above are used.

Consequently, applying in the case of s = 2 formula (18) to the obtained
expression, from equality (19) we derive

d

dt
F1(t, 1) = −N1(1)F1(t, 1) +

1
v
Tr2(−Nint(1, 2))× (20)

×
∞∑

n=0

1
vn

1
n!

Tr3,...,n+2 V1+n

(
t, {1, 2}, 3, . . . , n+ 2

)
S±n+2

n+2∏
i=1

F1(t, i).

Constructed identity (20) for a one-particle (marginal) density operator defi-
ned by (9), (10), we treat as the evolution equation, which governs the one-
particle states of many-particle quantum systems obeying the Fermi-Dirac
and Bose-Einstein statistics.

We remark that one more approach to the derivation of the generalized
quantum kinetic equation consists in its construction on the basis of dyna-
mics of correlations of bosons and fermions [20], [21].

Thus, if initial data is completely defined by a one-particle marginal
density operator, then all possible states of infinite-particle systems at arbit-
rary moment of time can be described within the framework of a one-particle
density operator without any approximations. In other words, for mentioned
states, the evolution of states governed by the quantum BBGKY hierarchy
(2) can be completely described by the generalized quantum kinetic equation
(15) for bosons and fermions.

6 An existence theorem

For the Cauchy problem (15), (16) in the space L1(H), the following
statement is true.

Theorem 1. The global in time solution of the initial-value problem (15),
(16) is determined by the following expansion

F1(t, 1) =
∞∑

n=0

1
vn

1
n!

Tr2,...,1+n A1+n(t, 1, . . . , n+ 1)S±n+1

n+1∏
i=1

F 0
1 (i), (21)

where the reduced cumulants A1+n(t), n ≥ 0, are defined by formula (10). If
1
v
< e−2, then for F 0

1 ∈ L1
0(H) it is a strong (classical) solution and for an

arbitrary initial data F 0
1 ∈ L1(H) it is a weak (generalized) solution.
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Proof. Let F 0
1 ∈ L1

0(H), then the convergent on the norm of the space L1(H)
series (21) is a strong solution of initial-value problem (15), (16), if the
equality holds:

lim
4t→0

∥∥ 1
4t

(
F1(t+4t, 1)− F1(t, 1)

)
−

(
−N1(1)F1(t, 1) + (22)

+
1
v
Tr2(−Nint(1, 2))

∞∑
n=0

1
vn

1
n!

Tr3,...,n+2 V1+n

(
t, {1, 2}, 3, . . .

. . . , n+ 2
)
S±n+2

n+2∏
i=1

F1(t, i)
)∥∥

L1(H)
= 0,

where abridged notations are applied: the symbols S±n+1

∏n+1
i=1 F1(t, i) and

F1(t, 1) are implied series (21) and series (18) for s = 1, respectively.

To prove this fact we use the result of the previous section 5 on the
differentiation of expansion (21) over time variable in the sense of the po-
intwise convergence in the space L1(H) with a little modification. Taking
into account formula (8), and that for n ≥ 1 and fn+1 ∈ L1

0(H
±
n+1), the

following equalities are true:

lim
t→0

∥∥1
t

Tr2 A1+1(t, 1, 2)f2 − Tr2 (−Nint)(1, 2)f2

∥∥
L1(H)

= 0,

lim
t→0

∥∥1
t

Tr2,...,n+1 A1+n(t, 1, . . . , n+ 1)fn+1

∥∥
L1(H)

= 0,

in the sense of the norm convergence in the space L1(H) we obtain

lim
4t→0

∥∥ 1
4t

(
F1(t+4t, 1)− F1(t, 1)

)
−

(
−N1(1)F1(t, 1) + (23)

+
1
v
Tr2(−Nint)(1, 2)

∞∑
k=0

1
vk

1
k!

Tr3,...,k+2 A1+k(t, {1, 2}, 3, . . .

. . . , k + 2)S±k+2

k+2∏
i=1

F 0
1 (i)

)∥∥
L1(H)

= 0.

In the third summand in the left-hand side of this equality we expand the
(1 + k)th-order reduced cumulants (10) of groups (7) into kinetic cluster
expansions (17) and represent series over the summation index n and the sum
over the summation index k as the two-fold series. Then, applying formula
(18) in the case of s = n+ 1 to the obtained expression, we derive

Tr2(−Nint)(1, 2)
∞∑

k=0

1
vk

1
k!

Tr3,...,k+2 A1+k(t, {1, 2}, 3 . . . , k + 2)S±k+2×
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×
k+2∏
i=1

F 0
1 (i) =

∞∑
n=1

1
vn−1

1
(n− 1)!

Tr2,...,n+1(−Nint)(1, 2)×

×V1+n−1(t, {1, 2}, 3, . . . , n+ 1)S±n+1

n+1∏
i=1

F1(t, i).

Under the condition
1
v
< e−2, the series in the right-hand side of this equality

converges on the norm of the space L1(H). Hence, according equality (23)
and the last equality, we find that for F 0

1 ∈ L1
0(H) equality (22) is valid.

For the Cauchy problem (15), (16) it can be introduced the notion of a
weak solution in the following sense. Consider the functional

(
f, F (t | F1(t))

) .=
∞∑

s=0

1
vs

1
s!

Tr1,...,s fs Fs(t, 1, . . . , s | F1(t)), (24)

where f = (f0, f1, . . . , fn, . . .) ∈ L0(F±H) ∈ L(F±H) is a finite sequence of
degenerate bounded operators with infinitely times differentiable kernels with
compact supports and elements of the sequence F

(
t, | F1(t)

) .=
(
I, F1(t, 1),

F2(t, 1, 2 | F1(t)), . . . , Fs

(
t, 1, . . . , s | F1(t)

)
, . . .

)
are defined by formulas (21)

and (11) for the first and other elements correspondingly. If for functional
(24) it is valid the equality:

d

dt

(
f, F (t | F1(t))

)
=

(
B+f, F (t | F1(t))

)
, (25)

where B+ is the dual operator [22] with respect to the generator of the
quantum BBGKY hierarchy (2), i.e.

(B+f)s(Y ) .= Ns(Y )fs(Y ) +
s∑

j1 6=j2=1

Nint(j1, j2)fs−1(Y \(j1)), s ≥ 1,

then expansion (21) is a weak solution in extended meaning of the Cauchy
problem (15), (16) of the generalized quantum kinetic equation for bosons
or fermions.

To prove equality (25) we transform functional (24) in the following way:

(
f, F (t | F1(t))

)
=

∞∑
s=0

1
vs

1
s!

Tr1,...,s

s∑
n=0

1
(s− n)!

×

×
s∑

j1 6=... 6=js−n=1

∑
Z⊂Y \(j1,...,js−n)

(−1)|Y \(j1,...,js−n)\Z|×
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×Gs−n+|Z|(t, (j1, . . . , js−n) ∪ Z) fs−n(j1, . . . , js−n)S±s
s∏

i=1

F 0
1 (i),

where
∑

Z⊂Y \(j1,...,js−n) is a sum over all subsets Z ⊂ Y \(j1, . . . , js−n) of the
set Y \(j1, . . . , js−n) ⊂ (1, . . . , s). For F 0

1 ∈ L1(H) and bounded interaction
potentials this functional exists. As a result for f ∈ L0(F±H) the derivative of
functional (24) over the time variable in the sense of the ∗-weak convergence
in the space L(F±H) transforms to the functionals [22]

d

dt

(
f, F (t | F1(t))

)
=

∞∑
s=0

1
vs

1
s!

Tr1,...,s

(
Ns(Y )fs(Y ) +

+
s∑

j1 6=j2=1

Nint(j1, j2)fs−1(Y \(j1))
)
Fs(t, Y | F1(t)).

In the sense of above defined notion of a weak solution in extended meaning
(25), the last equality means that for arbitrary initial data F 0

1 ∈ L1(H) a
weak solution of the initial-value problem of the generalized quantum kinetic
equation (15) for bosons or fermions is determined by formula (21).

We emphasize that intensional Banach spaces for the description of states
of infinite-particle systems, that means the description of kinetic dynamics
or equilibrium states, are different from the exploit spaces [3], [4].

7 Conclusion

We have proved that in the case of initial data, which is completely defined by
a one-particle density operator, all possible states of infinite-particle systems
of bosons or fermions at an arbitrary moment of time can be described within
the framework of a one-particle density operator, without any approxima-
tions together with explicitly defined functionals of this one-particle densi-
ty operator. One of the advantages of such approach is the possibility to
construct the kinetic equations in scaling limits the presence of correla-
tions of particle states at initial time, for instance, correlations characterizing
the condensate states of interacting particles obeying Fermi-Dirac or Bose-
Einstein statistics [2].

Specific quantum kinetic equations, such as the Boltzmann equation and
other, can be derived from constructed generalized quantum kinetic equation
in the appropriate scaling limits or as a result of certain approximations. For
example, in the mean-field scaling limit [5] we derive the quantum Vlasov
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kinetic equation for bosons or fermions, in particular in the case of pure
states of fermions it reduces to the Hartree-Fock equation or the nonlinear
Schrödinger equation.

Observing that in the kinetic (macroscopic) scale of the variation of va-
riables [5] the groups of operators (7) of finitely many particles depend on
microscopic time variable ε−1t, where ε ≥ 0 is a scale parameter, the di-
mensionless marginal functionals of the state are represented in the form:
Fs

(
ε−1t, Y | F1(t)

)
. Then in the limit ε → 0 the first two terms of the

dimensionless marginal functional expansions (11)

Ĝs(ε−1t, Y )S±s
s∏

i=1

F1(t, i) +

+
1
v

∫ ε−1t

0
dτ Gs(−τ, Y )Trs+1

( s∑
i1=1

(−Nint(i1, s+ 1))Ĝs+1(ε−1t, Y, s+ 1)−

−Ĝs(ε−1t, Y )
s∑

i1=1

(−Nint(i1, s+ 1))Ĝ2(ε−1t, i1, s+ 1)
)
S±s+1 ×

×
s+1∏
i2=1

G1(τ, i2)F1(t, i2)

coincide with corresponding terms constructed by the perturbation method
with the use of the weakening of correlation condition by Bogolyubov [4].
Thus, in the kinetic scale, the collision integral of the generalized kinetic
equation (15) for bosons or fermions takes the form of Bogolyubov’s collision
integral [23] and we observe that in a space homogeneous case, the collision
integral of the first approximation has a more general form than the collision
integral in the Uehling-Uhlenbeck kinetic equation [24], [25].
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З КВАНТОВИМИ СТАТИСТИКАМИ
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Для початкових станiв, якi визначаються одночастинковим маргi-
нальним оператором густини, квантових багаточастинкових систем, що
задовольняють статистицi Фермi-Дiрака або Бозе-Ейнштейна, встанов-
лено еквiвалентнiсть задачi Кошi для квантової iєрархiї ББГКI та задачi
Кошi для узагальненого квантового кiнетичного рiвняння для бозонiв та
фермiонiв. В просторi ядерних операторiв доведено iснування сильного
та слабкого розв’язку задачi Кошi для сформульованого квантового кi-
нетичного рiвняння.


