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Rats i.p. injected once with 10 mg/kg kainic acid exhibited clear seizure behavior (“wet-dog 
shakes,” rearing on the hindlimbs, and bilateral clonus). Pretreatment with L-arginine (L-Arg 
twice a day for 5 days) significantly decreased these manifestations. The medium dose of  
L-Arg (40 mg/kg) was found to be close to optimum; 10 and 160 mg/kg L-Arg provided much 
smaller positive effects. In KA-treated rats, a much higher density of GFAP����������������-���������������positive astro­
cytes was found in the hilus  of the dorsal hippocampus, while 40 mg/kg L-Arg+KA-treated 
rats demonstrated noticeably weaker GFAP overexpression. The results of Western blotting 
analysis were fully comparable with those obtained in the immunostaining experiments. 
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INTRODUCTION 

L-Arginine (L-Arg) first isolated in 1886 is one of the 
20 most common natural amino acids. In mammals, 
arginine is classified as a semiessential or conditionally 
essential amino acid (depending on the developmental 
stage and health status of the individual) [1]. Preterm 
infants are unable to synthesize arginine internally, 
making this amino acid nutritionally essential for 
them [2]. There are some conditions that cause 
increased requires of the organism for the synthesis of 
L-arginine, including surgical or other trauma, sepsis, 
and burns. It should be taken into consideration that 
L-Arg is the substrate for nitric oxide (NO) synthesis.
Kainic acid (KA) is a natural organic acid existing 

in some seaweed. It is a specific agonist for the kainate 
receptors, a subtype of ionotropic glutamate receptors 
for   which KA can imitate the effect of glutamate. 
Kainic acid is a potent stimulant of the CNS used for 
the induction of seizures in experimental animals; 
in particular, KA allows experimenters to build up a 
rat model of epilepsy. As was demonstrated earlier, 
NO may alleviate seizures and, thus, may be a kind 
of endogenous antiepileptics [3]. However, the 
mechanism of NO action in this respect still remains 
unclear. 

It has been reported that reactive proliferation 
of astrocytes occurs during the process of 
neurodegeneration or brain injury, and this is 
accompanied by intensification of the synthesis of 
glial fibrillary acidic protein (GFAP), a cell-specific 
marker for reactive astrocytes [4-6]. Increased GFAP 
immunoreactivity [7-8] and the respective mRNA 
levels were found in seizure-manifesting rats [9-11]. 
The question whether L-Arg, an important component 
of the NO system, exerts any effect on the expression 
of GFAP has not yet been clarified. This is why we 
investigated the effects of L-Arg on seizure behavior 
and expression of GFAP in KA-treated rats. 

METHODS

Animals and Treatments. Male Wistar rats (mean 
body mass 230 ± 20 g) were obtained from the Experi­
mental Animal Center of the Dalian Medical Universi­
ty (China). Sixty animals were randomly selected and 
divided into six groups. Rats of three L-Arg-treated  
groups were i.p. injected with 10, 40, and 160 mg/kg  
L-Arg twice a day for 5 days, respectively. Animals 
the KA-treated  group were i.p. injected with 10 mg/kg 
KA once on the 6th day after L-Arg pretreatment. The 
normal control and negative control groups were in­
jected with physiological saline (2 ml/kg) at the same 
time as the groups mentioned above. 

Behavioral Observations. All rats injected with  
10 mg/kg KA demonstrated brisk rotational 
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movements of the head and trunk called “wet dog 
shakes” (WDSs). The onset of seizures and the degree 
of their severity were estimated using a point scale 
proposed by Racine [12]: 1, chewing; 2, head nodding; 
3, unilateral forelimb clonus; 4, rearing with bilateral 
forelimb clonus; and 5, rearing with bilateral forelimb 
clonus and falling back. Behavior of KA-treated rats 
was monitored for 3 h after KA administration.

Immunohistostaining. After observing seizure 
behavior, the rats were i.p. anesthetized with 
pentobarbitone and perfused transcardially with 4% 
paraformaldehyde. The brains were removed and 
immersed in 20% sucrose diluted in 0.1 M phosphate-
buffered saline (PBS, pH 7.4). Brain samples were cut 
into 50-mm-thick slices. The latter were first rinsed in 
PBS for 10 min and then consequently incubated with 
bovine serum albumin (BSA) for 30 min, incubated 
with the primary GFAP antibody (1:3,000) overnight at 
4°C, rinsed in PBS for 10 min, and then incubated with 
biotinylated goat anti-rabbit serum (1:500) and avidin-
biotin complex (ABC) for 3 h. Diaminobenzidine (DAB) 
provided visualization of staining. Control sections were 
incubated with PBS instead of the primary antibody.

Pathological Image Analysis. A HPIAS series 
colorful pathology photograph system was used to 
analyze GFAP-immunopositive (ip) cells. The test-
squares in the screen of the microscope used were 
194258 mm2, and the number and average optical 
density of GFAP-ip cells were measured within these 
squares.

Western Blotting Analysis. Hippocampal samples 
were removed, weighed, homogenized in Tris buffer 
saline (TBS, pH 7.5) for 15 sec, and then vigorously 
vortexed for 10 sec. Parts of the homogenized samples 
(100 ml) were heated at 100°C for 5 min and then 
centrifuged at 13,000 rpm for 5 min. Ten microliters 
of the supernatant were used for quantifying protein 
according to the Smith’s method [11]. Another 100 ml 
of homogenized samples were added to an equal volume 

of the sample loading buffer, heated at  100°C for 5 min, 
and then centrifuged at 13,000 rpm for 5 min. After 
these procedures, electrophoresis, transferring, and 
identifying were carried out. Markers were cut away 
from the membrane, stained, destained, and dried, while 
the other part of the membrane was washed twice with 
TBS for 10 min and then immobilized by 1% BSA for 
1 h. Next operations were incubation with the primary 
antibody against GFAP (1:1,500) and subsequent 
incubation with the secondary antibody and ABC for  
1 h. Finally, photographs were taken and analyzed. 

Statistics. The numerical results are shown as 
means ± s.d., and the one-way ANOVA test was used 
to evaluate the statistical significance (P < 0.05).

RESULTS

Behavior. The KA-treated rats in the model group 
exhibited clear time-dependent seizure behavior. Five 
minutes after KA injection, staring and WDSs occurred 
during 30 min to 1 h. Spontaneous stereotyped seizure 
behavior happened within a 1-  to 3-h-long interval; 
this was characterized by rearing on the hindlimbs 
with bilateral clonus, until the balance was lost. In 
comparison with the control group, animals of the 
160 mg L-Arg  + 10 mg/kg KA-injected group showed 
much longer WDS latencies with no significant 
differences in the rearing latency and seizure scores. 
However, 40 mg/kg L-Arg + KA-treated rats showed 
much longer WDS latencies and rearing latencies with 
lower seizure scores, while 10 mg/kg L-Arg + KA-
treated group showed no significant changes. These 
results suggested that 10 mg/kg L-Arg could alleviate 
the normal condition only mildly, while   40 mg/kg 
L-Arg alleviated the condition obviously. This proved 
that the effect of L-Arg on abnormal behavior induced 
by KA is dose-dependent, and that the optimum dose 
of L-Arg is about 40 mg/kg, as illustrated in Table 1.

Table 1.  Effects of Different Doses of L-Arginine (L-Arg) on Kainic Acid (KA)-Induced Seizure Behavior in Rats

Т а б л и ц я. 1. Вплив L-аргініну на прояви судом, викликаних дією каїнової кислоти
Animal groups injected with 

different agents WDS latency, min Rearing latency, min Score of seizures

2 ml/kg PS+10 mg/kg KA 26.44 ± 1.21 77 ± 2.17 23.19 ± 0.83
10 mg/kg L-Arg +10 mg/kg KA 25.12 ± 1.06 76 ± 2.20 22.17±0.79
40 mg/kg L-Arg+ 10 mg/kg KA 33.75 ± 1.29** 90 ± 3.15** 16.25 ± 0.77**

160 mg/kg L-Arg + 10 mg/kg KA 34.62 ± 1.73** 89 ± 4.55 21.35 ± 0.63
Footnotes. **Significant difference from physiological saline (PS) + KA-injected  group with P < 0.01 (n = 10). WDS) “Wet dog shakes” 
(brist rotational movements of the head and trunk).  
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Immunohistostaining Analysis. In comparison 
with the control group, the number and the density 
of GFAP-ip astrocytes in KA-treated rats were 
significantly greater in the hilus of the dorsal 
hippocampus. A bandlike distribution of astrocytes was 
clearly observed, the general intensity of staining of 
the GFAP-ip units was markedly greater, and  strongly 
labeled  immunoreactive elements were almost entirely 

located in the  hilus and adjacent regions. A majority 
of the GFAP-ip cells appeared larger and were stained 
more heavily, with positive processes appearing more 
clearly. However, 40 mg/kg L-Arg + KA-treated rats 
demonstrated noticeably weaker overexpression of 
GFAP-ip astrocytes mentioned   above; there was no 
statistically significant difference from the expression 
in the control groups (Fig. 1 and Table 2). 

TABLE 2. Numbers of GFAP-ip Astrocytes and Pathological Image Analysis in the Hilus of the Rat Dorsal Hippocampus 

Т а б л и ц я 2. Кількість GFAP-імунопозитивних астроцитів та прояви патологічних змін у хілусі дорсального гіпокампа щурів 
Animal groups injected 
with different agents  N S, μm2 D ID

2 ml/kg PS 10.08 ± 0.93 402.74 ± 10.92 0.71 ± 0.01 375.74 ± 6.02
40 mg/kg L-Arg 10.17 ± 0.96 400.00 ± 16.81 0.70 ± 0.01 374.77 ± 7.04
2 ml/kg PS + 
+ 10 mg/kg KA 14.13 ± 0.68** 715.42 ± 17.01** 0.90 ± 0.03* 610.29 ± 21.00**

40 mg/kg L-Arg +  
+ 10 mg/kg KA 10.38 ± 0.56## 388.60 ± 12.68## 0.69 ± 0.01## 355.06 ± 14.32##

Footnotes. N) Number of positive cells, S) surface area of the positive bodies, D) average optical density, and ID) integral optical density per 
one sight region (194,258 mm2, n = 15-20 sections). * Significant difference from the control PS-injected  group at P < 0.05.  ** Significant 
difference from the control PS-injected group at P < 0.01. ## Significant difference from the PS + KA-injected group at P < 0.01. Other 
designations are the same as in Table 1.

F i g. 1. Effect of 40 mg/kg L-arginine (L-Arg) on 
expression of GFAP-ip astrocytes in the rat dorsal 
hippocampus. A-D) Hippocampal slices obtained 
from a control animal injected with physiological 
saline (2 ml/kg, A), a 10 mg/kg kainic acid (KA)-
treated rat (B), an L-Arg-injected animal (C), and a 
KA + L-Arg-treated animal. m and g) Molecular and 
granular layers   of the dentate gyrus, respectively;  
h) hilus of the dentate gyrus, and p) stratum 
pyramidale of the CA3.

Р и с. 1. Вплив 40 мг/кг L-аргініну на експресію 
гліального фібрилярного кислого протеїну (GFAP) 
в астроцитах дорсального гіпокампа щура.

A
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Western Blotting Analysis. The molecular mass of 
GFAP is about 50 kDa. Three hours after KA injec­
tion, GFAP expression was obviously more intense in 
the PS-treated + KA-injected  group. At the same time, 
such expression in the   40 mg/kg L-Arg + KA-rats  
was noticeably weaker and showed no significant dif­
ference vs that in the PS-injected group (Figs. 2 and 
3). These results are fully comparable with those ob­
tained in the immunohistostaining experiments.

DISCUSSION

Nitric oxide has been implicated in mediation of 
neuronal excitotoxic injury [14-15]. L-arginine (the 
substrate for NO synthesis), regarded as the main 
endogenous source for NO production, was used in 
our experiments to study the role of NO in generation 
of seizures in KA-treated rats. It was reported earlier 
that pretreatment with L-Arg tends to potentiate the 
effects of quinolinic acid (QA) and induces clonic 
and tonic convulsions in mice [16]. Simultaneously, 

the effects of L-Arg on seizure activity elicited by KA 
are dose-dependent and contribute to the genesis of 
seizure activity [17]. At the same time, it was found 
that L-Arg did not affect kindling or seizure severity 
[18]. Other studies showed that NO might act as an 
endogenous anticonvulsant in mice [19-20], and the 
anticonvulsant L-Arg alone significantly increases the 
NO concentration and NOS activity in specific brain 
regions responsible for suppression of convulsions 
[21-22]. Previous studies, however, indicated that 
KA-induced seizures appeared later in rats pretreated 
with a single large dose of L-Arg [18-21]. 
Due to all the above-mentioned controversies, we 

investigated the effects of chronic treatment with small 
doses of L-Arg on KA-induced seizures. The results 
showed that pretreatment with 40 mg/kg L-Arg clearly 
alleviated KA-induced seizures, while pretreatment 
with the lower (10 mg/kg) or greater (160 mg/kg) 
doses of L-Arg demonstrated less significant effects. 
Thus, the dose dependence is probably   U-like. We 
also observed that chronic treatment with moderate 
doses of L-Arg (40 mg/kg) exhibited anticonvulsant 
effects. 
The results presented here indicate that chronic 

treatment with moderate doses of L-Arg (40 mg/kg) 
provide an anticonvulsant action, but the mechanism 
of such effect still remains unclear. Astrocytes 
perform a variety of functions in the adult CNS [23-
24]. Reactive gliosis is a response of astrocytes to a 
variety of insults that is characterized by hypertrophy 
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F i g. 2.  Expression of GFAP in the rat hippocampus demonstrated 
using Western blot analysis. A) Control (physiological saline-
injected) group, B) KA-treated rats, C) 40 mg/kg L-Arg-injected 
animals, and D) KA + 40 mg/kg L-Arg-treated group. S) Standard 
molecular mass (kDa) of the markers, from top to bottom, 97.4 
(phosphorylase), 66.2 (bovine serum albumin), 55.0 (glutamate 
dehydrogenase), 42.7 (ovalbumin), and 40.0 (aldolase). Each lane 
showes an identical major band stained strongly at about 50 kDa 
position.

Р и с. 2. Експресія GFAP у гіпокампі щурів: результати Вестерн-
блотингу.

F i g. 3.   Results of scanning of hippocampal GFAP expression  
(n = 6). L-Arg) L-arginine, KA) kainac acid. * Significant difference 
from the control physiological saline-injected group (PS) at  
P < 0.05. + Significant difference from PS + KA-treated group at  
P < 0.05. Vertical scale) Relative optical density.

Р и с. 3. Результати сканування при дослідженні експресії GFAP 
у гіпокампі щурів.

Actin
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of the cell bodies and processes and an increase in the 
expression of GFAP [25-26]. Previous studies revealed 
that a single convulsive KA-induced  seizure episode 
strongly intensifies GFAP expression in astrocytes in 
the hippocampal formation. Bennett et al. reported 
that GFAP immunopositivity was enhanced in the 
hippocampus and correlative brain areas 3 h after KA 
injection, but the specific distribution and alteration 
were not described [27, 28]. Our results showed that 
GFAP expression after L-Arg pretreatment reduced 
KA-challenged seizure behavior. Furhtermore, L-Arg 
pretreatment with the dosage of 40 mg/kg inhibited 
hyperplasia and hypertrophy of the astrocytes and 
bandlike distribution of these glial cells and also 
alleviated the abnormal overexpression of GFAP 
induced by KA. 
Thus, our study suggests that the effect of NO on  

KA-induced seizures is dose-dependent, and that the 
L-Arg dose of 40 mg/kg seems to be optimum for 
correction of KA-induced abnormal behavior. The 
effect may be related to regulation of the expression 
of GFAP and to a protecting action with respect to 
astrocytes. In future, we will try to block NO expression 
and to observe behavioral changes and changes in 
astrocytes in KA-treated animals. It is necessary to be 
sure that NO is the key point for curing KA-induced 
seizures and to make clear the possible mechanism 
of the action of the optimum L-Arg dose (40 mg/kg),  
which most effectively reduced abnormal behavior in 
KA-treated rats.
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Р е з ю м е

Поведінка щурів, яким внутрішньоочеревинно ін’єкували 
10 мг/кг каїнової кислоти (КК), характеризувалася вираже­
ними проявами судом, „струшуваннями мокрого собаки”, 
вставанням на задні кінцівки та білатеральним клонусом. 
Попередні введення L-аргініну (L-Aрг) двічі на день протя­
гом п’яти днів забезпечували істотне зменшення інтенсив­
ності таких проявів. Було виявлено, що доза L-Aрг 40 мг/кг 
є близькою до оптимальної; дози 10 та 160 мг/кг справляли 

менш виражену позитивну дію. У щурів, яким уводили КК, 
у хілусі дорсального гіпокампа спостерігалася більш висо­
ка щільність астроцитів, імунопозитивних  щодо гліально­
го фібрилярного кислого білка (GFAР), у той час як у щу­
рів, котрим уводили КК сумісно із 40 мг/кг L-Арг, експресія 
GFAP була виражена в помітно меншій мірі. Результати до­
сліджень з використанням Вестерн-блотингу були повністю 
співставними з даними, отриманими в експериментах з іму­
ногістологічним міченням. 
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