УДК 531.32

В.П. Ольшанський, С.В. Ольшанський

ІНВЕРСІЯ РОЗВ'ЯЗКУ ДІДІОНА В ЗАДАЧІ БАЛІСТИКИ МАТЕРІАЛЬНОЇ ТОЧКИ

The purpose of this study is to develop a convenient way to calculate distance (horizontal projection of the trajectory) flight of a particle in a gas medium with quadratic resistance movement to flatter trajectory. Didion solution converted to a form suitable for calculating the flight range of a particle in a gaseous environment is known in the theory of ballistics. The Lambert function table is proposed by calculating the flight range of a point on the flat trajectory. Using the built Didion inversion solutions and Lambert function tables greatly simplifies calculation of the flight range of a point on a flat trajectory. Didion inversion solutions are two-valued which is consistent with the presence in the trajectory of ascending and descending sections. Inversion can be used not only to calculate the flight distance of a point, but also to identify the quadratic resistance of the medium, in accordance with results of the trajectory measurements.

Вступ

Розрахунок траєкторії польоту матеріальної точки в газовому середовищі з квадратичним опором рухові зводиться до квадратур, які не виражаються в елементарних функціях [1-3]. Їх знаходять у задачах балістики за допомогою спеціально складених таблиць [1], або числово на комп'ютері. Однак відомі випадки, коли розв'язки спрощуються. Так, для розрахунку пологої (настильної) траєкторії польоту, Дідіон [4, 5] побудував наближений розв'язок в елементарних функціях, визначивши залежність ординати у від абсциси х на траєкторії в прямокутних координатах хоу. Але, використовуючи згадуваний наближений розв'язок при розрахунку дальності польоту частки х_{*}, доводиться числово розв'язувати трансцендентне рівняння $y_* = y(x_*)$ для заданого y_* . Тому, виходячи з потреби практики, бажано мати явну аналітичну залежність x = x(y), зворотну тій, що запропонував Дідіон. Зворотна залежність є неоднозначною і не виражається через елементарні функції. Для інверсії розв'язку Дідіона доводиться використовувати функцію Ламберта [6, 7]. У підсумку визначення х. зводиться до використання таблиці вказаної спеціальної функції [8] або обчислення її на комп'ютері в середовищі "Maple" [9].

Постановка задачі

Метою цього дослідження є розроблення зручного способу розрахунку дальності (горизонтальної проекції траєкторії) польоту матеріальної точки в газовому середовищі з квадратичним опором рухові по пологій траєкторії. Враховуючи потреби практики в цій роботі поставлено задачу побудови розв'язку, який зворотний відомому розв'язку Дідіона.

Побудова інверсії розв'язку Дідіона

Вважаючи силу опору повітря пропорційною квадрату швидкості руху точки по настильній траєкторії, Дідіон знайшов залежність y(x) у вигляді [4, 5]

$$y = \frac{v_2}{v_1} x - \frac{g}{(2k\lambda v_1)^2} (e^{2\lambda kx} - 2\lambda kx - 1), \qquad (1)$$

де $v_1 = v_0 \cos \theta_0$; $v_2 = v_0 \sin \theta_0$ — проекції вектора початкової швидкості точки на осі *ox* і *oy*; θ_0 — кут нахилу вектора початкової швидкості до горизонту; *g* — прискорення вільного падіння; *k* — коефіцієнт (вітрильності) аеродинамічної взаємодії частинки з середовищем; λ сталий множник, близький до одиниці.

Згідно з [4], $\lambda = 1,017$, а у Дідіона — $\lambda = 1,012$.

Використовуючи логарифмічне перетворення

$$x = \frac{1}{2k\lambda} \ln \xi,$$
 (2)

вираз (1) зводимо до вигляду

$$\ln\frac{\xi}{a} - \frac{\xi}{a} = -\eta, \tag{3}$$

де $a = 1 + \frac{2k\lambda v_1 v_2}{g}; b = 1 - \frac{(2k\lambda v_1)^2}{g}y; \eta = \frac{b}{a} + \ln a.$

Рівняння (3), з невідомим ξ , має два розв'язки [6]: в яких $W_1(-\zeta)$ і $W_2(-\zeta)$ — основна та допоміжна дійсні гілки функції Ламберта від'ємного аргументу. Тому, згідно з (2) і (4), на висхідній ділянці траєкторії

$$x = \frac{1}{2k\lambda} \ln[-aW_1(-e^{-\eta})], \qquad (5)$$

а на спадній

$$x = \frac{1}{2k\lambda} \ln[-aW_2(-e^{-\eta})].$$
 (6)

Розв'язки (5), (6) стикуються в точці максимуму, де

$$\eta = 1; \ x = x_e = \frac{1}{2k\lambda} \ln a;$$
$$y = y_e = \frac{g}{(2k\lambda\nu_1)^2} (1 - a + a\ln a),$$

внаслідок того, що $W_1(-e^{-1}) = W_2(-e^{-1}) = -1$ [8].

Зазвичай, розв'язуючи практичні задачі, доводиться обчислювати дальність польоту

 $x_* > x_e$ при заданому $y_* < y_e$. У цьому випадку із (6) випливає, що

$$x_* = \frac{1}{2k\lambda} \ln[-aW_2(-e^{-\eta_*})],$$
 (7)

де
$$\eta_* = \frac{1}{a} \left[1 - \frac{(2k\lambda v_1)^2}{g} y_* \right] + \ln a$$

Для зручності розрахунків наводимо табл. 1 функції $W_2(-\zeta)$, опубліковану раніше у [8].

З метою верифікації формули (7) проводимо обчислення x_* , задаючи $v_1 = 20 \cos 15^0$ м/с; $v_2 = 20 \sin 15^0$ м/с; $\lambda = 1,015$ м/с; $y_* = 0$ та три значення k. Результати розрахунків вносимо в табл. 2.

Зазначені в табл. 2 значення x_* добре узгоджуються зі значеннями x_{max} , позначеними точками на рисунку. Графіки на рисунку побудовано числовим інтегруванням квадратур у праці [10].

З рисунка видно екстремальний характер залежності $x_{\rm max}$ від кута θ_0 . Зі зростанням

Таблиця 1. Значення $F_2(-\zeta) = -10^4 W_2(-\zeta)$ (допоміжна гілка)

10 ³ ζ	$F(-\zeta)$	10 ³ ζ	$F(-\zeta)$	10 ³ ζ	$F(-\zeta)$	10 ³ ζ	$F(-\zeta)$
10 ³ / e	10000	345	14024	225	23432	105	35092
367,5	10461	340	14512	220	23821	100	35772
367	10708	335	14973	215	24215	95	36481
366	11047	330	15413	210	24614	90	37223
365	11307	325	15837	205	25017	85	38001
364	11528	320	16248	200	25426	80	38821
363	11724	315	16650	195	25842	75	39687
362	11904	310	17044	190	26263	70	40606
361	12071	305	17431	185	26692	65	41585
360	12228	300	17813	180	27128	60	42635
359	12376	295	18191	175	27572	55	43767
358	12518	290	18566	170	28025	50	44998
357	12654	285	18939	165	28487	45	46347
356	12785	280	19310	160	28959	40	47842
355	12912	275	19680	155	29442	35	49522
354	13035	270	20050	150	29936	30	51445
353	13155	265	20419	145	30443	25	53696
352	13272	260	20789	140	30963	20	56423
351	13386	255	21160	135	31498	15	59898
350	13497	250	21533	130	32049	10	64728
349	13606	245	21907	125	32617	5	72840
348	13713	240	22284	120	33203	0	0
347	13819	235	22663	115	33810	—	—
346	13922	230	23046	110	34439	—	—

Таблиця 2. Значення *x*^{*} за різних *k*

k, m^{-1}	а	η*	$W_2(-e^{-\eta_*})$	Х*, М
0,098	3,028	1,438	-2,251	9,65
0,294	7,084	2,099	-3,291	5,28
0,980	21,279	3,105	-4,635	2,31

Залежності x_{max} і y_{max} від θ_0 : 1, 2, 3 — k = 0,098; 0,294;0,98 м⁻¹

- 1. *Жуковский Н.Е.* Теоретическая механика. М. Л.: ГИТТЛ, 1952. 812 с.
- Кильчевский Н.А. Курс теоретической механики. Т. 1. М.: Наука, 1977. – 480 с.
- Ольшанский В.П., Дубовик О.А. Вопросы внешней баллистики огнетушащих веществ. Х.: Митець, 2005. 236 с.
- Лойцянский Л.Г., Лурье А.И. Курс теоретической механики. В 2 т. Т. 2. – М.: Дрофа, 2006. – 720 с.
- Бать Н.И., Джанелидзе Г.Ю., Кельзон А.С. Теоретическая механика в примерах и задачах. Динамика. – М.: Лань, 2010. – 640 с.
- 6. *R.M. et al.,* "On the Lambert W Function", Advances in Computational Math., vol. 5, pp. 329–359, 1996.

Рекомендована Радою фізико-математичного факультету НТУУ "КПІ" опору середовища максимуми графіків зміщуються в бік зменшення θ_0 .

Висновки

Використання побудованої інверсії розв'язку Дідіона та таблиці функції Ламберта значно спрощує обчислення дальності польоту матеріальної точки по пологій траєкторії. Інверсія розв'язку Дідіона є двозначною, що узгоджується з наявністю на траєкторії висхідної та спадної ділянок. Інверсія може бути використана не тільки для обчислення дальності польоту матеріальної точки, а й для ідентифікації коефіцієнта квадратичного опору середовища, за результатами вимірювань параметрів траєкторії. Але це є предметом подальшого дослідження.

- 7. *Fariel Shafee*, "Lambert Function and New-Extensive form of Entropy", IMA Journal of Applied Math., vol. 72, pp. 785–800, 2007.
- Балістика крапель, які випаровуються при польоті / За ред. В.П. Ольшанського. – Х.: ХНТУСГ, 2007. – 304 с.
- 9. Дьяконов В.П. Марle 8 в математике, физике и образовании. – М.: Солон-Пресс, 2003. – 656 с.
- Заика П.М., Мельник В.И., Аникеев А.И. Свободное движение материальной точки в спокойной изотропной газообразной среде // Динамика и прочность машин: Вест. НТУ "ХПИ". – Х., 2001. – Вып. 25. – С. 153–164.

Надійшла до редакції 12 лютого 2013 року