P. pallasiana and *P. sylvestris* growing in industrial ecotopes of Krivbass, especially in seeds of plants, grooving in ore-mining dump.

In general, the offspring *P. sylvestris* in plantations of Kryvorizhzhya found higher levels of cytogenetic abnormalities in comparison with *P. pallasiana*. One distinctive feature of the *P. sylvestris* i *P. pallasiana* from all four examined stands is the higher frequency of chromosomal aberrations compared to the frequency of mitosis pathologies.

Thus, in the meristematic tissue cells of the seed descendants of *P. sylvestris* and *P. pallasiana* from the stands in the Krivoy Rog region, serious changes in the activity of the nucleolar organizer are observed and the proportion of cells with pathology mitosis and chromosomal aberrations is considerably increased. Environmental pollution encourages increased cytogenetic abnormalities in the seed descendants of P. sylvestris and P. pallasiana from the stands exposed to emissions from metallurgical works and growing on the iron ore dump in Krivoy Rog. The above enumerated indicators of pines trees and their geniture are acceptable as test indexes for the indication of technogenic environmental pollution.

Key words: Pinus sylvestris; P. pallasiana; seeds; seedlings; cytogenetic changes; Krivoy Rog region

Рекомендує до друку В. В. Грубінко Надійшла 12.12.2017

УДК: 577.39 [58.084.1]: 577.346: 574.24: 577.121: 577.126

¹С. В. ЛІТВІНОВ, ¹М. В. КРИВОХИЖА, ²В. М. КУХАРСЬКИЙ, ¹Н. М. РАШИДОВ

¹Інститут клітинної біології та генетичної інженерії Національної академії наук України вул. Академіка Заболотного, 148, Київ, 03143 ²Державна установа «Інститут геронтології імені Д. Ф. Чеботарьова НАМН України» вул. Вишгородська, 67, Київ, 04114

ЗМІНИ НЕПІГМЕНТНИХ СПОЛУК У ЛИСТКАХ ОПРОМІНЕНИХ РОСЛИН *ARABIDOPSIS THALIANA* (L.) НЕУNH .

Дія радіації на рослини часто викликає структурно-метаболічні зміни, що проявляються через тривалий проміжок часу після опромінення. З метою вивчення змін у складі непігментних сполук асимілюючого органу рослин – листка, використали метод інфрачервоної спектроскопії Фур'є (FTIR). На основі аналізу FTIR-спектрограм ліофілізованих розеткових листків модельної рослини *Arabidopsis thaliana* (L.) Неупь. через 30 діб після опромінення рентгенівськими променями у дозі 21 Гр можна зробити висновок про значні зміни вмісту полісахаридів, нуклеїнових кислот і протеїнів, а також конформації макромолекул. Після опромінення у листках у рази знижувався вміст білків та нуклеїнових кислот, відбувалося заміщення пектину та лігніну целюлозою й геміцелюлозою, накопичувався крохмаль. Змінювалася композиція жирних кислот кутину. Також зафіксоване невелике збільшення відношення кількості бета-шарів до кількості альфа-спіральних доменів білків. Виявлені зміни можуть бути зумовлені індукцією біохімічної відповіді рослинних клітин на іонізуюче опромінення, що призводить до деградації нуклеїнових кислот, модифікації клітинної стінки, накопичення крохмалю, протеолізу та конформаційних перетворень білків.

Ключові слова: рентгенівське випромінювання, інфрачервона спектроскопія Фур'є (FTIR), індуковані опроміненням біохімічні зміни, гіперчутлива відповідь, клітинна стінка

Вивчення середньострокових ефектів впливу радіації на рослини передбачає комплексний аналіз якісних та кількісних структурно-метаболічних змін, що виникають через тривалий проміжок часу після опромінення. Іонізуючу радіацію можна розглядати як тестовий чинник,

ISSN 2078-2357. Наук. зап. Терноп. нац. пед. ун-ту. Сер. Біол., 2018, № 2 (73) 157

який можна використовувати для моделювання стресового впливу на рослину через подібність біохімічних та біологічних наслідків дії випромінювання та стресових умов середовища. Механізм індукції ефектів такого роду може бути пов'язаний з порушенням біохімічного гомеостазу структур клітин листка [18; 21] – мембран, білкових комплексів, клітинної стінки та нуклеїнових кислот. Це проявляється, зокрема, у зменшенні вмісту хлорофілів у тканинах листків, зниженні ефективності фотосинтезу [2; 3], у частковому відмиранні асимілюючих органів рослини через деякий час після опромінення.

У попередніх експериментах ми спостерігали зменшення у 1,5 рази кількості живих листків у прикореневій розетці опромінених у дозі 21 Гр рослин арабідопсису через 30 діб після опромінення порівняно з неопроміненим контролем. Поглинута доза 21 Гр належить до інтервалу доз, з яких починається інгібуючий вплив радіації на рослини *Arabidopsis thaliana* (L.) Неупh., що знаходяться наприкінці вегетативної фази розвитку [9]. Тому цю дозу було використано в якості стрес-фактора, після дії якого можна зафіксувати біохімічні зміни, що при більших дозах проявляються в пригніченні життєвих процесів та зниженні життєздатності всієї рослини. З метою аналізу змін біохімічного складу листків використали метод інфрачервоної спектроскопії Фур'є (FTIR). Перевагами цього методу є швидкість, простота, надійність і відтворюваність результатів, можливість одночасного вимірювання вмісту найбільш життєво важливих біохімічних компонентів клітин без порушення цілісності об'єкту, тобто із збереженням властивого живій системі зв'язку між просторовими компартментами та макромолекулами біологічно важливих сполук [11; 12].

Матеріал і методи досліджень

Культивація рослин. У дослідах використовували рослини *A. thaliana* екотипу *Columbia 0.* Рослини вирощували в культиваційній кімнаті на ґрунтовій суміші «Полісся» в умовах довгого дня (18/6 год.) за температури +22–25 °C. Інтенсивність освітлення люмінісцентними лампами білого світла складала 5,9 кЛк (80 мкмоль фотонів м⁻² с⁻¹).

Опромінення. 35-денні рослини опромінювали на апараті РУМ-17 рентгенівськими променями з енергією квантів 180 кеВ (Національний інститут раку, Київ). Доза опромінення склала 21 Гр при потужності дози 89 сГр/хв.

Інфрачервона спектроскопія Φyp 'є. Спектри поглинання в області середньої інфрачервоної області (400–4000 см⁻¹) були отримані з використанням спектрометра Nicolet FTIR IS50 (Thermo Fisher Scientific, USA). Всі спектри вимірювали з роздільною здатністю 4 см⁻¹ [10]. Для аналізу відбирали по 2–3 різних за розміром листки з прикореневої розетки на 30у добу після опромінення (65-а доба вегетації). Зрізані цільні листки ліофільно висушували. На кожному з листків було обрано 2–3 поля для спектрометрії: в центрі, біля зовнішнього краю листової пластинки та в зоні черешка.

У контрольному і дослідному варіанті було по 25 рослин. Повторюваність дослідів трикратна. Аналіз ІЧ-спектрів проводили у програмному пакеті Thermo Scientific OMNIC (Thermo Fisher Scientific, USA) та Excel 2003 (Microsoft, USA). Спектри є усередненням 32 сканувань одного і того самого поля з фільтрацією по фоновому спектру. Первинні спектрограми вирівнювали по базовій лінії та згладжували за допомогою функції Савіцького–Голея з метою фільтрації спектрального шуму. Відносну концентрацію біохімічних сполук оцінювали за площею відповідних піків оптичної густини (центр піку ±6 см⁻¹) на спектрограмі спектру поглинання з урахуванням вирівнювання по базовій лінії [18].

Результати досліджень та їх обговорення

На основі співставлення спектрограм з результатами, отриманими іншими дослідниками, було виявлено та ідентифіковано 12 стійких піків (табл. 1), характерних для ІЧ-спектру поглинання листків *A. thaliana* в області 400-4000 см⁻¹ [11–13; 16; 20; 21].

Вимірювання площі ідентифікованих піків свідчить про значущі відмінності в концентрації основних сполук непігментної природи, що входять до складу тканин (табл. 2).

Пік спектру поглинання (вимірювання), см ⁻¹	Хімічна група або зв'язок, тип коливань	Пік спектру поглинання (літературні дані), см ⁻¹	Сполуки, характерні для тканин ліофілізованих листків	Клас хімічних сполук
872	глікозидний зв'язок, С-О	875	геміцелюлоза	полісахариди
1023	С-О-С, асиметричні коливання	1023	крахмаль	полісахариди
1106	-СН, -С-С, -С-О-С	1106	целюлоза	полісахариди
1150	глікозидний зв'язок, С-О	1148	пектин	полісахариди
1244	фосфатний зв'язок, РО2-, асиметричні коливання	1244	ДНК, РНК	нуклеїнові кислоти
1418	дисоційована карбок- сильна група (СОО-)	1419	пектин	полісахариди
1472	С-Н, площинна деформація	1465-1595	лігнін	фенілпропаноїдний полімер, поліфеноли
1628	карбонільна група, пептидний зв'язок (C-N)	1627-1628	протеїн, амід I, бета-шари	білки
1651	карбонільна група, пептидний зв'язок (C-N)	1652-1658	протеїн, амід I, альфа-спіралі	білки
1740	карбонільна группа (С=О)	1740	тригліцериди та жирні кислоти	ліпіди
2849	метиленова група, симетричні коливання C-H зв'язку	2850	аліфатичні складні ефіри жирних кислот	ліпіди кутикули (кутин)
2916	метиленова група, асиметричні коливання C-H зв'язку	2916-2919	аліфатичні складні ефіри жирних кислот	ліпіди кутикули (кутин)

Ідентифіковані піки ІЧ-спектру поглинання листків Arabidopsis thaliana (L.) Heynh.

Так, листки опромінених рослин містять більше структурних і запасаючих речовин – геміцелюлози, целюлози і крохмалю. У той же час, вміст полісахаридів, хімічно не споріднених з целюлозою, лігніну, пектину та його похідних, тобто структурних макромолекул, характерних для живих клітин, здатних до розтягнення [19], у листках опромінених рослин зменшується. Також спостерігається зміна кольору і форми листків (темно-зелене або антоціанове забарвлення, неправильна форма, скрученість листової пластинки, порушення жилкування). Поряд із суттєвим зниженням вмісту білків та нуклеїнових кислот, це вказує на відмирання або зменшення здатності меристематичних клітин до поділу, можливо, внаслідок програмованої клітинної загибелі.

У тканинах опромінених рослин майже в 2 рази знижується вміст ліпідів, що узгоджується з існуючими даними щодо впливу іонізуючого випромінювання на цей клас сполук. Відмінності між варіантами за величиною відношення «нуклеїнові кислоти/білки» також є статистично незначущою (*див.* табл. 3), а вміст нуклеїнових кислот у листках позитивно корелює з сумарною концентрацією характерних для білків груп. Крім того, вміст нуклеїнових кислот і білків зменшився у стільки ж разів, у скільки змінилися співвідношення «нуклеїнові кислоти/полісахариди клітинної стінки» та «білки/полісахариди клітинної стінки» відповідно (*див.* табл. 2 та 3). Це свідчить на користь припущення про паралельне зниження вмісту ДНК, РНК і білків у більшості клітин листка, тобто в результаті активації ендогенних механізмів біохімічної відповіді, а не внаслідок прямих променевих пошкоджень чи дії продуктів радіолізу води, оскільки при дозі гострого опромінення 21 Гр лише дуже незначна частка молекул біополімерів зазнає іонізації, руйнування активними радикалами або перекисного окислення.

Площа піків, пов'язаних з жирними кислотами кутину епідермісу листка, не зменшується. Тим не менше їх композиція зазнає певних конформаційних змін, на що вказує зростання відношення «симетричні збуджені коливання/несиметричні збуджені коливання С-Н зв'язку» (табл. 3).

Таблиця 2

Зміни питомого вмісту і	ідентифікованих спо.	пук, визначених в	на основі маркерни	х хімічних
груп, у відносних с	одиницях площі піку	на спектрограмі	оптичної густини, І	M±SE

Сполуки, харак-				Статистично	Відношення
терні для тканин	Хімічна група або зв'язок,	Col-0,	Col-0, 21	достовірні	«опромінені
ліофілізованих	тип коливань	контроль	Гр	відмінності,	рослини/
листків				p<0,01	контроль»
геміцелюлози	глікозидний зв'язок, С-О	$0,65\pm0,04$	$1,22\pm0,15$	<	↑ 1,88
крахмаль	С-О-С, асиметричні коливання	1,03±0,04	1,40±0,06	<	↑ 1,36
целюлоза	-СН, -С-С, -С-О-С	$0,71\pm0,04$	$1,76\pm0,06$	<	↑ 2,48
пектин	глікозидний зв'язок, С-О; дисоційована карбок- сильна група (СОО-)	2,01±0,22	0,82±0,10	>	↓ 2,45
нуклеїнові кислоти	фосфатний зв'язок, РО2-, асиметричні коливання	0,82±0,10	0,16±0,01	>	↓ 5,13
лігнін	С-Н, площинна деформація	1,58±0,23	0,14±0,03	>0	↓ 11,29
протеїн, амід I, бета-шари	карбонільна група, пептидний зв'язок (C-N)	3,22±0,24	0,78±0,12	>	↓ 4,13
протеїн, амід I, альфа-спіралі	карбонільна група, пептидний зв'язок (C-N)	3,04±0,26	0,78±0,12	>	↓ 3,90
ліпіди	карбонільна група	2,11±0,30	$1,07\pm0,17$	>	↓ 1,97
жирні кислоти кутину	метиленова група, симетричні коливання С- Н зв'язку; асиметричні коливання С-Н зв'язку	3,41±0,12	3,84±0,86	відсутні	відсутні

Можна припустити, що частина меристематичних клітин листків опромінених рослин втрачає рРНК, які становлять більшу частину пулу нуклеїнових кислот, і здатність до синтезу білків, а також здатність до реплікації ДНК та поділу. У багатьох класичних радіобіологічних роботах була показана вакуалізація цитлоплазми меристематичних клітин та потовщення клітинних стінок під дією іонізуючого опромінення [1]. Клітинна стінка таких клітин, імовірно, накопичує целюлозу, яка заміщує пектин. Зокрема, в наших дослідах відношення «целюлоза/пектин» у тканинах листків опромінених рослин зростає з 0,38 до 2,44. Зниження вмісту лігніну в 11,3 рази (табл. 2) у порівнянні з контролем вказує на тотальне руйнування лігнінових структур, що неминуче призводить до порушення еластичності тканин листа, здатності клітин до росту і розтягування, втрати тургору та деформації просторової форми і жилкування листової пластинки (ці аномалії листка опромінених рослин спостерігали візуально). Важливим є те, що загальна кількість основних полісахаридів клітинної стінки – целюлози, геміцелюлози, пектину під впливом радіації значуще не змінюється, отже у віддалений період після гострого опромінення відбувається не стільки руйнування, скільки зміна складу і структури клітинних стінок: зменшення вмісту пектину та лігніну й одночасне збільшення вмісту целюлози та геміцелюлоз. Відповідним чином перебудовується і вуглеводний обмін – кількість полісахаридів у листках опромінених рослин дещо зростає за рахунок полімерів глюкози: целюлози, геміцелюлози, крохмалю.

Таблиця З

, , , , , , , , , , , , , , , , , , ,	, ,	1 1	- J-	9
Біохімічний параметр	Col-0, контроль	Col-0, 21 Гр	Статистично достовірні відмінності, p<0,01	Відношення «опромінені рослини/ контроль»
целюлоза, геміцелюлози	$1,36\pm0,04$	2,98±0,19	<	↑ 2,19
крохмаль	$1,03\pm0,04$	$1,40\pm0,06$	<	↑ 1,36
пектин	2,01±0,22	0,82±0,12	>	↓ 2,45
полісахариди клітинної стінки (целюлоза, геміцелюлози, пектин)	3,03±0,40	3,80±0,30	відсутні	
полісахариди-полімери глюкози (целюлоза, геміцелюлози, крохмаль)	2,39±0,05	4,39±0,20	<	↑ 1,84
полісахариди в цілому	4,06±0,38	5,21±0,31	<	↑ 1,28
відношення целюлоза/пектини	0,38±0,03	2,44±0,26	<	↑ 6,42
ліпіди	2,11±0,3	1,07±0,17	>	↓ 1,97
протеїни	6,26±0,50	1,64±0,21	>	↓ 3,82
відношення бета-шари/альфа-спіралі	$1,07\pm0,01$	1,20±0,05	<	↑ 1,12
відношення симетричні коливання/несиметричні коливання, C-H зв'язок, кутин	0,80±0,01	1,19±0,05	<	↑ 1,49
відношення нуклеїнові кислоти/протеїни	0,13±0,01	0,12±0,03	відсутні	відсутні
відношення нуклеїнові кислоти/полісахариди клітинної стінки	0,24±0,02	0,04±0,00	>	↓ 6,00
відношення протеїни/полісахариди клітинної стінки	1,86±0,07	0,49±0,08	>	↓ 3,80

Деякі розрахункові біохімічні параметри, визначені на основі маркерних хімічних груп, у відносних одиницях площі піку на спектрограмі оптичної густини, M±SE

Пострадіаційне порушення метаболізму нуклеїнових кислот позначається на зниженні відношення «нуклеїнові кислоти/полісахариди клітинної стінки» через 30 діб після опромінення у 6 разів в порівнянні з неопроміненим контролем (табл. 3). Після гострого опромінення відбуваються також і зміни на рівні білкового обміну. Окрім зменшення у 3,8 рази вмісту білків у листках розетки A. thaliana, зафіксоване невелике збільшення відношення кількості бета-шарів до кількості альфа-спіральних доменів білків (табл. 3). Обидва типи доменів, очевидно, входять до складу тих самих протеїнів, оскільки площі відповідних піків спектру поглинання сильно корелюють між собою (r = 0,90-0,95). Проте у листках опроміненого варіанту коефіцієнт кореляції значуще зменшується і повністю зникає характерна для контролю негативна кореляція (r = -0,95-0,97) між вмістом нуклеїнових кислот «бета-шари/альфа-спіралі». Ми припускаємо радіаційну та відношенням індукцію конформаційних модифікацій вторинної та третинної структури білків, пов'язану як з протеолізом, так і з переходом певних доменів до просторової структури, характерної для беталистів. Останні дослідження вказують на можливість викликаної радіацією зміни фолдингу деяких протеїнів рослин, подібної до утворення бета-амілоїдів у тварин та дріжджів [7; 8]

Феноменологія виявлених ефектів значною мірою співпадає з гіперчутливою відповіддю, яка виникає у рослин внаслідок інвазії патогенів [14]. Проте особливість реакції рослин на радіацію полягає, по-перше, в тому, що вона не локальна, як у випадку гіперчутливості, а відразу зачіпає тканини цілих органів – розеткових листків, по-друге, описані вище біохімічні зміни розвиваються поступово, протягом тривалого часу після опромінення. Так само як стійкість до патогенів забезпечується гіперчутливістю клітин у зоні зараження, відносна висока радіостійкість рослин при опромінені в сублетальній дозі може бути пов'язана з аналогічною реакцією, що проявляється у модифікації метаболізму, гістологічних змінах та відмиранні

ISSN 2078-2357. Наук. зап. Терноп. нац. пед. ун-ту. Сер. Біол., 2018, № 2 (73) 161

клітин, тканин і органів. Показово, що транскрипційні фактори МУВ, задіяні у гіперчутливій відповіді, відграють важливу роль у стресовій регуляції метаболізму полісахаридів, целюлози, лігніну, пектину, ліпідів [4; 14; 15], тобто тих ланок обміну речовин, у яких спостерігали найбільші відмінності від контролю після опромінення. Білки МҮВ приймають участь у контролі фенілпропаноїдного шляху та цвітіння [5], процесах, які зазнають суттєвих змін під впливом іонізуючого опромінення. Показано, що накопичення деяких фенілпропаноїдів і флавоноїдів пов'язане із порушенням синтезу лігніну [17]. Крім того, трансгенні лінії арабідопису, які характеризуються підвищеним рівнем експресії стресового транскрипційного фактору R2R3-МҮВ, мають фенотип [6], дуже схожий на той, що ми спостерігали у опромінених рослин і рослин, отриманих з опроміненого насіння. Також при опроміненні рослин A. thaliana в дозі 21 Гр в клітинах розеткових листків експресія маркерних генів репарації дволанцюгових розривів ДНК AtRAD51 і AtKu70 сягає найвищого рівня в діапазоні нестимулюючих сублетальних доз [9]. Можна припустити, що реакція, подібна до реакції гіперчутливості, спрямована на елімінацію клітин з необоротно порушеною структурою та функцією ліпідних мембран, а також клітин, не здатних відновити цілісність геному, і завдяки цьому – на збереження життєздатності організму та генетичної повноцінності гамет і насіння.

Висновки

На основі аналізу FTIR-спектрограм ліофілізованих розеткових листків модельної рослини *A. thaliana* через 30 діб після опромінення рентгенівськими променями в дозі 21 Гр, яка знаходиться на межі інтервалів стимуляції та пригнічення життєдіяльності опромінених рослин, можна зробити висновок про значні зміни кількісного вмісту полісахаридів, нуклеїнових кислот і протеїнів, а також конформації макромолекул. Виявлені віддалені біохімічні зміни можуть бути зумовлені індукцією біохімічної відповіді рослинних клітин на стрес, викликаний іонізуючим опроміненням, що призводить до деградації нуклеїнових кислот, модифікації клітинної стінки, накопичення крохмалю, протеолізу та конформаційних перетворень білків.

- 1. *Васильев И.* Действие ионизирующих излучений на растения. Радиофизиологические исследования / Васильев И. М.: Издательство Академии наук СССР. 1962. С. 96—101.
- 2. Лешина Л. Влияние редкоионизирующего излучения на биохимический статус регенерантов Digitalis purpurea L. в культуре in vitro. / [Лешина Л., Булко О., Литвинов С. та iн.] // Фактори експериментальної еволюції організмів. Збірник наукових праць.- 2016. Т. 19. С. 151—156. http://nbuv.gov.ua/UJRN/feeo_2016_19_34
- 3. Шевченко В. Оценка по индукции флуоресценции хлорофилла функционального состояния растений сои и льна, выросших в течение нескольких поколений под действием хронического облучения в зоне Чернобыльской АЭС. / [Шевченко В., Данченко М., Бережна В. та ін.] // Тези доповідей VI з'їзду Радіобіологічного Товариства України. Київ. 2015. С. 134. http://icbge.org.ua/re/images/c/c6/VI_Congress_URS_2015_Abstract_BOOK_Plus.pdf
- 4. *Ambawat S.*, Sharma P., Yadav N.R., Yadav R.C. MYB transcription factor genes as regulators for plant responses: an overview. // Physiology and Molecular Biology of Plants. 2013. —19(3). pp. 307—321. doi: 10.1007/s12298-013-0179-1
- 5. *Colquhoun T.A.*, Schwieterman M.L., Wedde A.E. et al. EOBII Controls Flower Opening by Functioning as a General Transcriptomic Switch. // Plant Physiology. 2011. 156. pp. 974—984. doi: 10.1104/pp.111.176248
- 6. *Cominelli E.*, Sala T., Calvi D., Gusmaroli G., Tonelli C. Over-expression of the Arabidopsis AtMYB41 gene alters cell expansion and leaf surface permeability. // The Plant Journal. —2008. 53. pp. 53-64. doi: 10.1111/j.1365-313X.2007.03310.x
- Danchenko M., Klubicova K., Krivohizha M., Berezhna V., Sakada V., Hajduch M., Rashydov N. Systems biology is an efficient tool for investigation of low-dose chronic irradiation influence on plants in the Chernobyl zone. // Cytology and Genetics. —2016. — 50(6). — pp. 400-414. doi: 10.3103/S0095452716060050
- 8. *Gabrisova D.*, Klubicova K., Danchenko M., Gomory D., Berezhna V., Skultety L., Miernyk J., Rashydov N., Hajduch M. Do Cupins Have a Function Beyond Being Seed Storage Proteins? // Front. Plant Sci. 2016. 6. pp. 1-9. doi: 10.3389/fpls.2015.01215

- 9. *Litvinov S.*, Rashydov N. The transcriptional response of Arabidopsis thaliana L. AtKu70, AtRAD51 and AtRad1 genes to X-rays. // Journal of Agricultural Science and Technology A. 2017. 7 (1). P. 52-60. doi: 10.17265/2161-6256/2017.01.008
- 10. *Makhnii T.*, Ilchenko O., Reynt A., Pilgun Y., Kutsyk A., Krasnenkov D., Ivasyuk M., Kukharskyy V. Agerelated changes in FTIR and Raman spectra of human blood. // Ukr. J. Phys. 2016. 61 (10). pp. 853-862.http://nbuv.gov.ua/UJRN/Ukjourph_2016_61_10_3
- 11. *Mazurek S.*, Mucciolo A., Humbel B., Nawrath C. Transmission Fourier transform infrared microspectroscopy allows simultaneous assessment of cutin and cell-wall polysaccharides of Arabidopsis petals. // The Plant Journal. 2013. 74. pp. 880-891. doi: 10.1111/tpj.12164
- Movasaghi Z., Rehman S., Rehman I. Fourier Transform Infrared (FTIR) Spectroscopy of Biological Tissues. // Applied Spectroscopy Reviews. — 2008. — 43. — pp. 134-179. doi: 10.1080/05704920701551530
- 13. *Perromat A.*, Melin A.-M., Lorin C., Deleris G. Fourier Transform IR Spectroscopic Appraisal of Radiation Damage in Micrococcus luteus. // Biopolymers. 2003. 72. pp. 207-216. doi: 10.1002/bip.10381
- Raffaele S., Vailleau F., A. Léger et al. A MYB Transcription Factor Regulates Very-Long-Chain Fatty Acid Biosynthesis for Activation of the Hypersensitive Cell Death Response in Arabidopsis. // The Plant Cell. — 2008. — 20. — pp. 752—767. doi: 10.1105/tpc.107.054858
- 15. Roy S. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. // Plant signalyng & Behaviour. 2016. 11(1). pp. 1-7. doi: 10.1080/15592324.2015.1117723
- Schulz H., Baranska M. Identification and quantification of valuable plant substances by IR and Raman spectroscopy. // Vibrational Spectroscopy. — 2007. — 43. — pp. 13-25. doi: 10.1016/j.vibspec.2006.06.001
- 17. Vanholme R., Storme V., Vanholme B. et al. A Systems Biology View of Responses to Lignin Biosynthesis Perturbations in Arabidopsis. // The Plant Cell. 2012. 24. pp. 3506—3529. doi: 10.1105/tpc.112.102574
- 18. Wei Z., Dong L., Tian Z.H. Fourier transform infrared spectrometry study on early stage of cadmium stress in clover leaves. // Pak. J. Bot. 2009. 41(4). pp. 1743-1750. http://www.pakbs.org/pjbot/PDFs/41(4)/PJB41(4)1743.pdf
- Wilson R., Smith A., Kačuráková M., Saunders P., Wellner N., Waldorn K. The Mechanical Properties and Molecular Dynamics of Plant Cell Wall Polysaccharides Studied by Fourier-Transform Infrared Spectroscopy. // Plant Physiology. — 2000. — 124. — pp. 397-405. doi: 10.1104/pp.124.1.397
- 20. Xu F., Yu J., Tesso T., Dowell F., Wang D. Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. // Applied Energy. 2013. 104. pp. 801-809. doi: 10.1016/j.apenergy.2012.12.019
- Zhao X., Sheng F., Li X., Chen G. Fourier transform—infrared studies on the effects of salt and drought stress on the chemical composition and protein conformation changes in Arabidopsis leaves. // Sciences in Cold and Arid Regions. — 2009. — 1(4). — pp. 341-347. doi: 10.1104/pp.004325

С. В. Литвинов, М. В. Кривохижая, В. М. Кухарский, Н. М. Рашидов Институт клеточной биологии и генетической инженерии НАН Украины Институт геронтологии имени Д.Ф.Чеботарёва НАМН Украины

ИЗМЕНЕНИЯ НЕПИГМЕНТНЫХ СОЕДИНЕНИЙ В ЛИСТЬЯХ ОБЛУЧЁННЫХ РАСТЕНИЙ *ARABIDOPSIS THALIANA (L.) НЕУNH.*

Действие радиации на растения часто вызывает структурно-метаболические изменения, проявляющиеся через длительный промежуток времени после облучения. С целью изучения изменений в составе непигментних соединений ассимилирующего органа растений – листа использовали метод инфракрасной спектроскопии Фурье (FTIR). На основе анализа FTIR-спектрограмм лиофилизированных розеточных листьев модельного растения *Arabidopsis thaliana* через 30 суток после облучения рентгеновскими лучами в дозе 21 Гр можно сделать вывод о значительных изменениях содержания полисахаридов, нуклеиновых кислот и протеинов, а также конформации макромолекул. После облучения в листьях в разы снижалось содержание белков и нуклеиновых кислот, происходило замещение пектина и лигнина целлюлозой и гемицеллюлозой, накапливался крахмал. Изменялась композиция жирных кислот кутина. Также зафиксировано небольшое увеличение отношения количества бета-слоев к количеству альфа-спиральных доменов белков. Выявленные изменения могут быть

обусловлены индукцией биохимического ответа растительных клеток на стресс, вызванный ионизирующим облучением, что ведёт к деградации нуклеиновых кислот, модификации клеточной стенки, накоплению крахмала, протеолизу и конформационным превращениям белков.

Ключевые слова: рентгеновское излучение, инфракрасная спектроскопия Фурье (FTIR), индуцированные облучением биохимические изменения, гиперчувствительный ответ, клеточная стенка

S. V. Litvinov, M. V. Krivohizhaya, V. M. Kukharskyy, N. M. Rashydov
Institute of Cell Biology and Genetic Engineering NAS of Ukraine
D. F. Chebotarev State Institute of Gerontology NAMS of Ukraine
CHANGES IN THE NON-PIGMENTED COMPOUNDS IN LEAVES OF IRRADIATED

ARABIDOPSIS THALIANA (L.) HEYNH. PLANTS

The action of radiation on plants often causes structural and metabolic changes that occur over a long period of time after irradiation. In order to analyze changes in composition of non-pigment compounds of the plant assimilative organ, leaf, the Fourier-transform infrared spectroscopy (FTIR) was used. On the basis of the analysis of the FTIR spectrograms of the lyophilized rosette leaves of *Arabidopsis thaliana* 30 days after X-irradiation at dose 21 Gy it can be concluded that there are significant changes in the content of polysaccharides, nucleic acids and proteins. In particular, in the leaves of irradiated plants the content of proteins and nucleic acids was greatly reduced, pectin and lignin were replaced by cellulose and hemicellulose, starch was accumulated. The composition of fatty acids in the cutin in the leaves of irradiated plants has been undergo structural changes. Also, a slight increase in the ratio of the number of beta-sheets to the number of alpha-helix domains of proteins has been observed. The changes can be related to the induction of the biochemical response of plant cells to ionizing radiation, leading to the degradation of nucleic acids, modification of the cell wall, accumulation of starch, proteolysis and conformational changes in proteins.

Key words: X-radiation, Fourier-transform infrared spectroscopy (FTIR), radiation induced biochemical changes, hypersensitive response, cell wall

Рекомендує до друку В. В. Грубінко Надійшла 07.03.2018

УДК 633.8:661.718.1(477.84)

Ю. В. ЛЮТА, В. В. ГРУБІНКО

Тернопільський національний педагогічний університет імені Володимира Гнатюка вул. М. Кривоноса, 2, Тернопіль, 46027

НАКОПИЧЕННЯ ФОСФОРУ В ОРГАНІЗМІ NASTURTIUM OFFICINALE R. BR.

Поблизу р. Серет в межах м. Тернопіль ($49^{\circ}29'15''$ пн. ш., $25^{\circ}34'51''$ сх. д.) виявлено вегетування настурції звичайної (*Nasturtium officinale R. Br.*), яка має високу накопичувальну здатність щодо сполук фосфору. Найефективнішими з точки зору накопичення фосфору є коренево-стеблова частина рослини, що сприяє вилученню з екосистеми фосфорних сполук переважно з грунтового шару та з товщі води. Для практичного використання у покращенні екологічного стану водойм та зменшення їх евтрофікації шляхом вилучення сполук фосфору, зважаючи на швидкість наростання біомаси рослини у гідроценозі, швидкість та тривалість вегетації, *N. officinale* є перспективним фосфоремедіаційним видом.

Ключові слова: Nasturtium officinale R. Br., фосфор, накопичення, гідроекосистема

164 ISSN 2078-2357. Наук. зап. Терноп. нац. пед. ун-ту. Сер. Біол., 2018, № 2 (73)