© 2011 ІМФ (Інститут металофізики ім. Г. В. Курдюмова НАН України) Надруковано в Україні. Фотокопіювання дозволено тільки відповідно до ліцензії

PACS numbers: 07.79.Lh, 07.79.Pk, 68.37.Ps, 68.37.Rt, 75.47.De, 75.60.Ej, 81.07.Pr

Эффект магнитосопротивления в полимерной нанокомпозитной системе на основе ПЭ + Fe₃O₄

А. М. Магеррамов, М. А. Рамазанов^{*}, П. Б. Агакишиева^{*}, М. А. Нуриев^{**}

Бакинский государственный университет, ул. З. Халилова, 23, AZ1148 Баку, Азербайджанская Республика *Институт физики НАН Азербайджанской Республики, просп. Г. Джавида, 33, A31143 Баку, Азербайджанская Республика **Институт радиационных проблем НАН Азербайджанской Республики, ул. Ф. Агаева, 9, AZ1143 Баку, Азербайджанская Республика

Исследованы поверхности нанокомпозиции на основе $\Pi \ni + Fe_3O_4$ на атомносиловом и магнитно-силовом микроскопах. Показано, что с увеличением концентрации Fe_3O_4 растут размеры наночастиц и удельная намагниченность. Показано, что при низких значениях магнитного поля наблюдается насыщение, т.к. ферромагнитные наночастицы являются однодоменными, и под действием внешнего постоянного магнитного поля частицы легко ориентируются. Также исследовано изменение сопротивления нанокомпозиции $\Pi \ni + Fe_3O_4$ при периодическом изменении магнитного поля в интервале 0-1 кОэ со временем. Наблюдаемые изменения магнитосопротивления объясняются туннелированием носителей заряда, которое зависит от взаимной ориентации магнитных моментов наночастиц Fe_3O_4 .

Досліджено поверхні нанокомпозиції на основі $\Pi E + Fe_3O_4$ на атомовосиловому та магнетно-силовому мікроскопах. Показано, що зі збільшенням концентрації Fe_3O_4 ростуть розміри наночастинок і питома магнетованість. Показано, що при низьких значеннях магнетного поля спостерігається насиченість, тому що феромагнетні наночастинки є однодоменними, і під дією зовнішнього сталого магнетного поля частинки легко орієнтуються. Також досліджено зміну опору нанокомпозиції $\Pi E + Fe_3O_4$ при періодичній зміні магнетного поля в інтервалі 0-1 кОе з часом. Спостережувані зміни магнетоопору пояснюються тунелюванням носіїв заряду, яке залежить від взаємної орієнтації магнетних моментів наночастинок Fe_3O_4 .

Surfaces of nanocomposition based on the $PE+Fe_3O_4$ are investigated using atomic force and magnetic force microscopes. As shown, with increasing of

583

584 А. М. МАГЕРРАМОВ, М. А. РАМАЗАНОВ, П. Б. АГАКИШИЕВА, М. А. НУРИЕВ

 Fe_3O_4 content, the size of nanoparticles and the specific magnetization increase. As shown, the saturation is observed at low values of the magnetic field, as ferromagnetic nanoparticles are single-domain ones, and under the influence of an external constant magnetic field, the particles are easily oriented. The change in resistance of PE+Fe₃O₄ nanocomposition with periodic variation of the magnetic field within the range 0–1 kOe with time is also studied. The observed change in the magnetoresistance is explained by the tunnelling of charge carriers, which depends on the relative orientation of the magnetic moments of Fe₃O₄ nanoparticles.

Ключевые слова: нанокомпозиция ПЭ + Fe₃O₄, изменение магнитосопротивления, туннелирование носителей.

(Получено 18 ноября 2010 г.)

Особый интерес вызывают исследования нанокомпозитов на основе ферромагнитных металлов и оксидов, в которых наблюдается гигантское магнитосопротивления (ГМС) [1]. В работе [2] показано, что наблюдается большое положительное магнитосопротивления, проявляющееся после предварительной выдержки образца в магнитном поле и насыщающееся в значительно меньших полях. Также в работе [3] исследовано роль магнитострикции в проявлении эффекта гигантского магнетосопротивления в системе никель–полиариленфталид-медь и установлено, что появление ГМС на границе никель– полимер не соотносится с существенным изменением магнитострикционных деформаций, так как поперечная и продольная магнитострикции в плоскости подложки в интервале магнитных полей, провоцирующих переход, практически не изменяются. Отметим, что окончательно природа гигантского магнитосопротивления в полимерных нанокомпозитах окончательно (до сих пор) не выяснена.

Наночастицы Fe_3O_4 были получены следующим образом: соли $FeSO_4 \cdot 7H_2O$ и $FeCl_3 \cdot 3H_2O$ отдельно растворяли в воде, растворы объединяли в сосуде, перемешивали, постепенно добавляя 25% -ный раствор гидроокиси аммония. В результате в сосуде образовывался тонкодисперсный осадок Fe_3O_4 , и для ускорения седиментации в сосуд помещали постоянный магнит. Осветленный надосадочный раствор декантировали, и осадок промывали дистиллированной водой. К промытому осадку добавляли олеат калия и водный раствор додецилсульфата натрия при непрерывном перемешивании и нагревании до $50^{\circ}C$. Температуру реакционной смеси доводили до $95^{\circ}C$. Процесс пептизации выполняли в течение 30 мин. В результате выполненных процессов в растворе получены наночастицы Fe_3O_4 .

Полимерные магнитные нанокомпозиты получены следующим образом. В раствор ПЭ в диметилформамиде добавлялись наночастицы Fe₃O₄, и смесь перемешивалась при температуре 343 К до образова-

Рис. 1. АСМ-изображение поверхности нанокомпозиции ПЭ + Fe₃O₄ и размеры наночастиц Fe₃O₄: $a = \Pi$ Э + Fe₃O₄ БО 5 мл; $\delta = \Pi$ Э + Fe₃O₄ БО 10 мл; $s = \Pi$ Э + Fe₃O₄ БО 15 мл.

ния эмульсии. После добавления водного раствора выделялся ПЭ, содержащий Fe_3O_4 , который затем высушивался в вакуумном шкафу. Образцы нанокомпозитов были получены методом горячего прессования при температуре плавления полимерной матрицы под давлением 15 МПа в течение 10 мин. с дальнейшим охлаждением до комнатной температуры при различных скоростях. Размеры магнитных наночастиц изучено на атомно-силовом (АСМ) и магнитно-силовом (МСМ) микроскопе марки «Интегра Прима». На рисунке 1 представлены АСМ-изображение поверхности нанокомпозиции ПЭ + Fe_3O_4 и размеры наночастиц Fe_3O_4 в различных содержаниях.

АСМ-исследование показывает, что с увеличением концентрации Fe_3O_4 размеры наночастиц увеличиваются. Предполагается, что с увеличением содержания наночастицы Fe_3O_4 в полимерной матрице, увеличиваются размеры наночастицы Fe_3O_4 , т.е. увеличивается вероятность образования больших частиц.

На рисунке 2, *a*, *б* представлены зависимости удельной намагниченности нанокомпозиции ПЭ + Fe₃O₄ от магнитного поля. Установ-

Рис. 2. Зависимость удельной намагниченности от интенсивности магнитного поля для композиции $\Pi \Im + Fe_3O_4$: (a) $1 - \Pi \Im + 5\%$ масс. сод. Fe_3O_4 ; $2 - \Pi \Im + 10\%$ масс. сод. Fe_3O_4 ; $3 - \Pi \Im + 15\%$ масс. сод. Fe_3O_4 ; (б) $\Pi \Im + 20\%$ об. сод. Fe_3O_4 .

лено, что с увеличением концентрации Fe_3O_4 в полимерной матрице полиэтилена увеличивается удельная намагниченность. При низких значениях магнитного поля наблюдается насыщение, т.к. ферромагнитные наночастицы являются однодоменными и под действием внешнего постоянного магнитного поля частицы легко ориентируются. Это связано с тем, что направления осей легкого намагничивания в них распределены случайным образом. При достаточно малом размере наночастиц они являются однодоменными, направления их магнитного момента ориентируются внешним магнитным полем и стабилизируются действием магнитной анизотропии.

Из рисунка 2, б видно, что с ростом магнитного поля наблюдается увеличение удельной намагниченности и насыщение. При обратном уменьшении магнитного поля наблюдается остаточная намагниченность. При повторении цикла с изменением направления магнитного поля наблюдается петля гистерезиса. Известно, что важными магнитными характеристиками ферромагнитных материалов является коэрцитивная сила (H_c) и остаточная удельная намагниченность ($M_{\rm H}$). Из рисунка 2 видно, что с увеличением концентрации Fe₃O₄ в полимерной матрице увеличивается удельная намагниченность. Увеличение концентрации наночастицы Fe₃O₄ в полимерной матрице заблизиется и дельная намагниченность. Увеличение концентрации наночастицы Fe₃O₄ в полимерной матрице заблизи в свойств материала нанокомпозиции, т.е. нанокомпозиция проявляет ферромагнитные свойства. При достаточно малом размере частиц они являются од-

нодоменными, а направление их магнитного момента определяется «игрой» между ориентирующим действием внешнего магнитного поля и стабилизирующим действием магнитной анизотропии кристаллической или геометрической. Увеличение размеров частиц Fe_3O_4 приводит к изменению свойств нанокомпозиции, т.е. частицы Fe_3O_4 переходят в многодоменную структуру, в результате чего материал приобретает ферромагнитные свойства.

На рисунке 3 представлены MCM-изображение поверхности нанокомпозиции $\Pi \Im$ + Fe₃O₄ и магнитные размеры наночастиц Fe₃O₄ в различных содержаниях. ACM- и MCM-исследование показывает, что реальные геометрические размеры отличаются от магнитных размеров. Эти экспериментальные результаты хорошо согласуются

Рис. 3. МСМ-изображение поверхности нанокомпозиции $\Pi \Im + Fe_3O_4$ и размеры наночастиц $Fe_3O_4.$

Рис. 4. Магнитное сопротивление нанокомпозиции $\Pi \Im + Fe_3O_4$ при периодическом магнитном поле в интервале 0-1 кОэ со временем.

с теоретическим расчетом [4]. Экспериментально установлено, что коагуляция наночастицы Fe_3O_4 в полимерной матрице зависит не только от концентрации наночастицы магнетита, также зависит от надмолекулярной структуры полимера.

Исследовано периодическое изменение сопротивления нанокомпозиции $\Pi \ni + Fe_3O_4$ при отсутствии и присутствии магнитного поля. Установлено, что с увеличением размера наночастиц Fe_3O_4 магниторезистивный эффект для нанокомпозиции уменьшается. На рисунке 4 представлено периодическое изменение сопротивления со временем, когда при отсутствии магнитного поля (H = 0 кОэ) наблюдается спад сопротивления, а в присутствии магнитного поля (H = 1 кОэ) наблюдается рост значения магнитосопротивления.

Наблюдаемые изменения магнитосопротивления можно объяснить, учитывая роль ферромагнитных кластерных образований, состоящих из наночастиц в окружении суперпарамагнитных частиц Fe₃O₄. Взаимная ориентация магнитных моментов этих кластеров и суперпарамагнитных частиц, скорее всего, приводит к туннелированию носителей заряда и изменению сопротивления магнитной композиции.

Данная работа выполнена при финансовой поддержке гранта CRDF # AZE1-3113-BA-08.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

- 1. N. F. Mott and E. A. Davis, *Electron Processes in Non-Crystalline Materials* (Oxford: Clarendon Press: 1979).
- Б. А. Аранзон, А. Е. Варфоломоев, Д. Ю. Ковалев, А. А. Ликальтер, В. В. Рылков, М. А. Седова, *Физика твердого тела*, 41, вып. 6: 944 (1999).
- А. Н. Лачинов, Н. В. Воробьева, А. А. Лачинов, Письма в ЖТФ, 35, вып. 8: 7 (2009).
- 4. R. A. Alizade, M. A. Ramazanov, and R. Z. Sadykhov, *Functional Materials*, 16, No. 2: 183 (2009).