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SECURITY OF ENCRYPTED CLOUD DATABASE 

Existing cipher method provides either security or productivity, but not both of these parameters. Most of 
schemes even show the order of encrypted sequence, which allow the detractors to accurately evaluate clear. This 

work represents R̂  as the tree, hierarchical encrypted index, which can be reliably put into a cloud and effectively 
falsified. It is based on mechanism, developed for encrypted queries, using Аsymmetric scalar product preserving 
encryption (ASPE). 
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Introduction 

This article represents R̂ -tree, hierarchical en-
crypted index, which can be reliably put into a cloud 
and effectively falsified. It is based on mechanism, de-
veloped for encrypted queries of half-space range in 

dR , using Аsymmetric scalar product preserving en-
cryption (ASPE). Data owners can configure parameters 

of R̂ -tree to achieve required security and productivity. 
Also we represent experiments in performance assess-

ment of R̂ -tree. Our results show, that queries of R̂ -
trees are performed in encrypted databases and show 
much less information than competing methods. 

Problem state 

Term «cloud computing» is related to a wide range 
of services outsourced for storage and computing [1]. 
This model becomes more and more popular, because 
users have practically unlimited resources, but more 
significantly, they are exempt from the burden of man-
aging these resources. That is why large database out-
sourcing became a well-studied topic. 

However, this model has costs. Outsource data 
should be encrypted to preserve confidentiality and in-
tegrity, but encryption aggravates query execution. 
Standard encryption schemes, such as encryption units, 
do not directly support collation comparison, search and 
other manipulations, required for processing queries 
without loss of confidentiality. Therefore, new encryp-
tion schemes were proposed [2–5] to facilitate queries 
on encrypted data. 

Fig. 1. Scheme of the search model based on R̂ -tree 

Security and efficiency are important considera-
tions when developing such encryption schemes. Some 
schemes [2; 4] achieve productivity by detecting the 
relative order of the encrypted data points, but the de-
tractor can use information for data reorganization, us-
ing order statistics [6]. 

Query schemes based on predicate-based encryp-
tion (PRE) [4; 7–9] provide reliable protection for en-
cryption, but with high computational costs. The costs 
in these schemes significantly increase with the range of 
queries or required accuracy. 

Some leakage of data on the order is probably un-
avoidable, but the task is to minimize such leakage. For 
example, bouquet schemes [3] provide an exchange 
between ordering of the data leakage about the order 
and productivity.  

1. Research objective

Innovative method for performing encrypted queries 

of the half-space range in dR  by points, encrypted with 
ASPE. This mechanism can provide multifaceted re-
quests for encrypted data. Using this mechanism, we rep-

resent R̂ -tree, indexing scheme for encrypted and out-

sourced databases. R̂ -tree uses ASPE to encrypt query 

ranges. The data can be encrypted in any other way. R̂ -
tree is a hierarchical scheme of , but unlike the current 

bouquet schemes, encrypted indexes of R̂ -tree are stored 
and are fully requested in the cloud, but not on the site of 

database owner. R̂ -trees gives us an opportunity to trans-
fer data to data management more effective.  

2. ASPE Asymmetric encryption

In [10] Аsymmetric scalar product preserving en-
cryption (ASPE) for kNN queries execution in en-

crypted data points in dR  was proposed. Encryption 

uses (d 1) (d 1)    as a secret key M  invertible ma-

trix. Data and queries are encrypted in different ways, 
which is reflected in our notations. 
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 Point _ Enc P, M P   . This function accepts 

data point dP R  and )(d 1 1)(d    of key matrix M  

and outputs the encrypted text P   from P . Firstly it 

creates a point d 1P R 
  , when 

TP P 0.5( | ( ))P    2 T  is Euclidian norm P . En-

cryption P  is equal to TP M P . 

   1Query _ Enc Q,M Q  . This function takes

a request point dQ R  and 1M , inverse of the key 

matrix M . It produces  Q , encrypted text Q . Firstly it 

creates point d 1Q R 
  , that 

TP P 0.5( | ( ))P    2 T , where r  is a random posi-

tive number. Encrypted point   1Q M Q
 . 

 Dist _ Comp( P , P ' , Q ,1{0)     } . This function 

takes two encrypted data points P , P '    , encrypted 

query point  Q  returns 1, if P  is closer to Q , than P ' . 

It outputs a logic value  ( P P ' ) Q 0      . Now, 
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where P Q   is Euclidean distance between P  and 

Q . This expression is positive, if P  is closer to Q , than 

P ' . Request kNN identifies k  of the closest points by 
comparing the distance from the query point Q  to each 

database point P . 
2.1. Queries of the half-space range 
The half-space Range Queries of (hRQ) are a fun-

damental problem in computational geometry, as any 
search form for algebraical range can be transformed 

into it. If da R , 0a  and bR , then hyperplane 

H  is determined by the set dRx  that T ba x . H

splits dR  for inner half-space H , corresponding to 
T ba x  and external half-space H , corresponding to 
T ba x > . Each dSR  is splitted by H  into two dis-

joint subsets HS = S H   and HS = S H  .

Considering the set of points 1 2 nS P , P ,{ ...,P }  

and hyperplane H  in dR , a query of the half-range 

requests HS .

2.2. Order Statistics 
Order statistics is an important tool in nonparamet-

ric statistics [6]. Let 1 2 nX ,X ,...,X  be random variables 

with density and distribution functions  f x  and  F x

correspondently. Let iX  sorting, in order to get 

     1 2X X ... X n   . Now kX  is the statistics of k

order. It can be shown that the density function kX  is 

provided by the formula: 

       
k

k 1 n k
)X (x

n n 1
f f x F x 1

1 k 1
   

    
   


 


 F x  . (1) 

2.3. Review 
Now we will present our system and security 

model and provide the overview for R -tree. Our ap-
proach, in contrast to [10], uses index to speed up the 
queries. In addition, we separate the encryption of data 
points from query data and index. 

2.3.1. System model 
Our model recognizes two objects: the data owner 

and the provider of cloud services (fig. 2). The data 
owner places the encrypted data and the corresponding 
index of R -tree in cloud, which provides an infrastruc-
ture for computing and storage. The data owner creates 
and sends encrypted requests for ranges of interest to 
the cloud. The cloud performs encrypted queries in the 
index of R - tree and returns the query results to the data 
owner. 

Fig 2. R -tree and R̂ -tree 

The data owner creates R̂ -tree, first creating a 

regular R -tree for a given set of points dSR . Ranges 

MBR are encrypted using ASPE to get R̂ -tree. Parent-

child relationship in R̂ -tree is not encrypted. Although 
MBR ranges of R -tree are encrypted using ASPE for 
range requests support, data points in S  can be inde-
pendently encrypted with other encoding schemes, such 
as block encryption. d -dimensional range R  can be 
defined by its two extremal vertices. R -tree in fig. 2 
contains nodes with MBR 1 1 2( )R V , V , 

12 2R V( , V )  and 13R V( ,V )2 . Data set, containing 

in 2R  and 3R , represents 2S  and 3S  correspondently. 

MBR ranges in R̂ -trees are encrypted by applying 
ASPE to each extremal vertex, used to determine the 

range. As shown in fig. 2, correspondent R̂ -tree con-
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tains three nodes      1 1 2R V , V  ,

      2 4 2R V , V ,       3 1 3R V , V .

The data points inside each MBR leaf are en-
crypted using regular encryption scheme. Encrypted 

versions of  2S  and 3S   are 2S  and 3S . 

The data owner creates encrypted range requests 

and sends them to the cloud. The cloud searches R̂ -tree, 
performing intersection tests in stages, as in regular R -

e, and moves to child nodes only in case, when the 
bounding box of the node crosses the range of queries. 
The cloud thereby receives all the layers that cross the 
range of queries and returns the encrypted data points 
on these leafs to the data owner. 

tre

The cloud cannot query namely data points, be-
cause they are separately encrypted. 

R̂ -tree can enter false positives in the query re-
sults, but protects order information within each leafs 
MBR is a reasonable compromise. Exact query schemes 
[4; 8], which return exactly the set of encrypted tuples 
in the query range, can leak information over time. 
Given the sufficient results of the query range, the en-
emy can restore the ordering of tuples from the joins 
and intersections of these result clusters. 

2.3.2. Security Model 
We accept an "honest, but curious" model for our 

detractor, the cloud server. Its purpose is to study open 
texts for encrypted data.  It can contain some knowledge 
about the outsourcing dataset and try to use this knowl-
edge to get the values of points in the dataset. Other-
wise, it scrupulously monitors the protocol defined by 
the data owner, and returns the correct query results. 

ASPE, which we use to encrypt ranges of indexes 
and queries, is protected from known attacks with plain-
text [10]. However, the detractor can create more diffi-
cult attacks. For example, it can get some information 
about ordering encrypted data values when processing 
requests. The detractor may know the distribution of the 
plaintext values of all data points and the values of some 
data points. He will try to evaluate the values of other 
data points using this information. 

Let's start with assumption that the detractor knows 
the order of the encrypted data points. Some encryption 
schemes, such as [2; 4], clearly show this order. In other 
cases, it may be possible to derive this ordering from time 
to time from queries. It is also often possible to obtain 
data value distributions from either public sources or by 
examining other available and similar data sets. 

Using such knowledge of distributions and order-
ing, the opponent can use the order statistics methods to 
estimate the values of plaintext for encrypted tuples. For 
one-dimensional data, let's say that the enemy is study-
ing the values of plain text m  of i1 i2 imy y ... y    
data points. It uses these points as end points to obtain 

ranges m 1     i1 i2 im 1 imy , y ,..., y , y . It knows the

order of encrypted tuples in each range and can now get 
better estimates of the plaintext values of the encrypted 
tuples in each range using order statistics. For multi-
dimensional data, the enemy can perform the same at-
tack to better estimate the values of the encrypted tuples 
for each dimension. 

R̂ -trees do not disclose the full order of data 
points, but contain information on the leakage of infor-
mation on the ordering of leaf MBR. We will study the 

effectiveness of the attacks described above on R̂ -trees. 
2.3.3 Request of half-space range for encrypted 

data 
Requests in [10] ask, which encrypted data points 

in dR  is the closest to the specified encrypted request 

point. Their method converts each data point into a dR

to the point in d 1R , additional dimension, encoding 
the distance of a point from the origin. However, the 
request points are not required to transmit such distance 
information. Our approach to encrypted half-space que-
ries (EhQ) is dual to this method and must check which 
of the two query points is closer to the vertex in MBR of 

R̂ -tree. Therefore, the query points are embedded with 
the distance information in our scheme, whereas the 
points corresponding to the MBR vertices are not present. 

We construct queries on the half-space, as in fig. 3. 
For a hyperplane H  and the corresponding half-spaces 

H  and H  we choose reference points H    and 

H   , equidistant from H , such, that the segment 

( , )    is orthogonal to H . Each point on H  is now 

equidistant from   and 
 , but points in H  are

closer to  , and points in H  are closer to 
 . We

can check if the given point is located in V , H  or in 

H , proving, if V  is closer to   or to  , as in 
ASPE. 

2.3.4 Index search as the intersection of hyper-
intersections 

Search of R̂ -trees require to know, in order to de-
termine, if hyperrectangle intersects d -dimensional 

query hyperrectangle index in the node of R̂ -tree. We 
make the usual assumptions that the coordinate axis is 
orthogonal and that each face of the hyperrectangle is 
orthogonal to some axis. 

Fig. 3. Query of a half-space range 
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Our method is based on the observation that d -
dimensional hyperrectangle of Q  query can be defined 

as a space, enclosed by hyperplanes 1 2 2dH ,H ,..., H , 

determined by its 2d  borders. We accept the agreement 

that the scope of the request is defined in iH  for each

i . That is, the hyperplanes are so precise that the points 

of interest x  satisfy the condition T
i iba x . In these 

conditions we will have 1 2 2Q H H H     d . Fig. 4

shows a two-dimensional query box, specified by four 
half-space range queries, or eight anchor points. Half-

spaces iH  and iH  are defined by two reference points

i
  and i

 . Choose i
  randomly in i iH H  . i



will be its reflection in the hyperplane iH . We indicate 

each index of a hyper-rectangle dR  R  in the node of 

R̂ -tree with its two peaks, as shown in fig. 2. 
On the fig. 4 three cases of two-dimensional rec-

tangular intersections are shown. Clearly, we cannot test 
the intersection of rectangles simply by verifying 
whether one vertex is included in the other. Instead, we 
need to check if the vertices in the corresponding half-
spaces are defined by the faces of the query Q .

Fig. 4. Straight Rectangle ABCD 

3.3. Our scheme 
Our approach to EhQ work in the following way. 

In order to encrypt a request 1 2 2Q H H H     d ,

we create anchors i
  and i

  for each hyperplane iH .

Then we generate an encrypted discriminator 
iH  for

each iH . Using 
iH , by encryption we can determine,

if this encrypted point V is present in iH  or in iH .

3.3.1. Algorithms for encrypting the range of 
vertices and queries 

Our method uses the following algorithms. 

   Enc _ Vertex V, M V . The data owner uses 

this algorithm to encrypt the vertex V  of MBR node of 

R̂ -tree, using its secret key M , an invertible matrix 
)(d 1 1)(d   . 

(а) Case 1 (b) Case 2 (c) Сase 3 
Fig. 5. Three cases of intersection of rectangles 

At the set vertex  T
1 2 dV v , v ,..., v   the algo-

rithm first adds an additional dimension, in order to cre-

ate  TTV V 1|  . V  is encrypted to   1
1V r M V

 , 

where 1r  is a random positive number. 

i iGen _ Anchor H) ( , )(     . This algorithm 

takes a given hyperplane H , defined by parameters a

and b  and outputs reference points i
  and i

 , lo-

cated on H  and H  correspondently. It randomly 

chooses point i H H     and calculates   as re-

flected in H  in the following way. If   and   are 

vectors, representing   and   correspondently, we 

require, their vector difference    was orthogonal 

to H . From linear algebra we know that vector a  or-

thogonal to H . Let T b   a . We have 

T b   a , T ( )  2   a . As we know a  and 

 , we can get 
2

2

|| ||

  
    a

a
. 

H(Gen _ Discr , )     . This algorithm re-

ceives reference points T
1 2 d( , .. ),. ,         and 

T
1 2 d( , ,..., )       , corresponding hyperplanes 

H , and outputs discriminator H . First, it adds infor-

mation about the distance to the reference points to get 
T(( ) | ( 0.5 || || ))  

     2 T and

T(( ) | ( 0.5 || || ))  
     2 T . Further 

  and 


are encrypted using M  as TM 
     and 

TM 
    . Finally, the algorithm chooses a random 

positive value 2r  and generates an encrypted discrimi-

nator H 2r ( )        .

3.3.2. Halfspace range queries in encrypted 
MBR vertices 

The cloud performs an encrypted half-space range 
query in the encrypted MBR vertices using the follow-
ing algorithms. 
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  HHalfspace _ Qry V , V   H . This function

takes a set of encrypted vertices MBR [V]  and hyper-

plane discriminator H  and shows a dataset 

HV V H   . 

It works by calling the following function to test 
each point in [V] . 

HIn _ Halfspace([V], ) 1}{0,  . The function ac-

cepts encrypted point [V] , discriminator H  and out-

puts a bit indicating whether V H  calcu-

lates H [V]  . As 

H 1 2

T T T 1
1 2

T
1 2

2 2
1 2

[V] r r ( ) [V]

r r ((M ) (M ) M V

r r ( ) V

r r (|| V || || V || ) V,

 

  
 

 
  

 
 

      

   

   

 



 



  T







H [V] 0   , if V  is located in H Function outputs 1, 

if 

 . 

V   located in is H nd 0 otherwise.  a
3.3.3 Intersection of a hyperrectangle 
We show how to determine the intersections be-

tween encrypted d -dimensional query and hyper-
rectangles of the index based on queries of the halfspace 
range. We require that each surface of the hyper-
rectangle is orthogonal to the coordinate axis. That is, 
each face is a hyperplane 

i 1 i 1 i i 1 dH x ,..., x ,c , x ,... x( ),  , where ic  is constant, 

but ix  are not limited. This restriction is necessary, 

since intersection tests using half-space queries may not 
work on common polyhedra, as we shall see. 

Hyperrectangle index dR  R  now it is com-

pletely determined by its extreme vertices dV ,V R  ,

defined as follows. If 1 2 dV v , v ,( ..., v )  is the vertex 

R , then we define  1 dV min v ,..., min{ } { }v  ,

 1 dV max v ,..., max{ } { }v , where min  and max

are taken over all the vertices V  from R . 
However, the hyper-rectangle of the query is given 

in terms of half-spaces defined by its faces, since 

1 2 2Q H H H    d
 . 

The hyperrectangle of the index is encrypted as 

follows.    Enc _ Index R, M R . Taking into ac-

count hyperrectangle of index V(R V ,  )  and key 

matrix M  this algorithm outputs encryption R  as 

   ([ ])R V , V  , V Enc _ Vertex V[ ] ( , M )  and

V Enc _ Vertex V[ ] ,( M  ) . 

 Enc _ Query Q, M Q . This algorithm takes a 

key matrix M  and the query area Q , given as the inter-

section of half-spaces 1 2 2dH H H    . For

each iH  it firstly invokes  iGen _ Anchor H , in order

to get i
  and i

 . Then it gets 
iH , invoking

i iGen _ Discr ( , )   . It returns the area of encrypted 

request 
2 21 dH H HQ = ( , , )...,     .

([Xsect _ Index R] ) {,Q 0,1} . This function ac-

cepts hyperrectangles of encrypted query and index. It 
outputs logic value, indicating, whether the hyperrec-
tangles intersect. If both V  and V  are defined as 

lying outside iH  for some iH , otherwise algorithm

returns 0 and 1 (look Algorithm 1). 
Algorithm 1. Xsect _ Index

input:    ([ ])R V , V  , 
1 2H HQ = ( ,..., )   

d

output: {0,1}  

1 for each 
1H Q    do 

2 if not 
1HIn _ Halfspace([V ], )  , and not

1HIn _ Halfspace([V ], )  

then 
return 0 
4 end 
5 end 
6 return 1 

3.3.4. Polyhedral query domains 
Our scheme can handle arbitrary convex polyhe-

dral query areas, but can introduce false positives. The 
two cases shown in fig. 6, cannot be distin-
guished.

(а) No intersection  (b) Intersection 
Fig. 6. Half-space queries using a polyhedral domain 

Both cases return the same results if we run half-
space queries for vertices of the hyper-rectangle index, 

using iH , defining the region of triangular queries.

However, our scheme is safe for convex polyhedral do-
mains of the query, since it does not introduce false ne-
gations in accordance with Theorem 1. 

Theorem 1. Xsect _ Index R ,([ ] )Q   runs 0, if the 

convex domain of a polyhedral query Q  and the range 

of indices R  do not intersect. 
Proof. R  is defined by the formula 

 1V min v ,..., min{ } { }v  d and

 1V max v ,..., max{ } { }v d , its extreme vertices. If in

http://www.hups.mil.gov.ua/periodic-app/journal/nitps/2018/2
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1HIn _ Halfspace([V ], )  and

 
1HIn _ Halfspace([V ], )  development 0 for a half-

space query 
1H Q   , then neither V  nor V  are 

not located in H . Since V  and V  have, correspon-

dently, the smallest and largest projection along the axis 

i , then any d2 -vertices in R  cannot be in H . It is 
clear, that Q  and R  do not intersect. 

3.3.5. Construction and query of R̂ -tree 

Tree R̂  can be considered as R -tree, which MBR 
are encrypted, but the relationship of parents and chil-
dren - not. Its data points are encrypted separately. 

These encrypted data points, encrypted indexes of R̂ -
tree and the parent-child relationship are placed to the 
cloud. We check the overlap between encrypted query 
ranges and encrypted MBR trees using a new mecha-
nism Encrypted Half-space Query (EhQ). 

Our approach EhQ is safe and effective and can be 
used for search under the encryption of other complex 
data structures, such as BNL-trees and kD -trees. We 

decided to set up our index of R̂ -tree on R -tree, be-
cause family of R -trees has more lower information 
lack, then bouquet schemes, k -tools, BNL-tree, kD -
tree and etc., as shown in [3]. 

R̂ -tree constructed as in the algorithm 2. Let S  

and S  denote encrypted versions of the data set. For 
MBR leaf let SR means data points falling into R , and 

RS  denote encrypted texts RS . Let T  and T̂  denote

R -tree and correspondent R̂ -tree correspondently. Let 
PC  indicates a set of parent-child relations in T . 

The following function, developed in Algorithm 3, 

finds all the leaves of a tree R̂ , which intersect the 
specified range request. 

 ˆtree _ Qry Q,ˆ R T  L  This function accepts

the input query Q   of encrypted range of R̂ -tree T . 

Its output is a set of encrypted L  leafs, which MBR 
intersect Q  . 

3.4. Security analysis 
Our analysis shows that outsourcing schemes that 

eliminate the simple order of encryption of tuples can-
not provide reliable guarantees of confidentiality. Such 
information about the order often allows the enemy to 
accurately estimate the values of encrypted tuples. Let's 
start with the security analysis of the scheme used to 
encrypt the hypersurfaces of the index and the query in 

R̂ -trees. Then we compare the confidentiality guaran-
tees provided by our scheme to those provided by com-
peting schemes, especially when the enemy was able to 
detect partial information about the values of encrypted 
tuples. 

Algorithm 2. Construction of R̂ -tree 

input: T , M

output: T̂  

1 ˆ T =  
2 PC =  stack =  
3 node = T .root 
4 if node  NULL then 

5 stack.Push(node)   

6 end 
7 else 
8 return   
9 end 
10 while stack  do 

11 node stack.Pop()

// node.R  denotes node 's MBR   
11 [R Enc _ Index node. )] ( R, M ) 

12, if node has children then 
13 for each child do 
14 Save the parent-child relationship to PC  
15 end 
16 end 
17 if node is not a leaf then 
18 for each child do 

19  stack.Push child  

20 end 

23 // Generate a node for T̂  
22 onode={[R]}  

24 else 

25 Encrypt data points in RS  to obtain RS

26 Ronode={[ ], }SR 

27 end 

28 Add onode  to T̂  
29 end 

30 Add PC  to T̂  

31 return T̂  

Algorithm 3. R̂ -tree Qry 

Input: Q  , T̂  

1 L =

2 stack =

3 ˆnode ot.ro T  

4 if Xsect _ Index node R ,( .[ ] Q )  then

 stack.Push node

6 end 
7 else 
8 return   
9 end 
10 while stack  do 
11 node stac )k.Pop(  ) 
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Algorithm 2. Construction of R̂ -tree 
input: T , M  

output: T̂  

1 
ˆ T=

2 PC =  stack  
3 node root. T  
4 if node  NULL then 

5 stack.Push(node)   

6 end 
7 else 
8 return   
9 end 
10 while stack  do 

11 node stack.Pop()

// node.R  denotes node 's MBR   
11 [ [R Enc _ Index node. )] ( R, M ) 

12, if node has children then 
13 for each child do 
14 Save the parent-child relationship to PC  
15 end 
16 end 
17 if node is not a leaf then 
18 for each child do 

19  stack.Push child  

20 end 

23 // Generate a node for T̂  
22 onode={[R]}  

24 else 

25 Encrypt data points in RS  to obtain RS

26 Ronode={[ ], }SR 

27 end 

28 Add onode  to T̂  
29 end 

30 Add PC  to T̂  

31 return T̂  

Algorithm 3. R̂ -tree Qry 

Input: Q  , T̂  

1 L =

2 stack

3 ˆnode ot.ro T  

4 if Xsect _ Index node R ,( .[ ] Q )  then

 stack.Push node

6 end 
7 else 
8 return   
9 end 
10 while stack  do 
11 node stac )k.Pop( ) 

12 if node is a leaf  then 

13 nodeL = L  
14 end 
15 else 
16 for each node’s child do 
17 if Xsect _ Index child R ,( .[ ] Q )  then 

18 stack.Push(child)

19 end 
20 end 
21 end 
22 end 
23 return L

Table 1 
Encrypted database schemas. N  - number of tuples, C  – 
bouquet size. (Maximum overheads logN  [2; 4] can be 

achieved only for one-dimensional data) 

Scheme Query Overhead Reveals Order?

Bucketization [3] High: O(N / C) No.

Order preserving [2] Low: logN Yes.

Predicate encryption [4] Low: logN Yes.

3.4.1. Encryption Security 
We encrypt the hyper-rectangles of the index and 

the query using ASPE, which was proven to be safe for 
open-text attacks in [10]. Our schema stores the ASPE 
security properties, because it extends ASPE, but does 
not change the basic approach to encryption in [10]. 
Artificial dimensions and random asymmetric splitting 
still work in our scheme. 

3.4.2. Comparison with competing schemes 
We show how information about the order can be 

used by the enemy to output plaintext values using order 
statistics. As shown in tabl. 1, the operating schemes 
provide either efficiency or privacy protection, but not 
both. In this respect, bouquet scheme from [3] protects 
information about the order, but suffers because of the 
high overhead of the request. It also requires the data 
owner to manage the bouquet indexes. Otherwise, [2; 4] 
allow efficient queries, but display information about 

the order on the encrypted tuples. R̂ -tree can perform 
very efficient queries, hiding the order of data points in 
each MBR sheet. 

For several reasons, we will not make a detailed 
comparison of our scheme with the bouquet scheme [3]. 
At first, [3] is not a true out-sourcing scheme, since the 
index is stored on the data owner's site, and not in the 
cloud. It also requires that all requests be made by the 
data owner, and this means significant requirements. 
Finally, the index search takes time O(N / C) , which is 

linear in the size of the database, if we keep the size of 
the bouquet constant. These overheads are excessive 
compared to competing schemes. 

Therefore, we compare the stability of our scheme 
with the ability of schemes in [2; 4]. This is a suitable 
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comparison, because R̂ -tree achieves the same com-
plexity of queries as these schemes. We will show that 
our scheme has much better stability, the advantage it 
has against any scheme that does not hide the ordering 
of tuples. 

3.4.3. Attack Model 
Let OA  denotes the detractor in schemes that re-

veal information for ordering, and let R̂A  denote the 

detractor in our scheme. Ranges of leaf indices of R̂ -
tree are the limiting fields for clusters of encrypted data 
points. The nodes of a higher level are additional clus-
ters of bounding blocks. R̂A  cannot see the ranges of 

indexes in any of the nodes R̂ , because they are en-
crypted using ASPE. Nevertheless, R̂A  is able to study 

the ordering of all MBR leaf from a sufficient number 
of query results. R̂A  can selectively take a half-space 

discriminator 
iH  from received requests for the forma-

tion of new requests. But these requests can help him to 
get a list of MBR. The order of location of data points 
within each leaf MBR is still safe. 

The aim R̂A  is to output the values of the en-

crypted data points belonging to the node j  of list. 

R̂A  can examine the values of plain text of some en-

crypted data points. Assume, that R̂A  knows the lower 

and upper limits of the range in j , and he also knows 

the distribution of the values of points. 
To compare our schema with methods such as [2; 

4], which show the order of the encrypted points, we 
assume that OA  also tries to output the values of the 

encrypted data points in j . OA  knows the relative 

order of all data points, the lower and upper limits of the 
range in j  and distribution of points values. 

3.4.4. Optimal evaluation criterion of the de-
tractor 

The goal of detractor is to deduce the values of the 
encrypted tuples. With this aim it will use a statistical 
evaluation, which effectiveness should be measured in 
terms of shown error. We will use wide Mean Square 
Estimation Error (MSEE), also used in [3], which is 
working as follows. For simplicity, we consider one-
dimensional case. 

It is often necessary to estimate the value of a ran-
dom variable Y , which is inaccessible, in terms of 
g(X)  function, available random variable X . In our 

case Y  is the plain text of the tuple. The detractor se-
lects a suitable random variable X . MSEE is deter-

mined as 2Y g([( ]X))E . The simplest choice for the 

detractor is g(X) c , a constant. We find the value 

minc , which minimizes MSEE as follows. Starting from 

2 2

c c
min [(Y c) min{ [Y ] 2c (Y) c ,] }    E E E 2

we differentiate along c  and establish in 0, get 

minc [Y] E . MSEE now is 2[(Y [Y]) Var(Y) E E .

Therefore, the optimal estimate for Y  is [Y]E , which 

reaches the minimum value of MSEE Var(Y) . 

Therefore, considering the encrypted tuple iy  with 

open text iy , taken from the distribution, modelling by 

a random variable Y , the best estimation, which the 
detractor can make for iy , is equal to [Y]E , achieving 

MSEE Var(Y) . 

3.4.5. Attacks on installation with information 
about the order and without it 

Given the continuous range s e[R y , y ] , contain-

ing | R | , encrypted tuples 21 |y , y ,..., y(    |R ) , both detrac-

tors OA  and R̂A  try to show the meanings of open text 

s ey , y  encrypted tuples in R . We assume that both OA  

and R̂A  know the meaning of plaintext s ey , y  from 

two endpoints of the range R . Let the random variable 
Y  corresponds to the same distribution as the plaintext 
values of all encrypted tuples having a density function 
f (y} . Besides, OA  knows how distribution f (y}  of 

open texts iy , as well as the order of encrypted sets iy . 

R̂A  know distribution f (y} , but not the order of en-

crypted tuples iy . 

3.4.5.1. Attack R̂A  (order is unknown) 

Let the random variable RY  coincides with the 

same distribution as the values of the plaintext of en-
crypted tuples in R . Using the distribution f (y) , R̂A  

finds distribution 
RYf (y)  for RY . In p. 3.4.4. we have

seen, that the best estimation R̂A  for any iy R  - 

R[ ]YE . 

3.4.5.2. Attack OA  (the order is known) 
OA  can do much better, as it knows the order iy . 

OA  first finds 
RYf (y) . Let random variable (k)|RY (y)

represents the value of plaintext k  of The smallest set 
in the range R , having distribution (k)|Rf (y) . OA  gets 

(k)|Rf (y) , using 
RYf (y)  and equation (1). Let (k)y

mean k  the smallest set in R . As in p. 3.4.4, the best 
estimation of OA  for (k)y  open text (k)y  is (k)|RY[ ]E . 

3.4.6. Metrics   of absolute estimation error 

Let R̂A  and OA  evaluate the true value of plain-

text iy  for encrypted tuple iy R , as R̂
iy  and O

iy

correspondently. Define the Absolute estimation Error 
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for R̂A as 
i

R̂
iiy | y y |   R̂  and for OA  -

i i
O O

iy | y y |   . If (k)y  the smallest set in R , define

R̂
(k) (k) R| Yy |[  E ]  and O

(k) (k) (k)R| y Y[ |]  E .

Conclusions 

This work represents R̂ -tree - hierarchical en-
crypted index, which can provide safe and effective 

bandwidth requests over encrypted data. R̂ -tree hides 
the order of internal MBR-files for privacy protection. 
Our theory and empirical analysis show that revealing 

order is dangerous for external data, and R̂ -tree has 
much better stability than the scheme without informa-

tion protection ordering. Also the system, realizing R̂ -
tree, having good capacity is developed. 
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БЕЗПЕКА ЗАШИФРОВАНИХ БАЗ ДАНИХ В ХМАРІ 

Сальман Рашид Уайд 

Існуючі методи шифрування забезпечують або безпеку, або ефективність. Так, багато схем навіть розкривають 
порядок зашифрованих кортежів, що дозволяє досить точно оцінювати значення відкритого тексту. Для усунення цьо-
го недоліку в роботі представлено дерево (ієрархічний зашифрований індекс), який може бути надійно поміщений в 
хмару і ефективно спотворений. Ієрархічний зашифрований індекс заснований на механізмі, який був розроблений для 
зашифрованих запитів з використанням методу шифрування Аsymmetric scalar product preserving encryption (ASPE). 

Ключові слова: шифрування запитів, шифрування баз даних, хмарні обчислення, ієрархічний індекс. 

БЕЗОПАСНОСТЬ ЗАШИФРОВАННЫХ БАЗ ДАННЫХ В ОБЛАКЕ 

Сальман Рашид Уайд 

Существующие методы шифрования обеспечивают либо безопасность, либо эффективность. Так, многие схемы 
даже раскрывают порядок зашифрованных кортежей, что позволяет достаточно точно оценивать значения откры-
того текста. Для устранения этого недостатка в работе представлено дерево (иерархический зашифрованный ин-
декс), который может быть надежно помещен в облако и эффективно искажен. Иерархический зашифрованный ин-
декс основан на механизме, который был разработан для зашифрованных запросов с использованием метода шифрова-
ния Аsymmetric scalar product preserving encryption (ASPE). 

Ключевые слова: шифрование запросов, шифрование баз данных, облачные вычисления, иерархический индекс. 
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