УДК 621.746:669.2.8

А.П. Уманский¹, М.С. Стороженко¹, А.У. Стельмах², А.Д.Костенко¹

¹Институт проблем материаловедения им. И.М. Францевича НАН Украины ²Национальный авиационный университет

ФОРМИРОВАНИЕ СТРУКТУРНО-ФАЗОВОГО СОСТАВА КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ СИСТЕМЫ TiB₂—(Fe–13 мас.% Мо)

Для исследования влияния соотношения тугоплавкой и металлической фаз на закономерности структурообразования композиционных материалов системы TiB_2 —(Fe–I3мас.% Mo) в работе методом спекания в вакууме получали образцы с 20, 40, 60, 80 мас.% (Fe–I3мас.% Mo). Структура разработанных композиционных материалов состоит из зерен диборида титана, включений сложных боридов Mo_2FeB_2 и твердого раствора на основе железа. Композиционные материалы с 20-40 мас.% металлической фазы характеризуются каркасной структурой. С увеличением содержания металлической фазы в материале до 60 – 80% происходит изменение структуры от каркасного до матричного типа. Выявлено, что структура композиционных материалов с 40 и 60 мас.% металлической фазы обеспечивает высокую износостойкость в условиях трения скольжения без смазки.

Ключевые слова: диборид титана, железо, молибден, композиционный материал, структура, износостойкость. **Форм. 1. Рис. 3. Лит. 8**

О.П. Уманський¹, М.С. Стороженко¹, О.У. Стельмах², О.Д. Костенко¹

¹Інститут проблем матеріалознавства ім. І.М. Францевича НАН України ²Національний авіаційний університет

ФОРМУВАННЯ СТРУКТУРНО-ФАЗОВОГО СКЛАДУ КОМПОЗИЦІЙНИХ МАТЕРІАЛІВ СИСТЕМИ ТіВ $_2$ –(Fe-13 мас.% Мо)

Для дослідження впливу співвідношення тугоплавкої та металевої фаз на особливості формування структури композиційних матеріалів системи TiB_2 -(Fe-13мас.% Mo) в роботі методом спікання в вакуумі отримували зразки з 20, 40, 60, 80 мас.% (Fe-13мас.% Mo). Структура композиційних матеріалів складається з зерен дибориду титану, включень складних боридів Mo_2FeB_2 і твердого розчину на основі заліза. Композиційні матеріали, які містять 20-40 мас.% (Fe-13мас.% Mo) характеризуються каркасною структурою. Зі збільшенням вмісту кількості металевої фази в матеріалі до 60 — 80 мас.% формується матрична структура. Виявлено, що структура композиційних матеріалів з 40 и 60 мас.% металевої фази забезпечує високу зносостійкість в умовах тертя ковзання без мастила.

Ключові слова: диборид титану, залізо, молібден, композиційний матеріал, структура, зносостійкість. **Форм. 1. Рис. 3. Літ. 8**

O.P. Umanskyi¹, M.S. Storozhenko¹, O.U. Stelmach², O.D. Kostenko¹

¹Frantsevych Institute for Problems of Materials Science, National Academy of Science of Ukraine ²National Aviation University

STRUCTURE FORMATION OF TiB₂–(Fe–13 wt.% M₀) COMPOSITE MATERIALS

In order to investigate the effect of refractory compound and metal phase content on the structure of composite materials of TiB_2 —(Fe-13mac.% Mo) system the samples with 20, 40, 60, 80 wt.% of metal phase were sintered in vacuum. The structure of composite materials includes titanium diboride grains, complex boride grains Mo_2FeB_2 and iron-based solid solution. The composite materials with 20-40 wt.% of metal phase have heterogeneous carcass structure. The increase of metal phase content up to 80% leads to the formation of matrix structure. The structure of composite materials with 40 and 60 wt.% of metal phase provides high wear-resistance under dry sliding friction due to the realization of mechanical-chemical wear mechanism.

Key words: titanium diboride, iron, molybdenum, composite material, structure, wear-resistance.

Постановка проблемы. В области упрочняющих технологий большое внимание уделяется разработке новых металлокерамических материалов на основе тугоплавких соединений для нанесения износостойких покрытий, способных работать в условиях высоких механических нагрузок и скоростей. В промышленности широкое применение получили композиционные материалы на основе карбида вольфрама, которые обладают высокой износостойкостью и прочностью. Однако материалы на основе карбида вольфрама имеют и ряд недостатков: низкая стойкость против окисления при высоких температурах, большой удельный вес, а также дефицитность и дороговизна вольфрама.

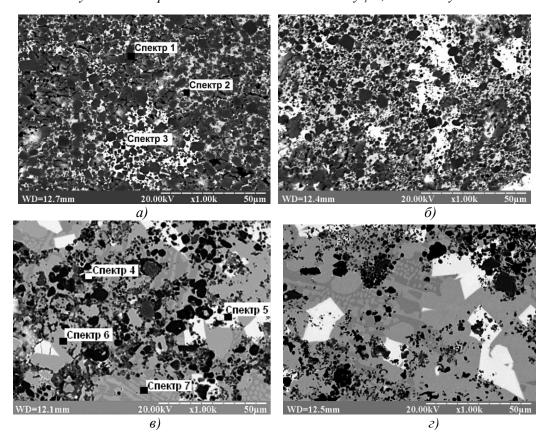
Поэтому в настоящее время существует необходимость в разработке новых недефицитных износостойких композиционных материалов и покрытий для экстремальных условий эксплуатации. В качестве износостойкой составляющей таких материалов перспективными являются тугоплавкие соединения титана: карбид, борид, нитрид, и др., которые характеризуются высоким уровнем физико-химических и механических свойств [1]. В качестве металлической

составляющей для композиционных материалов целесообразно использовать пластичные сплавы на основе железа, никеля, меди [2].

В Институте проблем материаловедения им. И.М. Францевича НАН Украины были разработаны материалы системы TiB_2 —(Fe—Mo). В результате исследования закономерностей смачивания и контактного взаимодействия в системах TiB_2 —Fe/(Fe—Mo), установлено, что в качестве металлической связки для новых композиционных материалов на основе диборида титана целесообразно использовать сплав Fe—13мас.%Мо [3-6]. Система TiB_2 —(Fe—13мас.%Мо) характеризуется нулевыми углами смачивания, а в процессе взаимодействия между тугоплавкой и металлической фазами образуются сложные бориды молибдена и железа.

На формирование структуры и на износостойкость композиционных материалов на основе тугоплавких соединений титана влияет не только фазовый состав исходных материалов, но и соотношение количества тугоплавкой и пластичной металлической фазы.

Цель статьи: исследование влияния соотношения тугоплавкой и металлической фаз на особенности формирования структуры композиционных материалов системы TiB₂—(Fe–13мас.%Mo).


Методики и материалы. Для проведения исследований получали образцы композиционных материалов системы TiB_2 —(Fe–13мас.%Mo) с 20, 40, 60, 80 мас. % металлической фазы: $Tb\Phi M20$, $Tb\Phi M40$, $Tb\Phi M60$, $Tb\Phi M80$. Исходными материалами для получения композиционных материалов служили порошки диборида титана (TY 6-09-03-7-75), железа (FOCT 9879-74) и молибдена (FOCT 5909-79) производства Донецкого завода химреактивов. Размол и смешивание исходных порошков в заданных пропорциях проводили в планетарной мельнице САНД при соотношении массы порошка и шаров 1:3 в течении 4 часов. Полученную шихту брикетировали на прессе, а затем спекали в вакуумной печи СВШ при температуре 1570 °C.

Микротвердость определяли на приборе ПМТ-3 путем вдавливания алмазной пирамиды в полированную поверхность шлифа при нагрузке 0,5 Н. Триботехнические испытания проводили на машине трения МТ-68 [7] по схеме вал-вкладыш при нагрузке 2 МПа и скорости 4 м/с в паре с контртелом из закаленной стали 65Γ .

Структуру композитных материалов и поверхностей трения исследовали на электронном микроскопе PEM-106 и JEOL-9500FS.

Результаты эксперимента и их обсуждение. Структура композиционного материала ТБФМ20 на основе диборида титана с 20% металлической связки Fe−13мас.%Мо состоит из черных зерен диборида титана размером 5 − 10 мкм (рис.1а, табл. 1, спектр 1), между которыми распределена металлическая связка на основе железа (рис.1а, табл. 1, спектр 2). В сплаве на основе железа содержится до 2 мас.% молибдена и титана. В структуре композиционного материала также были обнаружены локальные включения фазы белого цвета, которые содержат молибден (64.6%), железо (21.2%), бор (10.2%) и титан (4.2%) (рис.1а, табл.1, спектр 3). Микротвердость таких включений составляет 20 − 21 ГПа, а размер достигает 30−50 мкм. По химическому составу и микротвердости данная фаза была идентифицирована как сложный борид Мо₂FeВ₂, легированный титаном [8]. Следует отметить неоднородность структуры композиционного материала ТБФМ20: в структуре присутствуют конгломераты зерен диборида титана, между которыми отсутствует металлическая связка.

Структура композиционных материалов ТБФМ с 40 мас. % металлической связки Fe-13 мас.% Мо подобна структуре композита ТБФМ20, однако характеризуется более равномерным распределением компонентов (Рис. 1б). При увеличении содержания металлической фазы в композиционном материале ТБФМ до 60-80 мас. % происходит формирование гетерофазной структуры матричного типа: в металлической матрице на основе железа распределены включения упрочняющих фаз (Рис. 1в-г). Размер черных зерен диборида титана (Рис 1в, табл..1, спектр 4) составляет 6-10 мкм, что соответствует их исходному размеру. Включения белого цвета по химическому составу соответствуют сложным боридам Mo_2FeB_2 (рис.1, табл. 1, спектр 5). В структуре ТБФМ60 и ТБФМ80 имеют правильную форму, их размер составляет 10-15 мкм, микротвердость -20-22 ГПа. Следует также отметить, что в структуре композиционных материалов ТБФМ60 и ТБФМ80 включения сложных боридов Mo_2FeB_2 размещены более равномерно по сравнению с композитами ТБФМ20 и ТБФМ40. В результате образования сложных боридов Mo_2FeB_2 происходит уменьшение содержания молибдена в связке с 13 мас.% (исходный сплав) до 1,5 мас.% (табл 1). В металлической матрице композиционных материалов ТБФМ60 и

Puc. 1. - Структура композиционных материалов системы TiB_2 -(Fe-13мас.%Мо): а- $TБ\Phi M20$; б – $TБ\Phi M40$; в – $TБ\Phi M60$; г – $TБ\Phi M-80$.

Таблица. 1. Микрорентгеноспектральный анализ структуры композиционных материалов системы TiB_2 —(Fe–13% (мас.) Мо)

Рисунок	Номер	Концентрация элементов, % (мас.)				
,	спектра	Ti	Fe	Mo	В	Фаза
Рис. 1 а	1	63,8	0,7	0,0	35,5	TiB ₂
	2	0,4	96,4	1,2	0,0	Твердый раствор
						на основе Fe
	3	4,2	21,2	64,4	10,2	Mo_2FeB_2
Рис. 1 в	4	69,7	0,9	0,0	29,4	TiB ₂
	5	6,9	20,1	62,5	10,5	Mo_2FeB_2
	6	1,4	97,1	1,5	0,0	эвтектика Fe-Fe ₂ B
	7	2	86,4	1,2	10,4	

ТБФМ80 было выявлено формирование эвтектики Fe-Fe₂B (Рис.1 в-г, табл.1, спектры 6, 7). Микротвердость металлической фазы составляет 4–6 $\Gamma\Pi a$.

Принимая во внимание ранее полученные данные [4-5], а также результаты исследований структуры композиционных материалов $T\bar{b}\Phi M$ с различным соотношением тугоплавкой и металлической фаз можно предположить, что в процессе спекания происходит частичное растворение зерен диборида титана и взаимодействие между компонентами системы TiB_2 -(Fe-13мас.%Mo) в результате которого образуются сложные бориды Mo_2FeB_2 . С увеличением количества металлической фазы в композиционном материале до увеличивается и содержание молибдена, что способствует более интенсивному образования боридов Mo_2FeB_2 . Сложные бориды Mo_2FeB_2 характеризуются высокой твердостью (20-22 $\Gamma\Pi a$) и поэтому будут способствовать увеличению износостойкости композиционного материала.

Результаты триботехнических испытаний разработанных композиционных материалов в условиях терния скольжения без смазки в паре со сталью 65Г представлены на рис. 2.

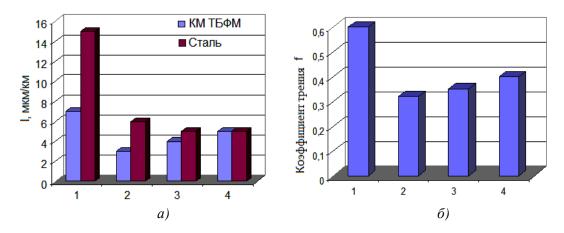


Рис. 2. - Триботехнические свойства пар трения ТБФМ/сталь в условиях трения скольжения без смазки: а – износ; б – коэффициент трения; 1- ТБФМ20; 2 – ТБФМ40; 3 – ТБФМ60; 4 – ТБФМ80

Среди разработанных материалов самым высоким уровнем износа I=6,5мкм/км характеризуется композиционный материал ТБФМ20. При этом происходит катастрофический износ стального контртела. Можно предложить, что в результате недостаточного количества металлической связки в структуре композиционного материала ТБФМ20 в процессе трения происходит выкрашивание отдельных зерен диборида титана, которые действуют как абразив по отношению к сопряженным поверхностям.

Композиционный материал ТБФМ40 обладает самой высокой износостойкостью и самым низким коэффициентом трения среди разработанных материалов. Композиционный материал ТБФМ60 характеризуется несколько большим значением износа (I = 2.6 мкм/км) по сравнению с композитом ТБФМ40 (I = 3.8 мкм/км). Однако, износ стального контртела, работающего в паре с ТБФМ40 выше (I = 5.7 мкм/км) по сравнению с износом контртела в паре с ТБФМ60 (I = 4.5 мкм/км). Потому суммарный износ пары трения ТБФМ40/сталь и ТБФМ60/сталь примерно одинаковый. Дорожки трения ТБФМ40 и ТБФМ60 характеризуются равномерной структурой без заметных признаков адгезионного взаимодействия, хрупкого и абразивного разрушения, наблюдаются лишь линии направленной пластической деформации (рис. 3a). Методом микрорентгеноспектрального анализа было выявлено формирование на поверхностях трения композиционных материалов ТБФМ40 и ТБФМ60 сложных оксидных пленок на основе оксидов титана, железа, молибдена. Принимая во внимание результаты триботехнических испытаний можно предположить, что формирование таких оксидных пленок в процессе трения предотвращает адгезионное схватывание сопряженных поверхностей. По сравнению с ТБФМ60 в структуре композиционного материала ТБФМ40 больше включений твердых боридов, которые, с одной стороны воспринимают основную нагрузку в процессе трения, а с другой способствуют образованию оксидных пленок, что и обеспечивает более высокую износостойкость. Однако, за счет большей разности в твердости происходит более интенсивный износ стального контртела в паре ТБФМ40/сталь по сравнению с парой ТБФМ60/сталь.

С увеличением количества металлической фазы до 80 мас. % износ композиционного материала и контртела возрастает: износ композита ТБФМ80 и контртела составляет I=4.5 мкм/км. На дорожках трения композиционного материала можно выделить два характерных типа участков. Один из них - зона повреждаемости, которая образуется за счет адгезионого схватывания металлической составляющей с материалом стального контртела, что приводит к вырывам материала и значительного повреждения поверхности трения (Рис. 3 в, участок 1). Вторая зона характеризуется образованием полос скольжения с формированием на поверхности сложных оксидных пленок из оксидов титана, железа и молибдена (Рис. 3 в, участок 2).

Таким образом, среди разработанных композиционных материалов высокой износостойкостью характеризуются композиты ТБФМ40 и ТБФМ60, которые предварительно могут быть рекомендованы для использования в условиях трения скольжения без смазки. Дальнейшие исследования разработанных материалов ТБФМ40 и ТБФМ60 будут направлены на более детальное исследование износостойкости и механизмов изнашивания в широком интервале нагрузок и скоростей.



Рис. 3.- Поверхности трения композиционных материалов системы TiB_2 -(Fe-13мас.%Mo): а — $TБ\Phi M40$; б — $TБ\Phi M60$; в — $TБ\Phi M860$

Выводы. В работе проведены исследования особенностей формирования композиционных материалов системы TiB_2 -(Fe-13%мас.Mo). Установлено, что структура композиционных материалов с различным содержанием тугоплавкой и металлической фаз состоит из зерен диборида титана, твердого раствора на основе железа и включений сложных боридов Mo_2FeB_2 , которые формируются в результате взаимодействия между компонентами системы TiB_2 -(Fe-13%мас.Mo) в процессе высокотемпературного спекания.

В условиях трения скольжения без смазки композиционные материалы ТБФМ40 и ТБФМ60 характеризуются высокой износостойкостью, что обеспечивается оптимальным соотношением металлической и упрочняющей фаз. В процессе трения зерна диборида титана и сложных боридов Mo_2FeB_2 воспринимают основную нагрузку и способствуют формированию на поверхности трения оксидных пленок, которые защищают сопряженные поверхности от схватывания.

- 1.Самсонов Г.В. Тугоплавкие соединения / Г.В. Самсонов, И.М. Винницкий М.: Металлургия, 1976. 557 с.
- 2. Самсонов Г. В. Сплавы на основе тугоплавких соединений / Г. В. Самсонов, К.И. Портной М.: Обронгиз, 1961. 304 с.
- 3.Патент України №78156, МПК С22С 29/14. Композиційний зносостійкий матеріал на основі дибориду титану / Уманський О.П., Акопян В.В., Стороженко М.С., Закієв І.М., Костенко О.Д.; Заявл. 03.09.2012; опубл. 11.03.2013, Бюл.№5, 2013.
- 4. Уманский А.П. Дослідження контактної взаємодії TiB_2 з сплавами Fe-Mo / А. П. Уманский, М. С. Стороженко, В. В. Акопян // Адгезия расплавов и пайка материалов 2011. Вып. 44. C.38—45.
- 5.Panasyuk A. Development of TiB₂-based cermets with Fe-Mo binder / A. Panasyuk, O. Umanskyi, M. Storozhenko, V. Akopyan // Key Engineering Materials. 2013. Vol. 527. P. 9–13.
- 6. Стороженко М. С. Влияние добавок молибдена на формирование структуры сплавов Fe-Мо и закономерности контактного взаимодействия в системах TiB_2 -(Fe-Mo) / М. С. Стороженко // Порошковая металлургия 2016 №9/10 C 141_{-} 151
- 7. Комплекс машин и методика определения антифрикционных свойств при трении скольжения / Э.Т. Мамыкин., А.И. Юга // Порошковая металлургия. 1973. №1. С. 67-72.
- 8. Yu H. Microstructure and mechanical properties of liquid phase sintered Mo_2FeB_2 based cermets / H. Yu, W. Liu, Y. Zheng // Mater. Design. -2011. Ne 6. P. 3521-3525.

Рецензенты:

Тамаргазин А.А., зав.кафедры технологий аэропортов НАУ, д.т.н., проф. **Коновал В.В.**, с.н.с., Институт проблем материаловедения НАН Украины, к.т.н., с.н.с.

Стаття надійшла до редакції 26.04.2017