Литература

1. Clabaugh W.S., Swiggard E.M., Gilchrist R. // J. Res. Natl. Bur. Std. — 1956. — 56, №.5. — P. 289-291. 2. Рагуля А.В., Васылькив О.О., Скороход В.В. // Порошк. металлургия. — 1997. — № 3/4. — C. 59–65. 3. Xu J., Tsutai S., Hayashi S., Nakagawa Z. // J.Ceram.Soc.Japan. — 1999. — 107, №.1241. — P. 27–30. 4. Погибко В.М., Приседский В.В., Сидак И.Л. // Вопросы химии и хим.технологии. — 2010. — № 1. — C. 110–115. 5. Gallagher P.K., Schrey F. // J. Amer. Ceram. Soc. — 1963.— 46. — №.12. — P. 567–573. 6. Potdar H.S., Deshpande S.B., Deshpande A.S. et al. // Intern. J. Inorg. Mater. - 2001. -№. 3. — P. 613–623. 7. Ischenko V., Pippel E., Köferstein R et al. // Solid State Sciences. — 2007. — No.9. — P. 21–26. 8. Sairman Patra B., Otta S., Bhattamisra S.D. // Termochimica Acta. — 2006. — 441. — P. 84–88. 9. Kohlam Y.B., Potdar H.S., Deshparde S.B., Gaikwad A.B. // Mat. Chem. Physics. - 2006. — № 97. — P. 295–300. 10. Kongtaweeler S., Sincler D.C., Panichphant S. // Current Appl. Phys. — 2006. — № 6. — P. 474–477. 11. Tkach A., Vilarinho P.M., Kholkin A. L. // J.Appl.Phys.Letters. — 2005. — № 86. — P. 1729-1732. 12. Jeon Jae-Ho. // J. Europ. Ceram. Soc. — 2004. — № 24. — P. 1045–1048. 13. Лучинский Г.П. Химия титана. — М.: Химия, 1971. — 472 с. 14. Погибко В.М., Приседский В.В., Сидак И.Л., Верещак В.Г. // Наукові праці ДонНТУ. Серія: Хімія і хімічна технологія. — 2010. – Вып.162 (14). — С.48–52. 15. Gavilan E., Audebrand N., Jeanneau E. // Solid State Sci. — 2007. — № 9. — P. 985–999. 16. Приседский В.В., Гусакова Л.Г., Климов В.В. // Изв. АН СССР, Сер. Неорган. материалы. — 1974. — Вып. 10. — № 12. — С.2166–2172. 17. Гусакова Л.Г., Приседский В.В., Климов В.В.// Ж.неорган.химии. — 1981. — Вып. 26, № 9. — C. 2335–2340. 18. Реми Г. Курс неорганической химии. — М.: ИЛ, 1963. — Т. 1. — 313 с. © Приседский В.В., Погибко В.М., 2011 Надійшла до редколегії 24.02.2011

УДК 541.64:542.62:546.23

Н.В. Щебетовская (Донбасская национальная академия строительства и архитектуры)

ПОСТРОЕНИЕ ДИАГРАММ СОСТОЯНИЯ РЕЗОРЦИН – ГИДРОХИНОН И ПИРОКАТЕХИН – ГИДРОХИНОН МЕТОДАМИ ТЕРМИЧЕСКОГО АНАЛИЗА

В работе методами термического анализа построены диаграммы состояния резорцин – гидрохинон и пирокатехин – гидрохинон. Определены минимальные температуры начала кристаллизации. Установлена закономерность изменения предкристаллизационных переохлаждений в этих системах по мере изменения концентрации компонентов. Результаты трактуются с точки зрения молекулярного и кристаллического строения смесей в системах резорцин – гидрохинон и пирокатехин – гидрохинон.

РОЗДІЛ 1

Ключевые слова: резорцин, пирокатехин, гидрохинон, кристаллизация, переохлаждение, диаграмма состояния, термический анализ.

Ввиду отсутствия в литературе сведений о бинарных системах двухатомных фенолов резорцин — гидрохинон, пирокатехин — гидрохинон была поставлена задача построения подобных диаграмм в части, охватывающих плавление и кристаллизацию, методами термического анализа. Подобные исследования были нами проведены ранее при изучении смесей в системе резорцин — пирокатехин [1].

Были исследованы следующие бинарные сплавы: в системе резорцин (P)_{100-x} – гидрохинон (Г)_x, где x = 0 (образец I — чистый резорцин P), 5 (II), 10 (III), 20 (IV), 30 (V), 33 (VI), 40 (VII), 50 (VIII), 60 (IX), 70 (X), 80 (XI), 85 (XII), 90 (XIII), 100 вес.% Г (XIV — чистый гидрохинон Г), в системе пирокатехин (П)_{100-х} — гидрохинон (Г)_x, где x = 0 (I), 10 (II), 20 (III), 30 (IV), 33 (V), 40 (VI), 50 (VII), 60 (VIII), 70 (IX), 80 (X), 90 (XI), 100 вес.% Г (XII). Сплавы готовили путем предварительного диспергирования компонентов, их смешения, сплавления и тщательного перемешивания. Образцы помещались в кварцевые сосудики Степанова диаметром 13, высотой 15 мм и толщиной стенок 1,5 мм. Масса всех образцов была одинаковой и составляла 0,45 г. Массы отдельных компонентов взвешивали на электронных весах ВЛКТ-500г-М.

Основными методами исследования были метод обычного термического анализа (TA) в координатах температура T — время τ и дифференциальнотермического анализа (ДТА). Термоциклирование проводили в специально изготовленной печи сопротивления со скоростями нагревания и охлаждения в пределах 0,08-0,10 К/с. Приведенные скорости и массы, как было показано в работах [2-3],являются наиболее удобными для изучения ΔT^{-} , поскольку их предкристаллизационных переохлаждений средние значения достаточно устойчивы и практически не зависят от скоростей охлаждения от 0,001 до 10 К/с, от массы (от 0,1 до нескольких грамм), от величины прогрева ΔT^+ жидкой фазы относительно T_L (от 10 до 60 градусов) и от времени изотермической выдержки расплава в течение нескольких часов. Температуру измеряли с помощью хромель-алюмелевой термопары толщиной 0,2 мм, спай которой был погружен в образец. Погрешность измерения температуры составляла 0,5 К. Термограммы записывали на диаграммную ленту потенциометра КСП-4. Кроме того, температуру контролировали электронным вольтметром В7-38. Достоверность результатов подтверждалась воспроизводимости на основании ИΧ при большом количестве последовательных термоциклов (до 20 на каждом образце) и совпадением (температур плавления резорцина, реперных точек пирокатехина И гидрохинона) со справочными данными.

На основании кривых ТА и ДТА найдены значения температур ликвидус T_L и солидус T_S с разбросом ±1,0÷2,0 К, а также средние минимальные температуры $\langle T_{min} \rangle$ в области переохлаждения на момент начала кристаллизации и энтальпии плавления ΔH_L . В качестве примера на рис. 1 приведены кривые нагревания пирокатехина (*a*), сплава 70% П+30% Г (*б*) и гидрохинона (*в*), на которых видны плато с характерными эндо- эффектами.

ΗΕΟΡΓΑΗΙΥΗΑ ΧΙΜΙЯ

Рис. 1. Термограммы плавления пирокатехина (а), сплава 70% П+30% Г (б) и гидрохинона (в), полученные методом ТА. Температуры даны в градусах Кельвина.

На рис. 2 и 3 приведены ДТА-граммы нагревания и охлаждения некоторых образцов в системах пирокатехин – гидрохинон и резорцин – гидрохинон, характеризующие эндо- и экзотермические эффекты плавления и кристаллизации.

Экспериментальные данные по температурам солидус T_S , ликвидус T_L и минимальным температурам T_{min} начала

кристаллизации в области переохлаждений для изученных систем сведены в таблицу 1 и 2.

Рис. 2. Экспериментальные ДТАграммы, характеризующие плавление и кристаллизацию смесей в системе пирокатехин-гидрохинон

Рис. 3. Экспериментальные ДТАграммы, характеризующие плавление и кристаллизацию смесей в системе резорцин – гидрохинон

Таблица 1. Экспериментальные данные по температурам солидус T_s , ликвидус T_L и минимальным температурам T_{min} в области переохлаждения в системе резорцин – гидрохинон

№ образцов	Состав сплавов	Т _S , К	<i>Т_L</i> , К	$\left< \mathcal{T}_{min} ight angle$, К
I	Резорцин (Р)	383	383	323
II	95%P + 5%Г	362 – 364	376 – 378	333
	90%P + 10%Г	361 – 365	375 – 376	333
IV	80%P + 20%F	363 – 365	367 – 368	334
V	70%P + 30%F	365 – 366	367 – 368	345
VI (э)	67%P + 33%Г	362 – 345	363 - 365	346
VII	60%P + 40%Г	363 – 366	368 – 370	368
VIII	50%P + 50%F	363 - 364	382 – 383	382
IX	40%P + 60%F	361 – 363	402 - 403	402
Х	30%P + 70%Г	365 – 366	418 – 420	418
XI	20%P + 80%Г	364 – 365	425 – 429	425
XII	15%P + 85%Г	363 - 364	433 – 435	430
XIII	10%P + 90%Г	362 - 364	437 – 440	432
XIV	Гидрохинон (Г)	447	447	439

Таблица 2. Экспериментальные данные по температурам солидус *T_s*, ликвидус *T_L* и минимальным температурам в системе пирокатехин - гидрохинон

№ образцов	Состав сплавов	<i>Т_s</i> , <i>К</i>	<i>Т</i> _{<i>L</i>} , <i>К</i>	$\langle T_{\min} \rangle, K$
I	Пирокатехин (П)	378	378	348
II	90%П + 10%Г	358-360	372-374	347
	80%Π + 20%Γ	359-361	365-367	348
IV (э)	70%П + 30%Г	357-359	359-361	347
V	60%П + 40%Г	358-361	377-379	378
VI	50%N + 50%F	360-361	399-401	399
VII	40%П + 60%Г	358-359	417-419	417
VIII	30%П + 70%Г	359-361	422-423	421
IX	20%П + 80%Г	360-362	432-433	430
Х	10%П + 90%Г	358-360	438-439	433
XI	Гидрохинон (Г)	447	447	438

Статистическая обработка полученных результатов позволила построить интерполяционные кривые зависимости температур ликвидус от состава $T_t = f(x)$:

– в системе резорцин - гидрохинон для доэвтектических (*x* ≤ 0,33) и заэвтектических (*x* ≥ 0,33) сплавов эта зависимость имеет следующий вид

$$T_{L} = \begin{cases} 382,726 - 1,03664x + 0,0152086x^{2}, x \le 0,33, & R^{2} = 0,972679, SSE = 7,34467 \\ 296,903 + 2,10921x - 0,00597893x^{2}, x \ge 0,33, & R^{2} = 0,990996, SSE = 69,4362 \end{cases},$$

в системе пирокатехин – гидрохинон для доэвтектических (*x* ≤ 0,3) и заэвтектических (*x* ≥ 0,3) сплавов

$$T_{L} = \begin{cases} 378,15 - 0,535x - 0,0025x^{2}, \ x \le 0,3, \\ 282,881 + 2,9869x - 0,0136905x^{2}, \ x \ge 0,3, \\ R^{2} = 0,99759, \ SSE = 7,34467 \end{cases}$$

По температурам T_s и T_L построены диаграммы состояния резорцин – гидрохинон и пирокатехин – гидрохинон в области плавления и кристаллизации (рис. 4 и 5).

Как видно из этих рисунков, диаграммы состояния резорцин (P) – гидрохинон (Г) и пирокатехин (П) – гидрохинон (Г) являются диаграммами эвтектического типа: для первой системы эвтектика приходится на состав 67% P+33%Г при температуре T_3 =363 K, а во второй — 70% П+30%Г, при T_3 =360 K.

Причина образования диаграмм состояния эвтектического типа в системах резорцин – гидрохинон и пирокатехин – гидрохинон, по-видимому, заключается в том, что индивидуальные диоксибензолы имеют разные кристаллические модификации при высоких температурах: ромбический резорцин и ромбоэдрический гидрохинон, моноклинный пирокатехин и ромбоэдрический гидрохинон.

Кроме того, относительно слабые дипольные моменты молекул гидрохинона $C_6H_4(OH)_2$ -1,4 с гидроксилами *OH* в *пара*- положении не позволяют образовывать нуклеофильные водородные связи с молекулами резорцина $C_6H_4(OH)_2$ -1,3 с гидроксилами *OH* в *мета*- положении в системе резорцин – гидрохинон и пирокатехина $C_6H_4(OH)_2$ -1,2 с гидроксилами *OH* в *орто*-положении в системе пирокатехин – гидрохинон. Данное обстоятельство может способствовать «свободе выбора» своих молекул при кристаллизации смесей ниже температуры ликвидус: в доэвтектической области — пирокатехина, в заэвтектической области — гидрохинона. По-видимому, подобная же ситуация имеет место и в системе резорцин – гидрохинон со смесью молекул *м*-диоксибензола $C_6H_4(OH)_2$ -1,3 с молекулами *п*-диоксибензола $C_6H_4(OH)_2$ -1,4.

Работа выполнена по госбюджетной тематике по линии Министерства образования и науки Украины в области фундаментальных исследований

Литература

1. Александров В.Д. Построение диаграммы состояния резорцин – пирокатехин методами термического анализа / В.Д. Александров, В.А. Постников, Н.В. Щебетовская // Наукові праці Донецького національного технічного університету. Серія: Хімія і хімічна технологія. — 2010. — Вип. 15(163). — С. 92–98.

2. Александров В.Д. Исследование переохлаждений при кристаллизации пирокатехина и резорцина / В.Д. Александров, В.А. Постников // Наукові праці Донецького національного технічного університету. Серія: Хімія і хімічна технологія. — 2004. — Вип. 77. — С. 7–12.

3. Уэндландт У. Термические методы анализа / У. Уэндландт. — М.: Химия, 1981. — 519 с.

© Щебетовская Н.В., 2011

Надійшла до редколегії 10.11.2010

УДК 546.26-162:66.094.3:661.669

Е.С. Папаянина, М.В. Савоськин, А.Н. Вдовиченко, М.Ю. Родыгин, И.Е. Носырев (ИнФОУ им. Л.М. Литвиненко НАН Украины), Ю.Е. Черныш, И.Г. Бородкина, Г.С. Бородкин (НИИФОХ ЮФУ РАН)

ПРЕВРАЩЕНИЯ ОКСИДА ГРАФИТА ПОД ДЕЙСТВИЕМ УЛЬТРАЗВУКА В ВОДНОЙ СРЕДЕ

Установлено влияние ультразвука на химический и гранулометрический состав оксида графита. Определены размеры частиц различных фракций оксида графита и установлен их химический состав. Действием ультразвука на оксида графита получен ковалентный гидроксид графита С₃ОН.