
Наукові праці ДонНТУ ISSN 1996-1588
Серія "Інформатика, кібернетика та обчислювальна техніка" випуск 13(185), 2011

UDC 004.3
D.S.Tyanev

Technical University of Varna, Bulgaria
dstyanev@yahoo.com

Non-Linear Asynchronous Micro-Pipelines

The paper considers structural problems in synthesis of micro-pipelines which implement
algorithms with conditional jumps. These structures require pre-definition of the term “micro-
pipeline”. As a result there are defined, analyzed and described four new scientific tasks
necessary for solving this common problem. The paper presents the decision of only one of the
tasks – synthesis of micro-pipeline that controls section generating value of the transition
condition, as well as the connection of this section with initial stage automates into both
branches. The complete logical synthesis is explained and as a result logical structures of
pipeline controllers are obtained in two variants: for 2-phase transfer protocol controller and
for 4-phase data transfer protocol.
Key words: Micro-pipelines, Branches, Data Transfer Protocols

Introduction

The paper considers the structure of
presented on Figure 1 model algorithm, which is
implemented and whose execution has a pipeline
organization. It is assumed that this algorithm is
detailed and its realizable blocks are implemented
through the methods, discussed in [8], [9], [10], [12]
and others. Each realizable block from the block-
diagram is a particular micro-pipeline stage (one- or
multi-cycle) according to definitions in [11] and [13].
It means that each realizable block can be considered
as a multi-cycle stage in terms of the possible
operations when interpreting the algorithm. Our
understanding is that each multi-cycle stage can have
more complicated internal structure similar to the
presented, composed of random micro-pipeline
stages. As a control methods for micro-pipeline
stages can be considered either synchronous or
asynchronous methods, as well as any combination of
them.

 Begin

End

CJ1

CJ2

1

1 0

0

1

2

3

4

5

6

7

8

9

10

11

12

Fig. 1. Exemplary algorithmic structure

 As it is seen, presented algorithm contains few linear
sections, but generally can be defined as branch,
despite the above considerations. Both branch
conditions CJ (conditional jump) form the possible
computational paths as follows:
1. Begin; 1; 2; 3 (CJ1=true); 4; 5; 6 (CJ2=true); 7; 8;

9; 10; 11; 12; End .
2. Begin; 1; 2; 3 (CJ1=true); 4; 5; 6 (CJ2=false); 7; 8;

9; 10; 11; 12; End .
3. Begin; 1; 2; 3 (CJ1=false); 4; 5; 6; 7; 8; 9; 12; End

.

where 1,2,3,... denote number of the stages execution
is crossing.

Assuming that every Begin-End path is
unique, the corresponding micro-pipeline stages into
the parallel branches are located at one and the same
serial level of the micro-pipeline, which are 12 in this
case. At levels from 4 to 9, where are several micro-
pipeline stages, at the moment of every single
execution works only the stage included into current
algorithmic branch.

Term “micro-pipeline”

 The problem for hardware implementation
of algorithm with conditional jumps requires new
understanding of the term “micro-pipeline”, which
will be described.

 With pipeline organization, data links
between pipeline registers are managed by pipeline
controllers. It means that switching of each controller
at level with branches depends on the value of
corresponding condition for transition. As micro-
pipeline extension, after level producing condition for
transition, the implementation of the both algorithmic
branches is required. So the term micro-pipeline is
formally broken because is broken common
understanding of sequential order of the micro-
pipeline stages. But in presented case the physical
presence of all possible computational branches

25

Наукові праці ДонНТУ ISSN 1996-1588
Серія "Інформатика, кібернетика та обчислювальна техніка" випуск 13(185), 2011

Begin-End is inevitable and is a result from
community property of every algorithm. Despite of
the number of possible computational branches for
certain problem, each path is unique as sequential
passes through consecutive activated micro-pipeline
stages and in this meaning these stages create a chain,
which corresponds to the term micro-pipeline.
Therefore, the presence of different implemented
parallel branches does not contradict to the general
understanding about micro-pipeline and each similar
structure can be defined as micro-pipeline. In other
words, it can be assumed that the structure consists of
several pipelines with united common parts in way to
have one beginning and one end.

New aspects

 Micro-pipeline implementation of such type
common algorithmic structures meets new and
versatile problem – computational process control in
alternative conditions. Problem’s analysis presents
few new and unresolved aspects. Analysis and
definition of these new aspects, related to the general
formulation accepted, we assume as an independent
result from our research.

1. At first place, the obvious aspect of the problem
is the synthesis of pipeline controller at the point of
conditional jump. This controller differs significantly
from the ordinary linear state machine because it
must choose one of the two algorithmic branches.
This aspect is inevitable connected with the next. All
of the new aspects are related with design of pipeline
controllers at specific points of the common
algorithmic structures.

 Original pipeline controllers managing the
transfer between one- and multi-cycle and mixed
types of micro-pipeline stages we consider in [11],
[13] and others. The common part between them is
that these controllers with all their variety support
only linear micro-pipelines, exactly as most of the
considered in public structures, starting with
fundamental [14]. Implementation of micro-pipeline
stage with conditional jump we have discussed in [8],
where is presented the problem’s analysis and are
proposed two variants of its realization. They
coincide in the fact that value of the logical condition
CJ is used to control data bus in order to direct the
results to the current branch, implementing particular
algorithmic path Begin-End. The last corresponds to
levels 4 and 7 in the diagram at Figure 1 (pay
attention to the lines, limiting the stages). Defined
task in [8] for data transfer control into branched
micro-pipeline is also new and its solution will be
presented in this paper. The essence of this task is the
synthesis of pipeline controller to manage the micro-
pipeline stage generating transition condition. The
logical value of the condition must define in which
branch will go Request. This is related with problem
for receiving the signal Acknowledgement from the
stage already received the request. Because of the

unbreakable nature of signals Req and Ack we assume
it as one task, despite of the two particular decisions it
has.

2. At second place is the aspect for synthesis of
pipeline controller about the stages at the common
points of the algorithm. As it can be seen from Figure
1, at levels 9 and 12 the input points of corresponding
micro-pipeline stages join more than one output from
previous stages. The entry to the input of results from
several previous stages, placed parallel topologically,
present new and independent problem. The decision
is to synthesize controller managing receiving stage
with parallel in time entry of generally more than one
Request. In the mirror-sense, this aspect is related
with one more problem – the task for generating
Acknowledgement signal to the corresponding
previous stage. Because of the unbreakable nature of
signals Req and Ack we assume it as one task,
although it also has two particular decisions.

3. The incoming to the receiving stage at the
common point requests from parallel previous stages
present the third aspect of the problem – the request
choice. To solve the request choice and to receive the
corresponding data, the receiving stage pipeline
automat must execute arbiter procedure. The
realization of this procedure presents the third aspect.
Requests arbitration is well-known and there are
different implementations [15], but we consider it as a
new one in terms of micro-pipeline control.

4. And finally the fourth aspect: at the joint point,
where several branches are united, the requests
attended with obtained data refer to different tasks,
started into the micro-pipeline. The order in which the
results are coming to the joint point is not definitely
the same as the order in which were started the
corresponding tasks. In other words, at receiving
stage containing the joint point the data will not come
in right order. So the presence of branches in the
micro-pipeline leads to problem: the pipeline’s
outgoing final results barely will be in the order,
corresponding to the starting one. Obviously, a new
problem must be defined, fourth in a row, which
requires introduction of order and accordance
identification system for the final results. The
problem for order restore is known. At the processor
pipelines level this problem has software decision.
This is the reason to assume that working conditions
for processor pipelines can not be compared with that
for the micro-pipelines considered in this paper.

 The problem for implementation of
common algorithmic structure obviously is the topic
of the day. In publications [1], [2], [3], [4], [5], [6],
[7] can be found decisions which are particular
elements of the considered problem. There are no
formulated and analyzed micro-pipelines with
common structure in their integrity.

 In this paper we present solutions only for
the first aspect from section 2, referring to the both
types of transfer protocol.

26

Наукові праці ДонНТУ ISSN 1996-1588
Серія "Інформатика, кібернетика та обчислювальна техніка" випуск 13(185), 2011

Micro-pipeline with two-phase transfer
protocol

 As it was mentioned, the pipeline
controllers are responsible for computations
management so the essence of the first part of the
problem is to design dependent on the conditional
jump pipeline controller. As a first variant for
decision we consider controller using asynchronous
Mueller C-element. Such controllers (Figure 2)
implement 2-phase transfer protocol. Events in this
protocol – request Reqin, acknowledgement Ackin and
micro-pipeline stage functioning Work for two
consecutive work cycles (k) and (k+1) – are
numbered in the protocol time-diagram as follows:

W

DL

C

Reqin

Reqout

Ackin

Ackout

2 3

4

1

2

Cycle k Cycle k+1

Phase I

P
ha

se
 I

I

Ackin

Reqin

Work

Phase I

P
ha

se
 I

I

Phase I

P
ha

se
 I

I

1

Transfer Transfer

Work Work

W

Fig. 2. Two-phase controller and protocol

1. Signal Ackin is switched to 1. When Reqin =Ackin

=1, the controller of current stage is switched to 1
(state 1), generating write data signal for its fixing
register (interval Transfer) ;

2. In the logic after the register with new written data
starts transitional process – beginning of
computations into current stage (interval Work) ;

3. Computations are finished – the result is ready ;
4. In this condition, the controller of current stage

waits the switching of Reqin from the previous
stage into low level (Reqin=0), as well as
acknowledgement for data receive in the next stage
(Ackin=0) ;

Next transfer cycle (k+1) starts with the same actions:
1. When Reqin =Ackin =0, new cycle begins. The

pipeline controller of current stage switches back

to low level (state 0), generating signal for data
write into its register ;

2. Data write is done and into current stage starts new
computation cycle.

 The time-diagram allows to consider that
the four possible combinations of input signals values
(Reqin, Ackin) are equally divided between the two
states of pipeline automat – combinations 11, 01 for
state 1, and combinations 00, 10 for state 0.

 Figure 3 shows part of the micro-pipeline
structure consisting stage, which generates
conditional jump CJ. There are two additional logical
schemes to the logical structure of the managing
current stage controller, which synthesis will be
presented later. These two additional schemes are LA
– scheme, setting up the signal AckCJ, and LR –
scheme, generating actual requests Reqtrue и Reqfalse.

 The structure presents also the input
registers of the both algorithmic branches. Whoever
branch will be chosen for current computations,
should start that initial state machine which is defined
by the actual value of logical condition CJ. In fact,
there is a fixing register RG_F in the beginning of
each branch, but micro-operation write after signal W
(Write) should be executed only in one of these
registers.

Acknowledgement to conditional jump
controller

 The switching of pipeline controller into
stage with conditional jump is a function of two
signals: Acktrue and Ackfalse, indicating readiness of
each branch independently, i.e. they are “parents” of
the signal AckCJ. Toward the stage with conditional
jump, signals Acktrue and Ackfalse have the same parity,
but in the time they are competitive. The last means
that in the time their switching moments can be either
same or opposite in view of its logical value. Pay
attention that the competitiveness between these
switching is insignificant assuming transit condition
CJ. CJ value is present at the same time with obtained
result and request ReqCJ, which must reach the
controller into chosen branch. As response will come
the acknowledgement we are talking over (Acktrue or
Ackfalse, depends on CJ).

 In other words, only the acknowledgement
from the branch, received the request, must be
admitted to the conditional jump automat. This is
possible because the stage still sustains the current
value of CJ. Only the logical value of
acknowledgement has to be considered. Taking into
account that the controller of conditional jump stage
attends two branches and pre-history of its switching
is not known, there is no guarantee that the logical
value of the returned acknowledgement will be
correct. Therefore the current condition of the
automat must be considered as well. For example, if it

27

Наукові праці ДонНТУ ISSN 1996-1588
Серія "Інформатика, кібернетика та обчислювальна техніка" випуск 13(185), 2011

is in state 1, the next switching can be only to 0. This
switching is possible only if the acknowledgement is
zero. Controller of sending stage is always connected
to the controller of receiving stage in the time of
transfer (connection is supported by CJ value), so the
above considerations can be presented as follows:

.CJfalseAck

CJtrueAckAckCJ

∩∪

∪∩=
 (1)

The acknowledgement AckCJ will have the
value of the incoming acknowledgement from
corresponding branch so there will be no need to
invert of that value. Equation (1) will implement the
LA-scheme (Figure 3).

Logic

CJ

RG F

W

DL

Reqtrue

DL

A
ck

tr
ue

RG F

C

C C

Ack

Req

DL

RG F

ReqCJ

Wtrue Wfalse

A
ck

fa
ls

e

Reqfalse

Ack

AckCJ

Ack

LR LA

Fig. 3. Structure of stage with condition jump

Branch requests generation

 The pipeline automat controlling the
conditional jump stage propagates to the next stages
request, denoted as ReqCJ. Unfortunately, this
request cannot be lead directly to the controllers’
inputs at the beginning of each alternative branch.
Corresponding inquiries, which the state machines
must receive, are denoted as Reqtrue for the branch
“true” and Reqfalse for the “false”-branch, and are
function of the LR-scheme (Figure 3). The direct
inclusion of ReqCJ is not possible because in the
branching point it enters in complicate functional
connection with the logical value of CJ on one hand
and with the current state of the automat at the
beginning of each branch on other hand. This is a
consequence of the types of automats, which use 2-
phase protocol for transfer control. The last means
that each their switching (0→1 and 1→0) causes
“write” into the fixing registers and starts the stage
computations. If we consider switching in the
beginning of a micro-pipeline branch, except of the
CJ logical value (0 or 1) must be taken in
consideration also the initial condition of
corresponding controller. Pay attention that the C-
element is switching with two initial ones as well as
two zeros. It means that the signals Reqtrue and
Reqfalse are functions not only of ReqCJ switching

and CJ value, but also of the automats’ conditions at
the beginning of branches. For example, if the value
of transition condition is one (CJ=1), it means that
computations must continue into the “true”-branch
(Figure 3). If the state of pipeline controller in this
branch is one, supported in time from Reqtrue=1, it
must be switched in 0-state to start these
computations by falling edge of the signal Wtrue. For
this purpose, at input of this C-element must be two
zeros combined. Do not forget that each new value
of ReqCJ (either 0 or 1) presents new request from
the controller to the branch stage.

 The above logic is expressed by the
following truth-tables, where signals Wtrue and
Wfalse present the state of corresponding C-
elements.
 Based on the above truth-tables, following logical
functions are synthesized:

.truetrue WCJeqR ⊕= (2)

.falsefalse WCJeqR ⊕= (3)

 As it shown, the logic of Reqtrue and
Reqfalse does not depend on ReqCJ, as it was
expected. Dependency of Reqtrue and Reqfalse is not
on the ReqCJ value but on the time, i.e. on the
switching moments of ReqCJ. It means that the
change in ReqCJ value, i.e. edge appearance,
indicates the moment in time when the stage logic
finishes its computations. This moment does not

28

Наукові праці ДонНТУ ISSN 1996-1588
Серія "Інформатика, кібернетика та обчислювальна техніка" випуск 13(185), 2011

compulsory coincide with the appearance of the CJ
true value. Depending on the CJ computation
complexity, in general case should be assumed that
the CJ true value can appear earlier than the new
edge of ReqCJ or at least at the same time and never
later than it. With direct implementation of (2) and
(3), earlier appearance of CJ will lead to earlier
creation of Reqtrue and Reqfalse, which on the other
hand will start earlier the corresponding pipeline
branch. This beginning will start with data writing
into fixing register but the data still won’t be reached

in time their true values. In this way, it is possible
the computation to be started with wrong data.

 The main conclusion of the above
considerations is that the (2) and (3) equations
define request values, but the moment when they
will appear and start to affect is specified by ReqCJ
switching moment. In other words, Reqtrue and
Reqfalse new values must appear as a response of
ReqCJ edge. This means that creation of Reqtrue and
Reqfalse, is not possible only with combinational
logic.

Table 1 Request to controller in “true”-branch

CJ Wtrue ReqCJ Reqtrue

0 0 Falling edge appearance

0 0, no switching

0 0 Rising edge appearance

1 0, no switching

0 1 Falling edge appearance

0 1, no switching

0 1 Rising edge appearance

1 1, no switching

1 0 Falling edge appearance

0

1 , switching

1 0 Rising edge appearance

1

1 , switching

1 1 Falling edge appearance

0

0 , switching

1 1 Rising edge appearance

1

0 , switching

Table 2 Request to controller in “false”-branch

CJ Wfalse ReqCJ Reqfalse

0 0 Falling edge appearance

0

1 , switching

0 0 Rising edge appearance

1

1 , switching

0 1 Falling edge appearance

0

0 , switching

0 1 Rising edge appearance

1

0 , switching

1 0 Falling edge appearance

0 0, no switching

1 0 Rising edge appearance

1 0, no switching

1 1 Falling edge appearance

0 1, no switching

1 1 Rising edge appearance

1 1, no switching

Presented considerations prove that time

dependency of computed values (2) and (3) can be
implemented only by storage element – flip-flop.
Because the “write” must be done on each C-
element switching, the synchronizing flip-flop must
be DEDTFF (D flip-flop working on both edges). At
the final logical structure of pipeline controller

(Figure 4) is presented our preferable decision,
based on typical D-Latch flip-flop and two edge-
detectors – FD↑ for rising edge and FD↓ for falling.
LR-scheme (Figure 3) contains the C-element of
conditional jump branch; LA-scheme, joining
acknowledgements Acktrue and Ackfalse, as well as
both schemes generating Reqtrue and Reqfalse.

29

Наукові праці ДонНТУ ISSN 1996-1588
Серія "Інформатика, кібернетика та обчислювальна техніка" випуск 13(185), 2011

FD↑

FD↓

ReqCJ 1 T
L

_t
 D

C

R

Reqtrue

=1
CJ Wtrue

W

DL

C
Req

AckCJ

Ack

1

D

C

R

Reqfalse

Reset

CJ

Wfalse

=1

Acktrue

Ackfalse

1

&

&

DLw

DLw

T
L

_f

Fig. 4. Logic scheme of 2-phase pipeline controller into conditional jump stage

 As it is shown on the logic structure, pulse

generators are joining into OR-element and realize
“write” on flip-flop C-input. Obtained by (1) value
of Reqtrue comes on D-input and is stored into flip-
flop until the next time when the same branch will
be chosen. The Reset signal is necessary in the
beginning when all pipeline controllers are forced to
initial state. Similar scheme creates Reqfalse to the
controller into “false”-branch, depending on (2).

 In response of Reqtrue or Reqfalse
corresponding pipeline automat will be switched and
will turn through feedback new value of signal W,
which threaten reliability of “write” to TL_t or TL_f,
so we must hold in time the value until the “write”-
impulse disappears from C-input. The delay is
provided by DLW.

Micro-pipeline with 4-phase transfer
protocol

 Second decision is about pipeline
controllers, implementing 4-phase transfer protocol.
Figure 5 presents one of synthesized in [11]
controllers, realizing 4-phase protocol with
anticipating reset. The events into protocol for two
consecutive work cycles (k) and (k+1) of particular
micro-pipeline stage are presented on the time-
diagram and are numbered as follows:
1. Micro-pipeline stage is finished computations.

Obtained result is received from the next stage.
Current stage indicates this with signal Ackout
and pipeline controller is expecting signals Reqin
and Ackin ;

2. Both input ones Reqin=Ackin=1 switch C-element
to one (W=1) and new data is written to the
fixing register of current stage. It starts
transitional process – begins result
computations;

3. C-element condition is stored into DE flip-flop
with delay DL1. The delay provides the time
necessary for writing in flip-flops of fixing
register. After writing, the inverse input of DE
flip-flop resets the C-element via feedback,

setting it in this condition in advance, i.e. before
the computations are over, preparing the
C-element for the next cycle ;

4. Computations of the current stage are finished
and the controller sends Reqout to the next stage.

New cycle is started into the current stage.

ACKout

W

REQin

D
L

1

C

REQout

ACKin

C
D
R

TE

DL3

DL2

FD↑

W

TEQ

Ackin

Reqin

1

Work

P
ha

se
 2

P
ha

se
 3

Phase 4

P
ha

se
 2

Phase 4 Phase 1

1

Phase 1 Phase 1

4

Ph
as

e
 3

2

3

2

3

4

Transfer Transfer

Work

W

Cycle k Cycle k+1

Fig. 5. 4-phase controller and protocol

Acknowledgement synthesis for conditional
jump controller

 Presented protocol shows that pipeline
controllers, including from the beginning of each
branch, are waiting their start into zero-condition. In
other words, the conditions for starting these
controllers are always one and the same unlike
presented 2-phase controllers.

30

Наукові праці ДонНТУ ISSN 1996-1588
Серія "Інформатика, кібернетика та обчислювальна техніка" випуск 13(185), 2011

 Switching of pipeline controller into
conditional branch stage is a function of two signals:
Acktrue и Ackfalse, indicating the readiness of each
branch. The logic analysis of events at conditional
jump point is similar to that made for the previous
controller. Both acknowledgement signals are also
competitive in time. As requests have always the
same value, the acknowledgements have same value
too. The appearance of each signal (Figure 6,
moment 2) can switch the controller without
carrying about the presence of the other, which
could be assumed as normal if it is certain that CJ
(which will receive its value with delay) will have
such value that the computations will continue into
branch caused the start. But if it is not like this and
computations must continue into the branch with
delayed acknowledgment, already generated ReqCJ
must wait for corresponding event. As the controller
of sending stage is constantly connected to the
controller of receiving stage in the time of transfer
(connection is provided by CJ value), joining of
acknowledgements from the both branches is
achieved by logic disjunction. This statement is
similar to already presented for the 2-phase

controller so the logic of AckCJ is expressed by
equation (1).

Request generation to the barnches

 From its own part, ReqCJ does not depend
on pipeline automat condition into branches. This
means that requests Reqtrue and Reqfalse depend only
on CJ value which leads to following statements:

,CJeqCJReqR true ∩= (4)

.CJeqCJReqR false ∩= (5)

 Conditions for time dependency,
expressed for 2-phase controllers, do not exist in this
case. According to (4) and (5) one-values of Reqtrue
and Reqfalse grow up in correct moment, i.e. when
ReqCJ arose. Therefore for Reqtrue and Reqfalse
creation only one de-multiplexer is needed, managed
by CJ signal.

 The final description of automat into
conditional jump branch is presented on Figure 6.

 Stages into the rest linear sections of the
pipeline are controlled by automats with logical
structure shown on Figure 5.

Ackout

W

Reqin

D
L

1

C

AckCJ

C
D
R

TE

DL3

DL2

FD↑ W

TEQ

&
Reqtrue

Reqfalse

ReqCJ

CJ

CJ

Ackfalse

&

1

&

& Acktrue

Fig. 6. Logic scheme of 4-phase pipeline controller into conditional jump stage

Conclusions and future work

 The possibility for design of
computational process with various algorithmic
structures by the methods of micro-pipeline
organization allows significant increasing of the
performance. This is a result of the possibility for
hardware implementation on one hand and on the
other, because of the pipeline organization itself,
which is basic method for entering parallelism into
computations.

 Although the presented in this paper
aspects of the problem for computational process
control in alternative conditions received decision,
the problem of micro-pipeline implementation of
common algorithmic structures was not completely
solve. It can be assumed as resolved with the
presence of decisions for the other aspects, defined
in the beginning. These four aspects are strongly
related and do not have practical independency.

References

1. Chammika Mannakkara, Tomohiro Yoneda, Asynchronous Pipeline Controller Based on Early
Acknowledgement Protocol, National Institute of Informatics, Technical Riport, ISSN 1346-5597, Sept. 2009,
Tokyo, Japan.

2. Feng Shi, Yiorgos Makris, Steven M. Nowick, Montek Singh, Test Generation for Ultra-High-Speed
Asynchronous Pipelines, Int. Test Conference, pages 39.1–39.10, Nov 2005.

31

Наукові праці ДонНТУ ISSN 1996-1588
Серія "Інформатика, кібернетика та обчислювальна техніка" випуск 13(185), 2011

3. Singh M., Nowick S.M., MOUSETRAP: Designing High-Speed Asynchronous Digital Pipelines,
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Volume 15, Issue 6, June 2007.
http://www.cs.columbia.edu/~nowick/columbia-cisl-seminar-mousetrap-pt2.pdf .

4. Ozdag R.O., Singh M., Beerel P.A., Nowick S.M., High-Speed Non-Linear Asynchronous Pipelines,
Design, Automation and test in Europe Conference and Exhibition, 04-08 III 2002, Paris, France, Proceedings,
ISBN: 0-7695-1471-5, pp. 1000-1007.

5. Fawaz K., Arslan T., Lindsay I., Conditional Acknowledge Synchronization in Asynchronous
Interconnect Switch Design, 2009 NASA/ESA Conference on Adaptive Hardware and Systems, Issue Date: July
2009, pp. 126-131.

6. Fu-Chiung Cheng, Shu-Ming Chang, Chi-Huam Shieh, Detection and Generation of Self-Timed
Pipelines from High Level Specifications, 20th International Conference on VLSI Design (VLSID'07), January
2007, pp. 413-418.

7. Beerel P.A., Ozdag R.O., Ferretti M., A Designer's Guide to Asynchronous VLSI, ISBN 978-0-521-
87244-7, Cambridge University Press, 2010.

8. Tyanev D.S., Josiffov V., Kolev S.I., Operational structures without controlling automata,
International Workshop on Network and GRID Infrastructures, 27-28 Sept 2007, Bulgarian Academy of
Sciences, Sofia, Bulgaria.

9. Tyanev D.S., Kolev S.I., Yanev D.V., Micro-pipeline Section For Condition-Controlled Loop,
International Conference on Computer Systems and Technologies - CompSysTech’09, 18-19 June 2009, Ruse,
Bulgaria, pp. I.4 1-5.

10. Tyanev D.S., Yanev D.V., Kolev S.I., Method for realization of self-controlling loop apparatus
structures, Fifth International Scientific Conference Computer Science’2009, 5-6 November 2009, Sofia,
Bulgaria.

11. Tyanev D.S., Popova S.I., Asynchronous micro-pipeline with multi-stage sections, ICEST’2010, 23-
26 June 2010, Ohrid, Macedonia.

12. Tyanev D.S., Kolev S.I., Yanev D.V., Race Condition free Asynchronous Micro-Pipeline Units,
International Conference on Computer Systems and Technologies - CompSysTech’10, 17-18 June 2010, Sofia,
Bulgaria.

13. Kolev S.I., Tyanev D.S., Early set to zero micropipeline, International Conference on Computer
Systems and Technologies - CompSysTech’10, 17-18 June 2010, Sofia, Bulgaria.

14. Sutherland, Ivan E., Micropipelines, http://www.jdl.ac.cn/turing/pdf/p720-sutherland.pdf .
15. Kinniment D.J., Synchronization and Arbitration in Digital Systems, John Wiley & Sons, ISBN

978-0470-51082-7, 2007.

Надійшла до редакції 01.03.2011

32

