
ISSN 1996-1588 Наукові праці ДонНТУ № 1(20)

 Серія “Інформатика, кібернетика 2015

 та обчислювальна техніка”

Математичні моделі й методи в системах автоматизованого
 управління, проектування

УДК 004.3

V.T.Bozhikova, PhD, Assoc.Prof.,

M.Ts.Stoeva, PhD, Assoc.Prof.,

Technical University of Varna, Varna, Bulgaria

vbojikova2000@yahoo.com

A Heuristic Search Algorithm for Software Clustering

Heuristic and meta-heuristic search algorithms are widely used to solve many complex engineer-

ing problems. They are applicable for finding solutions to problems where the best solutions are

easy to recognize but hard to generate due to the competing constraints, the extensive search area

and the complex cost function. These algorithms are used in software engineering; in particular,

they offer promising results in the area of software clustering. This paper presents a heuristic al-

gorithm for clustering software that gives promising results in quality and efficiency.

Keywords: software clustering, heuristic search algorithms, software restructuring, software engi-

neering.

Introduction

Heuristic and meta-heuristic search algo-

rithms are widely used to solve many complex engi-

neering problems. They are applicable for finding

solutions to problems where the best solutions are

easy to recognize but hard to generate due to com-

peting constraints, extensive search area and com-

plex cost function. These algorithms are also used in

the area of software engineering [2,3 and 4], they are

successfully applied for software clustering.

Clustering is used in different phases and ac-

tivities of the software life cycle. It is important and

challenging problem whose main goal is to obtain a

good software structure. Clustering algorithms are

used in the stage of software design and also used

for improvement, restructuring and validation of

software architecture. Key idea of clustering is to

group similar items into groups (clusters), so that

intra-cluster similarity or cohesion to be high and

inter-cluster similarity or connection - low.

Clustering algorithms solve the main problem

of software re-engineering – “Architecture Recov-

ery", i.e. finding the components and connections of

the software architecture. For large systems, the de-

sired components are abstract ("high level") and

could be modelled by subsystems in the role of ar-

chitectural products. They are not directly visible in

the source code of the software system. Therefore, in

the conditions of inadequate or missing documenta-

tion algorithms capable of finding a reasonable ap-

proximation of the software architecture are devel-

oped.

"Recovered" architecture already allows to

realize the tasks of re-engineering:

 transfer software to a new platform;

 identify candidates for reuse ("re-use"), which

means candidates for software components -

modules, subsystems, design solutions, docu-

mentation and others? for other programs;

 study the software program;

 improve the software maintenance;

 increase the reliability of the system and so on.

Heuristic search algorithms - problem do-
main requirements

Heuristic search algorithms [2, 3 and 4] are

widely used to solve various optimization problems

in the presence of many local extremes, with many

parameters and conflicting constraints. They suc-

cessfully found acceptable approximations of many

defined as "NP-complete" and "NP-complex" prob-

lems, when is impossible to implement accurate ana-

lytical algorithms that produce the optimal solution,

but it is possible to determine which of the two can-

didates is better.

Heuristic search algorithms are usually easy

designed. The only drawback is that the solution

found might be far from optimal. But, in many prac-

tical cases, it is preferable to the alternative - an end-

less and hopeless search for the optimal solution.

The key to successful implementation of such

an algorithm is primarily the possibility of formulat-

ing the domain problem as a " search | optimization"

problem:

 Large area of solutions

 Lack of efficient and complete solution to the

problem.

 Existence of appropriate goal function (for the

evaluation of the solutions)

132

ISSN 1996-1588 Наукові праці ДонНТУ № 1(20)

 Серія “Інформатика, кібернетика 2015

 та обчислювальна техніка”

 Possibility of easily generating initial candidate

solutions (reasonable time).

Gradient "descent | ascent" algorithm (hill

climbing algorithm) is the most famous and most

used heuristic search algorithm. The search process

typically begins by "accidentally" <initial state> (i.e,

with accidental initial solution). Assess many

"neighbouring" states (decisions) and choose "ap-

propriate <neighbouring state> ', which becomes

<current state>, then the process is repeated. After

evaluating the many "neighbouring" states (solu-

tions) an "appropriate <neighbouring state> ', which

becomes <current state> is chosen, and then the pro-

cess is repeated.

In the literature dominates the understanding

[2] that before the development of any other heuris-

tic, Meta heuristic (Taboo Search, Simulated An-

nealing, Min-Conflicts) or probabilistic clustering

algorithm (GA) to solve some optimization problem

people must start with the development of a gradient

algorithm (hill climbing), and even – with the sim-

plest one. The motivation is that if such an algorithm

(hill climbing) gives good enough results, it is un-

necessary effort to develop another algorithm to

solve the problem (in particular, genetic). Moreover,

if the results of the gradient algorithm are worse than

those of probabilistic algorithms, it should be con-

sidered as an indication that either the problem is not

understood, either the formalization is not adequate.

The "software clustering problem” – a
"search | optimization problem”

The problem of “software clustering” could

be seen as a "search | optimization" problem:

 The process of software clustering is character-

ized by a large number of competing and inter-

related constraints.

 The area of possible solutions can be extremely

large, that make the implementation of the op-

timal algorithm (method of "total exhaustion")

impossible expensive (NP-hard).

 Although it is not rational or not too clear how

to find the optimal solution, it is relatively easy

to determine whether a decision is better than

another, i.e.: a suitable goal function for solu-

tion assessment exists.

HSA - heuristic algorithm for software clus-
tering

HSA is a heuristic algorithm for software

clustering (decomposition). The clustering criterion

is "minimal external connectivity" i.e. minimal con-

nectivity between the clusters (M is the number of

clusters). In addition: the algorithm tries to find bal-

anced by weight clusters - candidates for subsys-

tems. The upper threshold for the weight Wd

(Wd≤W0, d1..M) of each cluster is W0.

The main assumption in HSA and other algo-

rithms [3,4] based on clustering criteria "minimal

external connectivity" is that:

 Well designed software systems are organized

in clusters with high cohesion, which are slight-

ly connected.

 The weight Wd of each cluster is consistent

with the convenience of tracking and reducing

the tendency for errors.

The successful application of heuristic algo-

rithm to the problem of clustering software suggests:

 Proper determination of the resources and the

connections in the source code

 Suitable formalization

 Appropriate definition of the goal (objective)

function and the restrictive conditions. The typi-

cal algorithms, "based on search", repeatedly

calculate the target function, therefore its calcu-

lation speed is critical.

 Suitable solution for various critical elements of

the algorithm: <initial state>, <neighboring

state> and others.

Determination of the resources and the
connections in the source code

Their determination is depending on the spec-

ification of the problem. In this case:

Resources: the set of low level architectural

components for example modules, classes, files,

envelopes, etc .;

Connections: the set of all dependencies be-

tween the components - "inherite", "import", "in-

clude", "call", "is an instance of" and so on.

Formalization

Purpose of the formalization: independence

from the programming language used in the software

subject to clustering. For the presentation of the code

structure of software systems most often graphs are

used, as language-independent structures. Clustering

algorithms are used mostly when these graphs be-

come enormous.

A directed graph G = (X, U) is defined,

where:

X (the set of the vertices of G) - it represents

the set of resources (the set of low level architectural

components - modules, classes, files, packages, etc.);

UXX (set of oriented arcs) – it represents

the set of all dependencies between code resources

presented by X (the dependencies between the com-

ponents - "inherit", "import", "include", "call", etc.).

Weight wi is a quantitative characteristic of

the resource xiX, for example - the number of sub-

modules in xi (the number of methods in object xi).

133

ISSN 1996-1588 Наукові праці ДонНТУ № 1(20)

 Серія “Інформатика, кібернетика 2015

 та обчислювальна техніка”

Characteristics of HSA

HSA reduces the problem of software cluster-

ing to the optimization problem for “balanced graph

partitioning” [1], which is characterized by:

 A large number of possible solutions have to be

examined.

 Finding the optimal solution is a problem of

type NP, which means that the best algorithms

require time, which is an exponential function

of N = | X | and M, and that there is not an op-

timal algorithm, whose runtime is a polynomial

function of N = | X | and M.

 The introduction of restriction contrition (W0 in

this case), makes the problem even more diffi-

cult (NP-hard).

 Heuristics are needed to find for a reasonable

time a “reasonable” sub-optimal result.

Goal function of HSA

The goal function is a quantitative measure of

the quality of each decomposition solution.
Let a decomposition solution rR is found,

that is result of the partitioning of the graph G = (X,

U) in M>1 subgraphs, i.e:

r = {X1,X2,…,XМ}, XdX, UdU, |Xd|=nd,

d=1..M where:

(Xd)= X, d=1..M & (Xd)= &

for XdX, d=1..M the restriction (1) is in

force:

Let kdf=|Udf| is the number of the external

links (connections) between sub-graphs gdG and

gfG, where d1..M, f=1..M, df.

Then the total number "k" of external connec-

tions for the system shall be defined by expression

(2):

Then the task of optimal graph partitioning

according the specified criterion and restrictive con-

dition consists in finding a such partition rc={X1, X2

… XM}R, М>1 that minimize the functional (3)

HSA – general description

HSA is designed as an algorithm for balanced

graph partitioning of mixed type, with a consecutive

and an iteration parts (figure 1).

Figure 1 – HSA

The result of the consecutive part: 3 balanced

graph partitions {rs,rssh,rlong}, based on the known

algorithms for graph traversing - occasional, in

width and in depth. The partition, which satisfies (in

most) the goal function and restrictive condition

shall be considered as initial partitioni:

rapr{rs,rssh,rlong}, where kapr=MIN{ks,kssh,klong}.

The iteration part of HSA starts with the ini-

tial solution - rapr. This part is designed as a greedy

gradient algorithm. For this purpose, each iteration,

4 improving the <current state> operations are per-

formed: “cluster merging" (as union of sub-graphs),

“graph vertex moving", "graph block moving" or

"vertex swapping", i.e. the <neighbouring state > is

obtained from the previous, in applying all listed

above operations.

Step 1. Beginning of the algorithm: construc-

tion of the graph G = (X, U), N = | X |, W – weights

of the graph vertex.

Step 2. Check for structural correctness of the

graph.

Step 3. Enter the restrictive condition - W0.

Step 4. Implementation of a sequential part

(sequential algorithm): rapr{rs,rssh,rlong}, where

kapr=MIN{ ks,kssh,klong}.

Step 5. Implementation of the iteration part

Step 5.1. Let rc=rapr; kc= kapr. { rc – sub-

optimal solution}

Step 5.2. Repeat

Try to find the best <neighbouring state - r>

for rc, applying to all sub-graphs the operations:

“cluster merging", “graph vertex moving," " graph

block moving” and " vertex swapping ". If exists(r)

then rc=r; Change=True; kc=kr;

Until not Change;

Step 6. Display rc (rc is the sub-optimal solu-

tion, kc – the value of the goal function, dist – the

distance between rapr and rc..

Step 7. End of the algorithm.

The algorithm complexity

The complexity of HSA is dependent mainly

on the complexity of the iterative part. Therefore, the

complexity of the HSA is О(kaprN
3
).

)1(o

Xdx

i WwWd
i

 


)2(,
2

1

..1..1





Mf

df

Md

fdkk

)3(,
2

1

..1

min

..1





Mf

df

Md

fdkkk

134

ISSN 1996-1588 Наукові праці ДонНТУ № 1(20)

 Серія “Інформатика, кібернетика 2015

 та обчислювальна техніка”

Conclusion

HSA is a structural algorithm for clustering

based on metrics. It is implemented as heuristic al-

gorithm for balanced partitioning of loaded graphs in

random number parts - an insufficiently investigated

and challenging problem in graph theory [1, 5, 6 and

7].

The comparison of HSA with similar algo-

rithms for software clustering SAHC and NANC

[3,4] shows that HSA formulates a more complex

task and gives a result, stable at each implementation

and closer to the optimum. The stability of the re-

sults due to the following: the iteration part of HSA

begins with an initial solution that is not randomly

generated (the starter solution for SAHC and NANC

is randomly generated).

A main shortcoming of HSA is the strong de-

pendence of the final decomposition result from the

initial solution that could be overcome by increasing

the number of decomposition solutions in the con-

secutive part.

A program for the experimental study of

HSA was developed. The results of the experiments

made on a large number of graph (program structure

models) demonstrate the efficacy and efficiency of

the developed algorithm and mark some guidelines

for future developments, one on the identification

and treatment of "special" vertices.

References

1. Alan Pothen “Graph partitioning algorithms with applications to scientific computing”, Institute

for Computer Applications in Science and Engineering (ICASE), NASA Lamgley Research Center,

http://citeseer.nj.nec.com.

2. John Clarke, Jose Javier Dolado “Reformulating Software Engineering as a Search Problem”,

http://www.discbrunel.org.uk/seminal.

3. Spiros Mancoridis and Brian MitchellComparing the Decompositions Produced by Software Clus-

tering Algorithms using Similarity Measurements, IEEE Proceedings of the 2001 International Conference on

Software Maintenance (ICSM'01).

4. Spiros Mancoridis, Brian Mitchell, C. Rorres, Y. Chen, and E. R. Gansner, Using Automatic Clus-

tering to Produce High-Level System Organizations of Source Code, IEEE Proceedings of the 1998 International

Workshop on Program Understanding (IWPC'98).

5. V. T. Bozhikova, “Using Clustering To Achieve Quality Software Structure”, Conference Pro-

gram and Abstracts, ISSE 2006 - 29th Spring Seminar on Electronics Technology “Nano Technologies for Elec-

tronics Packaging”, May 10-14, 2006, pp. 180-181, St.Marienthal, Germany.

6. A.C Kumari, Software module clustering using a hyper-heuristic based multi-objective genetic al-

gorithm, Advance Computing Conference (IACC), 2013.

7. Florian Bourse, Marc Lelarge, Milan Vojnovic, Balanced Graph Edge Partition, Technical Report

MSR-TR-2014-20, 2014, http://research.microsoft.com/pubs/209318/MSR-TR-2014-20.pdf.

Надійшла до редакціїї 01.03.2015

135

http://citeseer.nj.nec.com/
http://www.discbrunel.org.uk/seminal
http://serg.cs.drexel.edu/people/#smancoridis
http://serg.cs.drexel.edu/people/#bmitchell
http://serg.mcs.drexel.edu/people/#smancoridis
http://serg.mcs.drexel.edu/people/#bmitchell
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6495610

