УДК 538.9 В.В. Біланчук¹, Й.Й. Раті¹, І.П. Студеняк¹, Ю. Баніс² ¹Ужгородський національний університет, 88000, Ужгород, вул. Підгірна, 46 ²Вільнюський університет, Литва, LT-2040, Вільнюс, алея Саулетіко, 9

ЕЛЕКТРИЧНА ПРОВІДНІСТЬ ТА КРАЙ ПОГЛИНАННЯ КРИСТАЛІВ Cu₇SiS₅I

В роботі наведено результати експериментальних досліджень частотної та температурної поведінки електропровідності суперіонного кристала Cu₇SiS₅I в частотному діапазоні $1.0 \cdot 10^6 - 1.2 \cdot 10^9$ Гц та температурному інтервалі 100-300 К. За результатами досліджень спектральних залежностей коефіцієнта поглинання показано, що в інтервалі температур 77-300 К край поглинання має експоненціальну форму, а його температурна поведінка описується правилом Урбаха. Встановлено, що температурні залежності таких параметрів урбахівського краю поглинання як оптична псевдощілина та урбахівська енергія описуються в рамках моделі Ейнштейна.

Ключові слова: суперіонний кристал, електропровідність, край поглинання, правило Урбаха, оптична псевдощілина.

Вступ

Дослідження нових технологічних суперіонних провідників є важливим завданням у час зростаючої необхідності в додаткових джерелах енергії. Суперіонні кристали Cu₇SiS₅I належать до сполук зі структурою аргіродиту, характеризуються високою іонною провідністю та власною структурною невпорядкованістю [1]. На практиці такі матеріали використовуються для виготовлення акумуляторних батарей, паливних комірок, газових сенсорів та електрохімічних пристроїв [2]. інших Деякі фізичні властивості суперіонних провідників системи Cu7GeS5I-Cu7SiS5I вивчалися в роботі [3]. Особливості хімічної взаємодії в системі Cu7GeS5I -Cu₇SiS₅I досліджувалися за допомогою рентгеноструктурного, мікроструктурного та денсиметричного аналізів. При заміщенні атомів Ge атомами Si виявлено короткохвильове зміщення спектрів дифузного відбивання в кристалах $Cu_7(Ge_{1-x}Si_x)S_5I[3]$.

Метою роботи є температурні дослідження електропровідності та краю оптикного поглинання, природи електронфононної взаємодії, а також вивчення впливу температурного та структурного розупорядкування на процеси оптичного поглинання в суперіонних кристалах Cu₇SiS₅I.

Експериментальна частина

Кристали Cu₇SiS₅I вирощувалися методом хімічних транспортних реакцій. Для проведення синтезу розраховані у стехіометричній кількості Си, Si, S та CuI поміщалися у кварцеві ампули. У ролі транспортуючого агента використовувався CuI. Дослідження комплексної електричної провідності проводилися y діапазоні частот $1.0 \cdot 10^{6} - 1.2 \cdot 10^{9}$ Гц у температурному інтервалі 100-300 К за допомогою коаксіального імпедансного спектрометра [4]. Спектральні залежності коефіцієнта поглинання вивчалися в інтервалі температур 77-300 К за допомогою граткового монохроматора МДР-3; для низькотемпературних досліджень використовувався кріостат типу "Утрекс" [5].

Результати та обговорення

Слід зазначити, що вимірювання реальної об'ємної електричної провідності обмежувалися низькими частотами (до МГц-діапазону) із-за наявності контактних ефектів. У зв'язку з цим на частотних залежностях електричної провідності б спостерігаються внески від проявів об'ємної електричної провідності та контактного ефекту (рис. 1). Встановлено, що з ростом температури величина σ' лінійно збільшується, слідуючи закону

Арреніуса, що свідчить про термоактиваційну природу електричної провідності.

Рис. 1. Частотні залежності дійсної частини електропровідності σ' кристала Cu₇SiS₅I при різних температурах *T*, K: 1 – 141, 2 – 164, 3 – 184, 4 – 200, 5 – 222, 6 – 261, 7 – 298.

Ізоабсорбційні дослідження краю оптичного поглинання кристалів Cu_7SiS_5I показали, що в інтервалі температур 77– 300 К не спостерігається ніяких особливостей, що вказує на відсутність фазових переходів у досліджуваному температурному інтервалі. На відміну від Cu_6PS_5I , у кристалі Cu_7SiS_5I , як і в кристалі Cu_7GeS_5I , при низьких температурах на краю поглинання екситонні смуги не спостерігаються, а край поглинання (рис. 2) в області прямих оптичних переходів має експонентціальну форму, що описується емпіричним правилом Урбаха [6]:

$$\alpha(h\nu,T) = \alpha_o \cdot \exp\left[\frac{\sigma(h\nu - E_0)}{kT}\right], \quad (1)$$

де $E_U = kT / \sigma$ – урбахівська енергія, σ – параметр крутизни краю поглинання, α_0 та E_0 – координати точки збіжності урбахівського "віяла". Координати точки збіжності урбахівського краю поглинання α_0 та E_0 для кристала Cu₇SiS₅I наведено в табл. 1.

Оцінка енергії ефективного фонона $\hbar \omega_p$, який бере участь у формуванні краю поглинання, проводилася за допомогою

температурної залежності параметра σ (див. вставку на рис. 2), що характеризує нахил краю поглинання, та за відомою формулою Мара [7]:

$$\sigma(T) = \sigma_0 \cdot \left(\frac{2kT}{\hbar\omega_p}\right) \cdot th\left(\frac{\hbar\omega_p}{2kT}\right), \qquad (2)$$

де $\hbar \omega_p$ – енергія ефективного фонона в одноосциляторній моделі, що описує електрон-фононну взаємодію (ЕФВ); σ_0 – параметр, зв'язаний з постійною ЕФВ *g* співвідношенням $\sigma_0=2/3g$. За допомогою (2) також отримано параметр σ_0 , який характеризує величину ЕФВ. Для кристала Cu₇SiS₅I, як і для кристала Cu₇GeS₅I, значення параметра $\sigma_0 < 1$, що свідчить про сильну ЕФВ. Значення параметрів $\hbar \omega_p$ та σ_0 наведено в табл. 1.

Рис. 2. Спектри краю поглинання кристала Cu₇SiS₅I при різних температурах *T*, К: 1 – 77, 2 – 150, 3 – 200, 4 – 250, 5 – 300. На вставці наведено температурну залежність параметра σ .

Поява урбахівських ділянок на довгохвильових "хвостах" краю поглинання в твердих тілах пояснюється проявом ефектів ЕФВ. Для кристалів родини аргіродитів найбільш придатною для пояснення правила Урбаха з позиції ЕФВ виявляється модель Доу-Редфілда [8]. Згідно з моделлю Доу-Редфілда урбахівська форма краю поглинання, виникає внаслідок взаємодії електрона з мікроелектричними полями LO-фононів в іонних кристалах та заряджених домішок у напівпровідниках [9].

Таблиця 1

Параметри урбахівського краю поглинання та параметри ЕФВ кристалів Cu₇GeS₅I та Cu₇SiS₅I

Кристал	Cu ₇ GeS ₅ I	Cu ₇ SiS ₅ I
$oldsymbol{lpha}_0$, см $^{-1}$	1.1×10 ⁶	7.8×10 ⁵
E_0 , eB	2.371	2.593
$\hbar arphi_p$, меВ	28.7	43.1
$\sigma_{_0}$	0.81	0.60
$ heta_{\!\scriptscriptstyle E}$, K	333	511
$(E_U)_0$, меВ	17.8	35.9
$(E_U)_1$, меВ	35.1	75.1
E_{g}^{*} (300K), eB	2.125	2.250
<i>E_U</i> (300К), меВ	35.0	52.0
$E_g^*(0), \text{ eB}$	2.247	2.365
S_g^*	8.5	12.3

Для підтвердження застосовності моделі Доу-Редфілда для опису ЕФВ використано підхід, запропонований у [10]. В рамках цього підходу було побудовано графічну залежність між $E_g^*(T)th(\hbar\omega_p/2kT)$ ta $\left[1-th(\hbar\omega_{v}/2kT)\right]$ (рис. 3). Її лінійний характер підтверджує ефективність застосування моделі Доу-Редфілда до опису ЕФВ у кристалі Cu₇SiS₅I.

Рис. 3. Залежність між $E_g^*(T)th(\hbar\omega_p/2kT)$ та [$1-th(\hbar\omega_p/2kT)$] для кристала Cu₇SiS₅I.

За результатами аналізу краю поглинання було отримано температурні залежності ширини оптичної псевдощілини E_g^* та урбахівської енергії E_U (рис. 4), які добре описуються в рамках моделі Ейнштейна за допомогою співвідношень [11, 12]:

$$E_{g}^{*}(T) = E_{g}^{*}(0) - S_{g}^{*}k\theta_{E}\left[\frac{1}{\exp(\theta_{E}/T) - 1}\right], (3)$$

$$(E_U) = (E_U)_0 + (E_U)_1 \left[\frac{1}{\exp(\theta_E / T) - 1} \right],$$
 (4)

де $E_g^*(0)$ та S_g^* – відповідно ширина оптичної псевдощілини при 0 К та безрозмірна константа; $(E_U)_0$ та $(E_U)_1$ – постійні величини, θ_{E} – температура Ейнштейна, яка відповідає усередненій частоті фононних збуджень системи невзаємодіючих гармонічних осциляторів. Слід зазначити, що експериментальні залежності E_g^* та E_U добре описуються за допомогою співвідношень (3) та (4) з параметрами підгонки, значення яких наведено В табл. 1. Розраховані за допомогою (3) та (4) температурні залежності E_g^* та E_U наведено на рис. 4 у вигляді суцільної та штрихованої ліній.

Рис. 4. Температурні залежності ширини оптичної псевдощілини E_g^* (1) та урбахівської енергії E_U (2) кристала Cu₇SiS₅I.

В роботі [13] було показно, що енергетична ширина урбахівського краю поглинання визначається температурним і структурним розупорядкуванням:

$$E_U = k_0 (W_T^2 + W_X^2) = (E_U)_T + (E_U)_X,$$
(5)

де k_0 – константа, W_T^2 – середньоквадратичне відхилення від електричного потенціалу ідеально впорядкованої структури, викликане температурним розупорядку-

ванням, W_x^2 – середньоквадратичне відхилення, що характеризує структурне розупорядкування. Згідно з роботою [13], температурний $(E_{II})_T$ структурта ний $(E_U)_X$ внески в E_U є незалежними, еквівалентними та адитивними. Температурне розупорядкування відбувається за рахунок теплових коливань гратки, що веде до розмиття краю поглинання за рахунок ЕФВ. Структурне розупорядкування за своєю природою може бути власним та індукованим. Вплив обох типів розупорядкування на урбахівську поведінку краю поглинання кристалічних та аморфних напівпровідників теоретично обґрунтовано в роботі [14].

Слід зазначити, що в кристалі Си₇SiS₅I розмиття краю поглинання тільки визначається не тепловими коливаннями гратки, але й структурним розупорядкуванням. В роботі [15] було показано, що внесок структурного розу порядкування $(E_U)_x$ в суперіонних провідниках складається з двох частин – внесків статичного $(E_U)_{X \text{ stat}}$ та динамічного $(E_U)_{X,dyn}$ структурного розупорядкування. Як і в Cu7GeS5I, причиною статичного структурного розупорядкування $(E_{II})_{X \text{ stat}}$ є висока концентрація неупорядкованих вакансій міді, яка веде до виникнення локальних неоднорідних електричних полів, що, в свою чергу, приводять до додаткового розмиття країв дозволених енергетичних зон.

Причиною виникнення динамічного структурного розупорядкування $(E_U)_{X,dyn}$ в кристалі Cu₇SiS₅I, як і у випадку кристала Cu₇GeS₅I, є наявність мобільних іонів міді, які беруть участь в іонному транспорті і забезпечують високу іонну провідність. Розрахунки показали, що внесок структурного розупорядкування в урбахівську енергію E_U при *T*=300 К для кристала Cu₇SiS₅I складає 69%, тоді як для кристала Cu₇GeS₅I – 51%.

Висновки

В даній роботі вивчено частотну поведінку електричної провідності б' суперіонного кристала Си₇SiS₅I в інтервалі частот 1.0·10⁶-1.2·10⁹ Гц та інтервалі температур 100–300 К. На частотних електричної залежностях провідності виявлено дві дисперсійні області, викликані проявом об'ємної електричної провідності та контактного ефекту. З ростом температури встановлено лінійне збільшення електричної провідності відповідно до закону Арреніуса, що свідчить про її термоактиваційну природу.

Дослідження краю поглинання у кристалі Си₇SiS₅I показали, що в досліджуваному інтервалі температур 77-300 К край поглинання має експоненціальну форму, а його температурна поведінка описується правилом Урбаха. За температурними залежностями параметру нахилу краю поглинання отримано параметр електрон-фононної взаємодії (EΦB), величина ($\sigma_0 < 1$) якого вказує на сильну ЕФВ в досліджуваному кристалі. Показано, що для кристала Си₇SiS₅I найбільш придатною для пояснення природи ЕФВ виявляється модель Доу-Редфілда.

Встановлено, що температурні залежності таких параметрів урбахівського краю поглинання як оптична псевдощілина і урбахівська енергія добре описуються в рамках моделі Ейнштейна. Розраховано внески структурного та температурного розупорядкування в урбахівську енергію, які при T=300 К складають відповідно 69% та 31%.

СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ

- Kuhs W.F., Nitsche R., Scheunemann K. The argyrodites – a new family of the tetrahedrally close-packed srtuctures // Mater. Res. Bull. – 1979. – Vol. 14. – P. 241–248.
- Студеняк І.П., Краньчец М. Процеси розупорядкування в суперіонних провідниках зі структурою аргіродита. Ужгород: Говерла, 2007. 208 с.

- Studenyak I.P., Kokhan O.P., Kranjčec M., Hrechyn M.I., Panko V.V. Crystal growth and phase interaction studies in Cu₇GeS₅I–Cu₇SiS₅I superionic system // J. Cryst. Growth – 2007. – Vol. 306. – P. 326–329.
- Orliukas A.F., Kezionis A., Kazakevicius E. Impedance spectroscopy of solid electrolytes in the radio frequency range // Solid State Ionics – 2005. – Vol. 176. – P. 2037-2043.
- Studenyak I.P., Kranjčec M., Kovacs Gy.Sh., Panko V.V., Desnica D.I., Slivka A.G., Guranich P.P. The effect of temperature and pressure on the optical absorption edge in Cu₆PS₅X (X=Cl, Br, I) crystals // J. Phys. Chem. Solids – 1999. – Vol. 60. – P. 1897–1904.
- Urbach F. The long-wavelength edge of photographic sensitivity and electronic absorption of solids // Phys. Rev. – 1953. – Vol. 92. – P. 1324–1326.
- Kurik M.V. Urbach rule (Review) // Phys. Stat. Sol. (a) – 1971. – Vol. 8, №1. – P.9-30.
- Studenyak I.P., Kranjcec M., Kovacs Gy.Sh., Panko V.V., Azhnyuk Yu.M., Desnica D.I., Borets O.M., Voroshilov Yu.V. Fundamental optical absorption edge and exciton-phonon interaction in Cu₆PS₅Br superionic ferroelastic // Mat. Sci. & Engin. – 1998. – Vol.B52. – P.202-207.
- 9. Dow J.D., Redfield D. Toward a unified

Стаття надійшла до редакції 19.04.2013

theory of Urbach's rule and exponential absorption edge // Phys. Rev. B - 1972. - Vol.5. - P. 594-610.

- Samuel L., Brada Y., Burger A., Roth M. Urbach rule in mixed single crystals of Zn_xCd_{1-x}Se // Phys. Rev. B – 1987. – Vol. 36. – P. 1168-1173.
- Beaudoin M., DeVries A.J.G., Johnson S.R., Laman H., Tiedje T. Optical absorption edge of semi-insulating GaAs and InP at high temperatures // Appl. Phys. Lett. 1997. Vol.70. P. 3540–3542.
- Yang Z., Homewood K.P., Finney M.S., Harry M.A., Reeson K.J. Optical absorption study of ion beam synthesized polycrystalline semiconducting FeSi₂ // J. Appl. Phys. – 1995. – Vol.78. – P. 1958– 1963.
- Cody G.D., Tiedje T., Abeles B., Brooks B., Goldstein Y. Disorder and the optical-absorption edge of hydrogenated amorphus silicon // Phys. Rev. Letters – 1981. – Vol.47. – P. 1480–1483.
- Grein C.H., John S. Effects of acousticand optical-phonon sidebands on the fundamental optical-absorption edge in crystals and disordered semiconductors // Phys. Rev. B – 1990. – Vol.41. – P.7641-7646.
- Studenyak I.P., Kranjčec M., Kurik M.V. Urbach rule and disordering processes in Cu₆P(S_{1-x}Se_x)₅Br_{1-y}I_y superionic conductors // J. Phys. Chem. Solids – 2006. – Vol.67. – P. 807–817.

V.V. Bilanchuk¹, Y.Y. Rati¹, I.P. Studenyak¹, J. Banys² ¹Uzhhorod National University, Pidhirna Str. 46, 88000, Uzhhorod ²Vilnius University, Saulėtekio al. 9, LT-2040 Vilnius, Lithuania

ELECTRICAL CONDUCTIVITY AND ABSORPTION EDGE IN Cu₇SiS₅I CRYSTALS

Experimental results of frequency and temperature studies of electrical conductivity in Cu_7SiS_5I superionic crystal in frequency range of $1.0 \cdot 10^6 - 1.2 \cdot 10^9$ Hz and temperature interval of 100-300 K are discussed. It is shown that in the temperature interval 77–300 K the optical absorption edge has an exponential shape, the temperature behave of which is described by the Urbach rule. It should be noted that the temperature dependences of such parameters of Urbach absorption edge as optical pseudogap and Urbach energy are well described in the framework of the Einstein model.

Keywords: superionic crystal, electrical conductivity, absorption edge, Urbach rule, optical pseudogap.

В.В. Биланчук¹, И.И. Рати¹, И.П. Студеняк¹, Ю. Банис² ¹Ужгородский национальный университет, 88000, Ужгород, ул. Пидгирна, 46 ²Вильнюский университет, Литва, LT-2040, Вильнюс, аллея Саулетико, 9

ЭЛЕКТРИЧЕСКАЯ ПРОВОДИМОСТЬ И КРАЙ ПОГЛОЩЕНИЯ КРИСТАЛЛОВ Cu₇SiS₅I

В роботе приведены результаты экспериментальных исследований частотного и температурного поведения электропроводности суперионного кристалла Cu₇SiS₅I в частотном диапазоне $1.0 \cdot 10^6 - 1.2 \cdot 10^9$ Гц и температурном интервале 100-300 К. Результаты исследований спектральных зависимостей коэффициента поглощения показали, что в интервале температур 77-300 К край поглощения имеет экспоненциальную форму, а его температурное поведение описывается правилом Урбаха. Установлено, что температурные зависимости таких параметров урбаховского края поглощения как оптическая псевдощель и урбаховская энергия описываются в рамках модели Эйнштейна.

Ключевые слова: суперионный кристалл, электропроводность, край поглощения, правило Урбаха, оптическая псевдощель.