УДК 539.3

НАПРУЖЕНИЙ СТАН ПОРОЖНИСТОЇ ЕЛЕКТРОПРОВІДНОЇ КУЛІ ЗА ЕЛЕКТРОМАГНЕТНОЇ ДІЇ В РЕЖИМІ ЗГАСНОЇ СИНУСОЇДИ

Р. С. МУСІЙ

Національний університет "Львівська політехніка"

Сформульовано динамічну центрально-симетричну задачу термомеханіки для порожнистої електропровідної кулі за однорідної нестаціонарної електромагнетної дії в режимі згасної синусоїди (РЗС). З використанням кубічної апроксимації азимутальної компоненти вектора напруженості магнетного поля і радіальної компоненти тензора напружень за радіальною координатою отримано розв'язок задачі і числово досліджено термонапружений стан і несучу здатність неферомагнетних куль у цьому режимі.

Ключові слова: динамічна центрально-симетрична задача термомеханіки, електропровідна куля, електромагнетна дія, режим згасної синусоїди, резонансна частота, несуча здатність.

Вивчення пружної рівноваги елементів конструкцій за комплексної дії силових, температурних та електромагнетних навантажень – основа прогнозування їх міцності, надійності, зниження ваги і матеріалоємності, що важливо у різних галузях промисловості, приладобудування та енергетики. В багатьох технічних пристроях, які зазнають впливу різних фізичних дій, зокрема імпульсного електромагнетного поля (ЕМП) з модуляцією амплітуди, конструктивним елементом є порожниста металева куля. В сучасних технологіях імпульсних обробок [1-6] використовують імпульсні ЕМП з модуляцією амплітуди, зокрема в РЗС [3, 5-8]. Такі ЕМП створюють у кульових електропровідних елементах нестаціонарні температурні поля і напруження, які за відповідних параметрів імпульсного ЕМП можуть досягати суттєвих значень, аж до втрати несучої здатності елементів. Наведено [4, 9–12] результати динамічної поведінки порожнистої кулі за імпульсних силових і теплових дій. Відомі також дослідження її термонапруженого стану під впливом електромагнетного імпульсу [13, 14] та за електромагнетної дії з імпульсним модулівним сигналом [15]. Але не вивчено термонапружений стан такої кулі за електромагнетної дії в РЗС.

Нижче записано розв'язок динамічної центрально-симетричної задачі термомеханіки для порожнистої електропровідної кулі та досліджено її термомеханічну поведінку і несучу здатність під час електромагнетної дії в РЗС за частот несучого сигналу поза околом резонансних і рівних першій резонансній частоті.

Постава задачі. Розглянемо електропровідну порожнисту кулю, віднесену до сферичної системи координат (r, φ, θ) , центр якої збігається з центром кулі. Куля зазнає дії імпульсного ЕМП в РЗС, заданого значеннями дотичної азимутальної компоненти $H_{\varphi}(r,t)$ вектора напруженості магнетного поля $\vec{H} = \{0; 0; H_{\varphi}(r,t)\}$ на внутрішній $r = r_0$ і зовнішній $r = r_1$ поверхнях. Куля перебуває в умовах конвективного теплообміну з довкіллям, а її поверхні вільні від силового навантаження. Матеріал кулі однорідний ізотропний і неферомагнетний, а його фізико-

Контактна особа: Р. С. МУСІЙ, e-mail: musiy@polynet.lviv.ua

механічні характеристики вважаємо сталими. Імпульсне ЕМП в РЗС створює в ній джоулеві тепловиділення $Q = (\operatorname{rot} \vec{H})/\sigma_0$ і пондеромоторні сили $\vec{F} = \mu \operatorname{rot} \vec{H} \times \vec{H}$, де σ_0 , μ – коефіцієнт електропровідності і магнетна проникність матеріалу кулі [16–20], що зумовлюють нестаціонарні температуру T і компоненти тензора напружень σ_{kk} , $k = r, \varphi, \theta$, які подаємо у вигляді суми двох складників: $T = T^Q + T^F$ і $\sigma_{kk} = \sigma_{kk}^Q + \sigma_{kk}^F$ [7, 14, 16, 18]. Тут T^Q , σ_{kk}^Q і T^F , σ_{kk}^F – складники, зумовлені джоулевим теплом і пондеромоторними силами. Температура T і напруження σ_{kk} викликають у кулі інтенсивності напружень σ_i , які можуть досягати великих значень, аж до втрати її несучої здатності [14, 16].

Якщо ключові функції залежать лише від радіальної координати r і часу t, за вихідну вибираємо систему рівнянь центрально-симетричної задачі термомеханіки для електропровідних куль [14, 17–20].

Методика розв'язування крайових задач. Для побудови розв'язків початково-крайових задач, які описують електромагнетне та температурне поля, а також компоненти напружень, ключові функції $\Phi(r,t) = \{H_z, T_*, \sigma_{rr}^Q, \sigma_{rr}^F, \sigma_{rr}^{T_*}\}$ шукаємо у вигляді кубічних поліномів $\Phi(r,t) = \sum_{i=1}^{4} a_{i-1}(t) r^{i-1}$, коефіцієнти яких визначаємо через задані граничні значення функцій $\Phi(r,t)$ на поверхнях $r = r_0$ і $r = r_1$ кулі та інтегральні характеристики $\Phi_s(t) = \frac{s+1}{R^{s+1}} \int_0^R \Phi(r,t) r^{s+1} dr$, s = 1, 2

цих функцій за радіальною координатою. У результаті вихідні початково-крайові задачі на ключові функції зводимо до задач Коші на інтегральні характеристики цих функцій та, використовуючи інтегральне перетворення Лапласа, записуємо їх розв'язки для довільної однорідної нестаціонарної електромагнетної дії [13–15].

Розв'язки задачі за електромагнетної дії в РЗС. За однорідної дії в РЗС граничні значення $H_{\phi}^{-}(t) = H_{\phi}(r_0, t)$ і $H_{\phi}^{+}(t) = H_{\phi}(r_1, t)$ функції $H_{\phi}(r, t)$ мають вигляд $H_{\phi}^{\pm}(r, t) = kH_0e^{-\beta t}\sin\omega t$ [2, 3, 6–8]. Тут k – нормувальний множник; β – параметр, що характеризує час згасання амплітуди синусоїдальних електромагнетних коливань кругової несучої частоти ω ; H_0 – максимальне значення напруженості магнетного поля, яке виникає за дії в РЗС на поверхнях кулі. Для компоненти $H_{\phi}(r, t)$ вектора напруженості магнетного поля в кулі отримуємо вираз

$$H_{\varphi}(r,t) = \kappa H_0 \sum_{i=1}^{4} \sum_{m=1}^{2} \left[D_{1im} e^{-\beta t} \sin \omega t + D_{2im} (e^{p_m t} - e^{-\beta t} \cos \omega t) \right] r^{i-1} , \qquad (1)$$

де $D_{1im} = (a_{i-1,3} + a_{i-1,4}) - A_{im} \frac{p_m + \beta}{(p_m + \beta)^2 + \omega^2}; \quad D_{2im} = A_{im} \frac{\omega}{(p_m + \beta)^2 + \omega^2};$

 $A_{im} = a_{i-1,1}(\Phi_{11}^m + \Phi_{12}^m) + a_{i-1,2}(\Phi_{21}^m + \Phi_{22}^m).$

Звідси записуємо питомі густини джоулевих тепловиділень Q(r,t)

$$\frac{Q(r,t)}{H_0^2} = \frac{\kappa^2}{\sigma} \sum_{i=2}^4 \sum_{j=2}^4 \sum_{m=1}^4 \sum_{n=1}^4 ij\phi_{ijmn}(t) r^{i+j-4}$$
(2)

і радіальної компоненти $F_r(r,t)$ пондеромоторної сили

$$\frac{F_r(r,t)}{H_0^2} = -\kappa^2 \mu \sum_{i=2}^4 \sum_{j=2}^4 \sum_{m=1}^4 \sum_{n=1}^4 i\varphi_{ijmn}(t) r^{i+j-3} \,. \tag{3}$$

Тут

$$\begin{split} \phi_{ijmn} &= B_{1ijmn} e^{-2\beta t} + B_{2ijmn} e^{(p_m + p_n)t} + B_{3ijmn} e^{-2\beta t} \cos 2\omega t + B_{4ijmn} e^{-2\beta t} \sin 2\omega t + \\ &+ B_{5ijmn} (e^{(p_m - \beta)t} + e^{(p_n - \beta)t}) \cos \omega t + [B_{6ijmn} e^{(p_m - \beta)t} + B_{7ijmn} e^{(p_n - \beta)t}] \sin \omega t ; \\ &B_{1ijmn} = 1/2 (D_{2im} D_{1jn} + D_{2im} D_{2jn}); \quad B_{2ijmn} = D_{2im} D_{2jn}; \\ &B_{3ijmn} = 1/2 (D_{2im} D_{2jn} - D_{1im} D_{1jn}); \quad B_{4ijmn} = -1/2 (D_{2im} D_{1jn} + D_{1im} D_{2jn}); \\ &B_{5ijmn} = -D_{2im} D_{2jn}; \quad B_{6ijmn} = D_{2im} D_{1jn}; \quad B_{7ijmn} = D_{1im} D_{2jn}; \end{split}$$

 p_m і p_n – корені рівняння $p^2 - (d_1 + d_6)p + d_1d_6 - d_2d_5 = 0$.

На основі співвідношення (2) для джоулевих тепловиділень Q(r,t) за врахування адіабатичності нагріву електропровідної кулі імпульсним ЕМП в РЗС отримуємо вираз для складника температури $T^Q(r,t)$:

$$\frac{T^{Q}(r,t)}{H_{0}} = \kappa^{2} \frac{\kappa}{\sigma_{0} \lambda} \sum_{i=1}^{4} \sum_{j=1}^{4} \sum_{m=1}^{2} \sum_{n=1}^{2} i j \varphi_{ijmn}^{T}(t) r^{i+j-4}, \qquad (4)$$

$$\begin{split} \varphi_{ijmn}^{T}(t) &= B_{1ijmn} \frac{1 - e^{-2\beta t}}{2\beta} + B_{2ijmn} \frac{e^{\left(p_{m} + p_{n}\right)t} - 1}{p_{m} + p_{n}} + \\ &+ B_{3ijmn} \frac{e^{-2\beta t}}{4\beta^{2} + 4\omega^{2}} \Big[2\omega \sin \omega 2t + 2\beta (1 - \cos 2\omega t) \Big] + \\ &+ B_{4ijmn} \frac{e^{-2\beta t}}{4\beta^{2} + 4\omega^{2}} \Big[2\omega (1 - \cos 2\omega t) - 2\beta \sin \omega 2t \Big] + \\ &+ B_{5ijmn} \left\{ \frac{e^{\left(p_{m} - \beta\right)t}}{\left(p_{m} - \beta\right)^{2} + \omega^{2}} \Big[\left(p_{m} - \beta\right)(\cos \omega t - 1) + \omega \sin \omega t \Big] + \\ &+ \frac{e^{\left(p_{n} - \beta\right)t}}{\left(p_{n} - \beta\right)^{2} + \omega^{2}} \Big[\left(p_{n} - \beta\right)(\cos \omega t - 1) + \omega \sin \omega t \Big] \right\} + \\ &+ B_{6ijmn} \frac{e^{\left(p_{m} - \beta\right)t}}{\left(p_{m} - \beta\right)^{2} + \omega^{2}} \Big[\left(p_{m} - \beta\right) \sin \omega t + \omega (1 - \cos \omega t) \Big] + \\ &+ B_{7ijmn} \frac{e^{\left(p_{n} - \beta\right)t}}{\left(p_{n} - \beta\right)^{2} + \omega^{2}} \Big[\left(p_{n} - \beta\right) \sin \omega t + \omega (1 - \cos \omega t) \Big] . \end{split}$$

За виразів (3) і (4) знаходимо розв'язки задачі термомеханіки і записуємо вирази для складників $\sigma_{\bar{k}k}^{Q}(r,t), \sigma_{kk}^{F}(r,t)$ ($k = r, \varphi, \theta$) динамічних напружень і температури T^{F} , а також інтенсивності $\sigma_{i} = \sqrt{(3I_{2}(\sigma) - I_{1}^{2}(\sigma))/2}$ тензора $\hat{\sigma}$ сумар-

де

них напружень $\sigma_{kk} = \sigma_{\bar{k}k}^Q + \sigma_{kk}^F$ [7, 14, 18]. Тут $I_j(\sigma)(j=1,2) - j$ -ий інваріант тензора сумарних напружень.

Числовий аналіз. Оцінювали термомеханічну поведінку і несучу здатність неферомагнетних (сталь X18H9T, мідь, алюміній) порожнистих куль з радіусами $r_0 = 8 \text{ mm}$ і $r_1 = 10 \text{ mm}$. Параметри електромагнетної дії в РЗС такі: тривалість згасної синусоїди $t_i = 100 \text{ µs}$, $\omega = 6,28 \cdot 10^5 \text{ l/s}$ (частота ω не належить до околу резонансних ω_{rj} і за неї відбувається десять електромагнетних коливань упродовж часу t_i).

Рис. 1. Зміна в часі радіальної компоненти F_r пондеромоторної сили (*a*), складників температури T^F і T^Q (*b*, *c*), радіальних σ_{rr} (*d*) і азимутальних $\sigma_{\phi\phi}$ (*e*) напружень та інтенсивності напружень σ_i (*f*) у порожнистій сталевій кулі за дії в РЗС за несучої частоти $\omega \neq \omega_{rj}$ (поза околом резонансних частот). Криві *I*–3 відповідають значенням радіальної координати $r = r_1$; $r_1 - h/4$; $r_1 - h/2$.

Fig. 1. Temporal change of the radial component of ponderomotive force $F_r(r = r_0)(a)$, temperature components $T^F(r = r_0 + h/4)$ and $T^Q(r = r_0)(b, c)$, radial $\sigma_{rr}(\sigma_{rr}^Q - r = r_0 + h/4)$ and $\sigma_{rr}^F - r = r_0 + h/2)(d)$ and azimuth $\sigma_{\phi\phi}(\sigma_{\phi\phi}^Q - r = r_0)$ and $\sigma_{\phi\phi}^F - r = r_1 - h/4)(e)$ stresses and stresses intensity $\sigma_i(f)$ in a hollow steel sphere under effect in conditions of sinusoid decay (CSD) for bearing frequency ($\omega = 6.28 \cdot 10^5 \text{ 1/s}$) (outside the range of resonance frequencies). Curves l-3 correspond to values of the radial coordinate $r = r_1; r_1 - h/4; r_1 - h/2$.

100

Виявлено (рис. 1) зміну в часі пондеромоторної сили F_r , складників температури T^F і T^Q , радіальних σ_{rr}^Q , σ_{rr}^F та азимутальних $\sigma_{\phi\phi}^Q$, $\sigma_{\phi\phi}^F$ напружень, а також інтенсивності сумарних напружень σ_i у сталевій кулі. Значення F_r і T^Q найбільші на внутрішній поверхні кулі, при $r = r_0 + h/4$ – на 20...25% менші, а при $r = r_0 + h/2$ – найменші. Найбільші значення складника температури T^F (при $r = r_0 + h/4$) нехтовно малі проти таких для складника T^Q .

Рис. 2. Зміна в часі напружень σ_{rr}^F , σ_{qr}^Q , $\sigma_{\phi\phi}^F$, $\sigma_{\phi\phi}^Q$ (*a*–*d*), сумарної температури $T^Q + T^F(e)$ та інтенсивності сумарних напружень σ_i (*f*) у порожнистій сталевій кулі за несучої частоти $\omega_{r1} = 4,88 \cdot 10^6$ 1/s: *1*–3 – значення радіальної координати $r = r_1, r = r_1 - h/4, r = r_1 - h/2$.

Fig. 2. Temporal change of stresses σ_{rr}^F $(r = r_0 + h/2)(a)$, σ_{rr}^Q $(r = r_0 + h/2)(b)$, $\sigma_{\phi\phi}^F$ $(r = r_1)(c)$, $\sigma_{\phi\phi}^Q$ $(r = r_0)(d)$, total temperature $T^Q + T^F(e)$ and intensity of total stresses $\sigma_i (r = r_1)(f)$ in a hollow electric-conducting (steel) sphere for bearing frequency of electromagnetic oscillations $\omega = \omega_{r1} = 4.88 \cdot 10^6$ 1/s: *1–3* correspond to values of the radial coordinate $r = r_1$, $r = r_1 - h/4$, $r = r_1 - h/2$. Проілюстровано (рис. 1*d*–*e*) зміну в часі складників радіальних і азимутальних напружень у сталевій кулі за значень *r*, коли вони найбільші (σ_{rr}^Q при $r = r_0 + h/4$ і σ_{rr}^F при $r = r_0 + h/2$, рис. 1*d*; $\sigma_{\phi\phi}^Q$ при $r = r_0$ і $\sigma_{\phi\phi}^F$ при $r = r_1 - h/4$, рис. 1*e*), а також інтенсивності сумарних напружень σ_i (рис. 1*f*) при $r = r_0$; $r_0 + h/4$ і $r_0 + h/2$ (криві *l*–*3*).

Складники σ_{rr}^{Q} і $\sigma_{\phi\phi}^{Q}$ радіальних і азимутальних напружень, зумовлених джоулевим теплом, суттєво більші, ніж спричинені пондеромоторною силою. Складник $\sigma_{\phi\phi}^{Q}$ є визначальним, оскільки майже в 50 разів перевищує складники σ_{rr}^{Q} і $\sigma_{\phi\phi}^{F}$.

Відтворено (рис. 2) зміну в часі складників σ_{rr}^F , $\sigma_{\rho r}^Q$ і $\sigma_{\phi \phi}^F$, $\sigma_{\phi \phi}^Q$ радіальних та азимутальних напружень, сумарної температури $T = T^Q + T^F$ та інтенсивності сумарних напружень σ_i за частоти несучого сигналу ω , рівної першій резонансній ($\omega = \omega_{r1} = 4,88 \cdot 10^6$ 1/s, тобто приблизно 76,6 електромагнетних коливань упродовж часу t_i).

Залежності величин подано за їх максимальних значень (σ_{rr}^Q і σ_{rr}^F при $r = r_0 + h/2$, рис. 2*a*, *b*; $\sigma_{\phi\phi}^F$ при $r = r_1$ і $\sigma_{\phi\phi}^Q$ при $r = r_0$, рис. 2*c*, *d*; $T^Q + T^F$ при $r = r_1$; $r_1 - h/4$; $r_1 - h/2$ (криві *l*-3), рис. 2*e*; σ_i при $r = r_1$, рис. 2*f*). Складники напружень змінюються осциляційно в часі і набувають максимальні значення в режимі усталених коливань (приблизно за час $t \ge 0, 3 \div 0, 4t_i$).

Рис. 3. Залежність максимальних значень інтенсивності сумарних напружень σ_i^{\max} для порожнистих неферомагнетних куль за несучої частоти $\omega \neq \omega_{rj}$ (*a*: товсті лінії – $t_i = 1000 \ \mu s$, тонкі – $t_i = 100 \ \mu s$) та сталевої порожнистої кулі від величини H_0 за несучої частоти $\omega = \omega_{r1}$ за різних тривалостей t_i електромагнетної дії в РЗС (*b*: криві 1, 2 – $t_i = 1000 \ \mu s$).

Fig. 3. Dependence of maximum values of the total stresses intensity σ_i^{max} in hollow non-ferromagnetic spheres for the bearing frequency $\omega \neq \omega_{rj}$ (*a*: thick lines $-t_i = 1000 \,\mu\text{s}$, thin lines $-t_i = 100 \,\mu\text{s}$) and steel hollow sphere on H_0 for bearing frequency $\omega = \omega_{r1}$ at different time t_i of electromagnetic action in CSD (*b*: curves I, $2 - t_i = 1000$ and $100 \,\mu\text{s}$).

Побудовано (рис. 3*a*) залежності максимальних значень інтенсивності напружень σ_i^{max} в сталевій (суцільні лінії), мідній (штрихпунктирні) та алюмінієвій (штрихові) порожнистих кулях з радіусами поверхонь $r_0 = 8 \text{ mm i } r_1 = 10 \text{ mm}$ від величини H_0 за різних тривалостей t_i і несучих частот $\omega \neq \omega_{*j}$ ($\omega = 6,28 \cdot 10^5$ 1/s, $t_i = 100$ µs; $\omega = 6,28 \cdot 10^4$ 1/s, $t_i = 1000$ µs). Як бачимо, при $t_i = 1000$ µs несуча здатність кулі зберігається за таких критичних значень напруженості H_0 магнетного поля на поверхнях кулі: для сталевої – $H_0 \le 2, 6 \cdot 10^6$ А/m, для мідної – $H_0 \le 2 \cdot 10^6$ А/m і для алюмінієвої – $H_0 \le 5 \cdot 10^5$ А/m.

ВИСНОВКИ

За частоти несучого сигналу ω, відмінної від частот околу резонансних ω_{ri},

під час дії в РЗС напруження, зумовлені джоулевим теплом, визначають термонапружений стан кулі та її несучу здатність. За частоти ω з околу резонансних ω_{ri}

напруження, викликані пондеромоторною силою, стають сумірними зі спричиненими джоулевим теплом. Зі зростанням часу t_i дії в РЗС вплив пондеромоторної сили на термонапружений стан кулі слабшає, а посилюється джоулевого тепла. Складники напружень від джоулевого тепла і пондеромоторної сили змінюються осциляційно в часі і набувають максимальні значення в режимі усталених коливань, які встановлюються приблизно за час $t = 0, 3 \div 0, 4t_i$. Максимальне значення складника температури T^F , зумовленої пондеромоторною силою, є нехтовним порівняно зі значенням складника температури T^Q за частоти $\omega \neq \omega_{ri}$, а за частоти $\omega = \omega_{ri}$ складає 10÷25% від аналогічного для T^Q . Зі збільшенням часу t_i електромагнетної дії в РЗС за фіксованої частоти несучого сигналу зростають максимальні значення температури і напружень. Максимальні значення інтенсивності сумарних напружень σ_i^{max} у неферомагнетних кулях за найбільшої напруженості магнетного поля на поверхнях кулі $H_{\text{max}} \leq 10^5 \,\text{A/m}$ можуть досягати значень, що відповідають межі пружної деформації тіла і лінійно зростають зі збільшенням тривалості електромагнетної дії в РЗС на резонансній частоті. Встановлено критичні значення параметрів електромагнетної дії в РЗС за різних значень несучої частоти для неферомагнетних (сталевих, мідних і алюмінієвих) порожнистих куль, коли вони зберігають несучу здатність.

РЕЗЮМЕ. Сформулирована динамическая центрально-симметричная задача термомеханики для полого электропроводного шара при однородном нестационарном электромагнитном воздействии. С использованием кубической аппроксимации азимутальной компоненты вектора напряженности магнитного поля и радиальной компоненты тензора напряжений по радиальной координате получено решение задачи и численно исследовано термонапряженное состояние и несущую способность неферромагнитных шаров при электромагнитном воздействии в режиме затухающей синусоиды.

SUMMURY. A dynamic central-symmetrical problem of thermomechanics for a hollow electric-conducting sphere under homogeneous non-stationary electromagnetic action is formulated. The problem solution is obtained using a cubic approximation azimuth vector component of magnetic field intensity and radial component of stress tensor with respect to the radial coordinate. The thermal stress state and bearing capacity of non-ferromagnetic spheres under electromagnetic effect in the conditions of sinusoid decay are evaluated numerically.

- Баженов В. Г., Петров М. В. О применении магнитоимпульсного способа деформирования для исследования вязкопластических характеристик материалов // Прикл. проблемы прочности и пластичности. Методы решения задач упругости и пластичности. – 1980. – № 37. – С. 18–25.
- 2. Батыгин Ю. В., Лавинский В. И., Хименко Л. Т. Импульсные магнитные поля для прогрессивных технологий. – Харьков: МОСТ-Торнадо, 2003. – 288 с.

- 3. Кнопфель Г. Сверхсильные импульсные магнитные поля. М.: Мир, 1972. 392 с.
- 4. *Писаренко Г. С., Лебедев А. А.* Сопротивление материалов деформированию и разрушению при сложном напряженном состоянии. К.: Наук, думка, 1969. 217 с.
- Сильные и сверхсильные магнитные ноля и их применение / Под ред. Ф. Херлаха. – М.: Мир, 1988. – 456 с.
- 6. Moon F. O. Problem in magneto-solid mechanics // Mechanics Today. 1978. 4. P. 307-309.
- Гачкевич О. Р., Мусій Р. С., Тарлаковський Д. В. Термомеханіка неферомагнетних електропровідних тіл за дії імпульсних електромагнетних полів з модуляцією амплітуди. – Львів: Сполом, 2011. – 216 с.
- 8. Тамм И. Е. Основы теории электричества. М.: Наука. 1967. 787 с.
- *Грибанов В. Ф., Паничкин Н. Г.* Связанные и динамические задачи термоупрогости. – М.: Машиностроение, 1984. – 184 с.
- 10. Коваленко А. Д. Основы термоупругости. К.: Наук, думка, 1970. 307 с.
- 11. Новацкий В. Теория упругости. М.: Мир, 1975. 872 с.
- 12. Подстригач Я. С., Коляно Ю. М. Обобщенная термомеханика. К.: Наук. думка, 1976. 310 с.
- 13. Гачкевич А. Р., Мусий Р. С., Стасюк Г. Б. Термомеханическое состояние полой электропроводной сферы при импульсном электромагнитном воздействии // Теорет. и прикл. механика. 2005. Вып. 40. С. 9–17.
- 14. *Мусій Р. С.* Динамічні задачі термомеханіки електропровідних тіл канонічної форми. – Львів: Растр-7, 2010. – 216 с.
- Мусій Р. С. Напружений стан електропровідної кулі за електромагнетної дії з імпульсним модуляційним сигналом // Фіз.-хім. механіка матеріалів. 2010. 46, № 6. С. 76–81.

(*Musii R. S.* Stressed state of a conducting sphere under the electromagnetic action with pulsed modulating signal // Materials Science. -2010. - 46, $N_{\odot} 6. - P. 800-807.$)

- 16. Бурак Я. Й., Гачкевич О. Р., Мусій Р. С. Термопружність електропровідних тіл за умов дії імпульсних електромагнетних полів // Мат. методи та фіз.-мех. поля. – 2006. – 49, № 1. – С. 75–84.
- Мусій Р. С. Формулювання крайових задач термомеханіки електропровідних тіл канонічної форми // Фіз.-хім. механіка матеріалів. – 2008. – 44, № 5. – С. 126–127. (*Musii R. S.* Formulation of boundary-value problems of thermomechanics of conducting bodies of canonical shapes // Materials Science. – 2008. – 44, № 5. – Р. 735–737.)
- 18. Гачкевич О. Р., Мусій Р. С. Несуча здатність електропровідних елементів канонічної форми за дії електромагнітних імпульсів // Там же. 2010. **46**, № 4. С. 92–97. (*Hachkevych O. R. and Musii R. S.* Bearing ability of conducting elements of the canonical shape under the action of electromagnetic pulses // Materials Science. 2010. **46**, № 4. P. 536–542.)
- Мусій Р. С. Ключове рівняння і розв'язок у напруженнях центрально-симетричної динамічної задачі термопружності для сфери // Там же. 2002. 38, № 1. С. 117–118. (Musii R. S. Fundamental equation and solution of a centrally symmetric dynamic problem of thermoelasticity for a sphere in stresses // Materials Science. 2002. 38, № 1. Р. 151–154.)
- 20. *Термоупругость* электропроводных тел / Я. С. Подстригач, Я. И. Бурак, А. Р. Гачкевич, Л. В. Чернявская. К.: Наук, думка, 1977. 247 с.

Одержано 02.02.2012