УДК 669.295:621.785.532

ВПЛИВ ВИХІДНОЇ СТРУКТУРИ НА АЗОТУВАННЯ ТИТАНОВОГО СПЛАВУ ВТ22

О. Г. ЛУК'ЯНЕНКО, І. М. ПОГРЕЛЮК, Т. М. КРАВЧИШИН, В. С. ТРУШ

Фізико-механічний інститут ім. Г. В. Карпенка НАН України, Львів

Досліджено азотування титанового сплаву ВТ22 різного вихідного структурного стану (грубо- та дрібнозеренна структура) за температур 750, 800 та 850°С, тривалості витримки до 8 h та тиску азоту 10⁵ Ра. Показано, що вихідний структурний стан сплаву впливає на кінетику взаємодії з азотом, ріст зміцненої приповерхневої зони, формування та властивості поверхневої нітридної плівки.

Ключові слова: титановий сплав, вихідний структурний стан, азотування, дифузійний шар, твердість, шорсткість поверхні.

Вступ. На сьогодні титанові сплави належать до матеріалів, які широко застосовують як у відповідальних виробах авіаційної й космічної техніки, так і для побутових речей. Світова титанова промисловість пропонує широкий вибір титанових сплавів. Перспективними для використання в авіабудуванні є високоміцні двофазні титанові сплави різних систем (Ti–6Al–2Sn–2Zr–2Mo–2Cr; Ti–6Al– 5Mo–5V–1,5Cu–1Fe; Ti–3Al–8V–6Cr–4Zr–4Mo тощо) [1]. Серед них деформівний (α + β)-титановий сплав BT22 на основі системи Ti–A1–Mo–V з додатками Fe i Cr використовують для виготовлення деталей літаків [2]. Титанові сплави виробництва різних країн близькі за складом та властивостями [2], проте можуть відрізнятися вихідним структурним станом. Однак вибір сплавів з різним вихідним структурним станом ускладнений відсутністю порівняльної інформації про їхні властивості, отримані за однакових умов хіміко-термічної обробки (XTO).

Попри безперечні переваги титанових сплавів над іншими конструкційними матеріалами, вони мають один дуже суттєвий недолік, який перешкоджає їх активному впровадженню в повсякденну практику машинобудування, а саме: низька зносотривкість і здатність до "схоплювання", спричинена холодним мікрозварюванням зі спряженим матеріалом під час тертя [3]. Внаслідок зростання виробництва і розширення сфер застосування сплавів титану виникає необхідність розробки методів і технологічних процесів, які дадуть змогу підвищити зносотривкість титанових сплавів [3–6]. Серед цих методів чільне місце займає азотування, оскільки за цього процесу відсутня адгезія під час тертя азотованих поверхонь титану [7].

Газове термічне азотування – традиційний метод ХТО металевих виробів – має переваги: його можна поєднати в одному технологічному циклі зі зміцнювальною термічною обробкою виробів із високоміцних титанових сплавів [8, 9], а також ним можна обробляти титанові вироби довільної форми.

Мета роботи – вивчити кінетику азотування та властивості азотованої поверхні та приповерхневого шару металу високоміцного титанового сплаву ВТ22 різного вихідного структурного стану.

Матеріал та методики. Досліджували зразки високоміцного (α + β)-титанового сплаву ВТ22 різного вихідного структурного стану, хімічний склад яких наведено в табл. 1.

Контактна особа: О. Г. ЛУК'ЯНЕНКО, e-mail: AGNSLukyanenko@i.ua

Зразки азотували в установці для термічної обробки у вакуумі та контрольованих газових середовищах за температур 750, 800 та 850°С, упродовж 2, 4 та 8 h і тиску азоту 10⁵ Ра. Для азотування використовували газоподібний азот технічної чистоти (ГОСТ 9293-74), вміст кисню $\leq 0,4$ vol.% та парів води $\leq 0,07$ g/m³. Азот перед подачею в реакційний простір печі висушували силікагелем та для зменшення вмісту кисню пропускали через нагріту титанову стружку.

Сплав	Вихідний структур- ний стан	Хімічний склад, wt.%											
		Легувальні елементи						Домішки, не більше				Основа	
		Al	V	Mo	Zr	Cr	Si	Fe	0	Н	N	С	Ti
Ι	грубо- зеренний	4,89	4,64	4,86	0,16	0,77	0,12	1,02	0,18	0,015	0,05	0,10	решта
II	дрібно- зеренний	5,34	5,00	5,25	0,18	1,20	0,03	1,12	0,12	0,016	0,007	0,02	решта

Таблиця 1. Хімічний склад титанового сплаву ВТ22 різного структурного стану

Зразки зважували на аналітичній вазі Voyager фірми OHAUS з точністю $\pm 0,0001$ g. Шліфи зі зразків титану різного структурного стану готували за стандартною методикою. Для травлення шліфів застосовували реактив: 1 vol. part HF + 1 vol. part HNO₃ + 3 vol. parts C₃H₈O₃; для висвітлювання: 5 ml HF + 95 ml HNO₃.

Мікроструктуру досліджували на мікроскопі "EPIQUANT", оснащеному цифровою камерою-окуляром eTREK DCM520 зі штатним програмним забезпеченням Image analyse для оцифрування та первинної обробки зображень.

Шорсткість поверхні зразків з титану ВТ22 вимірювали профілометром моделі 176021, який відповідає типу II і ступеню точності 2 згідно з ГОСТ 19300-86. Визначали середню арифметичну шорсткість поверхні R_a (µm) за ГОСТ 27789-73.

Внаслідок розчинення азоту в титановій матриці та хімічної реакції між ним і титаном формується зміцнений шар, який складається з фазової плівки (TiN_x; Ti₂N) та дифузійної зони (твердий розчин азоту в α -титані). Щоб оцінити розчинення елементів втілення у приповерхневому шарі металу, використовували метод мікротвердості, який чутливий до домішок втілення. Мікротвердість вимірювали на мікротвердомірі ПМТ-ЗМ за навантаження на індентор 0,49 та 0,98 N, згідно з ГОСТ 9450-76. Розподіл мікротвердості визначали на скісних шліфах, виготовлених під кутом ~ 15°, що дає змогу майже втричі подовжити газонасичену (дифузійну) зону і цим збільшити точність визначення її параметрів. За глибину зміцненого шару *l* приймали зону з підвищеною мікротвердістю, яка більш ніж на 20 HV_{0,49} перевищує твердість серцевини.

Фазовий склад поверхневих шарів визначали рентгенівським фазовим аналізом на дифрактометрі ДРОН-3.0 у монохроматичному Си K_{α} -випромінюванні з фокусуванням за схемою Брегга–Брентано. Напруга на аноді рентгенівської трубки становила 30 kV за струму 20 mA. Використовували пакети програмного забезпечення Sietronix, Powder Cell 2.4 і FullProf, за допомогою яких виконували Фур'є-обробку дифрактограм, визначали положення дифракційних максимумів відбиття та параметри гратки, які ідентифікували за картотекою фаз JCPDS–ASTM.

Результати та їх обговорення. У вихідному стані сплав ВТ22 з грубозеренною структурою (сплав I) є сумішшю α - і β -фаз. Середній розмір β -зерен становить 100...150 µm, всередині яких спостерігаємо пластини α -фази (рис. 1*a*). Структура вихідного стану сплаву ВТ22 з дрібнозеренною структурою (сплав II) – це дрібні глобулярні зерна α - і β -фаз розміром 5...10 µm (рис. 1*b*).

Рис. 1. Вихідний структурний стан титанового сплаву ВТ22: *a* – сплав I; *b* – сплав II. Fig. 1. Initial structure state of BT22 titanium alloy: *a* – alloy I; *b* – alloy II.

Така відмінність вихідного структурного стану впливає на взаємодію цих сплавів з газоподібним азотом за температур 750, 800 та 850°С. За цих температур і тиску азоту 10^5 Ра зразки сплаву ВТ22 з різним вихідним структурним станом поглинають азот за законом, наближеним до параболічного (рис. 2*a*), при цьому сплав II – на ~ 25% інтенсивніше, ніж сплав I. Розглянемо ці залежності в межах опису параболічного закону [10]:

$$\left(\Delta M \,/\, S\right)^2 = k_p \cdot t,\tag{1}$$

$$k_p = k_0 \cdot \exp(-E/RT),\tag{2}$$

де ΔM – приріст маси зразків, g; S – одиниця площі поверхні зразків, cm²; k_p – константа параболічної швидкості, g²/(cm⁴·s); t – час, s; k_0 – стала величина, яка не залежить від температури, g²/(cm⁴·s); E – енергія активації процесу, kJ/mol; R = 8,314 J/(mol·K) – газова стала; T – температура, K.

Рис. 2. Кінетика взаємодії за температури 850°С (*a*) та залежність константи параболічної швидкості азотування від температури (*b*) з визначенням енергії активації взаємодії з газоподібним азотом за тиску 10⁵ Ра сплаву ВТ22 з різною вихідною структурою: *I* – сплав I; *2* – сплав II.

Fig. 2. Kinetics of interaction at a temperature of 850°C (*a*) and dependence of the parabolic rate constant of nitriding on temperature (*b*) with the determination of the activation energy of interaction with gaseous nitrogen at a pressure of 10^5 Pa for different initial structural states of BT22 titanium alloy: 1 -alloy I; 2 -alloy II.

Параболічний закон зміни маси (рис. 2a), який відповідає залежності (1), вказує на те, що елемент проникнення (азот) поглинається через компактну, зв'язану з металом плівку, яка є лімітувальною ланкою [10] взаємодії сплаву ВТ22 з азотом. При цьому сплав II взаємодіє інтенсивніше через менші затрати енергії, оскільки енергія активації процесу, яка визначена за залежністю (2) графічним методом (рис. 2b), менша і становить 162,5 kJ/mol проти 247 kJ/mol для сплаву I. Вважаємо, що це пов'язано зі структурою сплавів, тобто сплав II має здрібнену зернисту структуру з великим запасом внутрішньої енергії та значно збільшеною площею меж зерен. Згідно з дослідженнями [11], головними шляхами полегшеної дифузії для α - і β -стабілізуючих елементів є міжфазні α/β -межі, при цьому встановлена їх надзвичайно висока дифузійна проникність. Локальні коефіцієнти дифузії міжфазними межами на 3–4 порядки перевищують коефіцієнти дифузії в β -фазі і на 4–5 порядків вищі, ніж у α -фазі.

Рис. 3. Мікроструктура приповерхневого шару металу сплаву І (a, c, e) та ІІ (b, d, f) за температури азотування 750°С (a, b), 800°С (c, d) та 850°С (e, f) упродовж 8 h у газоподібному азоті за тиску 10⁵ Ра.

Fig. 3. Microstructure of the near-surface layers of metal of alloys I (*a*, *c*, *e*) and II (*b*, *d*, *f*) after nitriding at a temperature of 750°C (*a*, *b*), 800°C (*c*, *d*) and 850°C (*e*, *f*) for 8 h in gaseous nitrogen at a pressure of 10^5 Pa.

Такий характер взаємодії сплавів з азотом впливає і на структуру приповерхневого шару металу після азотування. Зокрема, упродовж 8 h за температури 750°С на сплаві I у приповерхневому шарі металу внаслідок стабілізації азотом грубшають пластини α -фази титану (рис. 3*a*), а на сплаві II стабілізуються та збільшуються зерна (рис. 3*b*). З підвищенням температури до 800°С за витримки 8 h ці процеси посилюються (рис. 3*c*, *d*). Подальше збільшення температури до 850°С за 8 h витримки призводить до росту зерен в обох сплавах, що пов'язано з перевищенням температури рекристалізації, яка для сплаву ВТ22 становить 800...825°С [12], в результаті чого на сплаві І утворюється смужка α -фази розміром ~ 25 µm (рис. 3*e*), а на сплаві ІІ формується значна ~ 50 µm зона, збагачена азотом, і виростають зерна матриці (рис. 3*f*).

Зміни структурного стану приповерхневого шару металу внаслідок високотемпературної взаємодії з азотом змінюють твердість металу у приповерхневих шарах, оскільки азот, проникаючи в кристалічну ґратку α - і β -титану, спотворює її, призводячи до збільшення твердості титану [10]. Внаслідок дифузійного проникнення азоту в метал формується градієнт твердості за перерізом приповерхневих шарів металу (рис. 4). На титановому сплаві І азотування упродовж 8 h за усіх температур дослідження формує зміцнені шари меншої глибини, ніж на сплаві II (рис. 4, табл. 2).

Рис. 4. Розподіл мікротвердості у приповерхневому шарі металу сплаву І (*a*) та ІІ (*b*) після азотування упродовж 8 h у газоподібному азоті за тиску 10⁵ Ра залежно від температури: *I* – 750°С; *2* – 800°С; *3* – 850°С.

Fig. 4. Microhardness distribution in the near-surface layer of the metal of alloys I (*a*) and II (*b*) after nitriding for 8 h in gaseous nitrogen at a pressure of 10^5 Pa depending on temperature: $1 - 750^{\circ}$ C; $2 - 800^{\circ}$ C; $3 - 850^{\circ}$ C.

Таблиця 2. Твердість і шорсткість поверхні та розмір зміцненої зони <i>l</i> зразк	сів
титанового сплаву BT22 різного вихідного структурного стану	
після азотування впродовж 8 h за тиску 10 ⁵ Ра та різної температури	

Сплор	<i>Т</i> , °С	Н	V _{0,49}	R_a ,	Lum	
Сплав		До ХТО	Після ХТО	До ХТО	Після ХТО	ι, μπ
Сплав I	750	336±9	813±78	0,161±0,036	0,237±0,005	40±5
Сплав II	750	347±16	928±85	0,032±0,013	0,102±0,023	60±5
Сплав I	800	337±9	1218±134	0,174±0,012	0,211±0,010	60±5
Сплав II	800	348±16	1080±56	0,032±0,013	0,189±0,020	160±15
Сплав I	850	337±9	1599±298	0,166±0,008	0,240±0,026	90±10
Сплав II	850	348±16	1199±102	0,032±0,008	0,243±0,010	235±20

Твердість поверхні титанового сплаву І після азотування впродовж 8 h за температури 750°С менша на ~ 100 HV_{0,49}, ніж твердість поверхні сплаву II (табл. 2), але за температур 800 та 850°С вона стає вищою. Це пов'язано з тим, що завдяки структурному чиннику швидкість дифузії атомів азоту від поверхні у сплаві II вища і тому у нього твердість поверхні менша, а зміцнена (дифузійна)

зона більша. Такі відмінності підтверджуються й рентгенівським фазовим аналізом поверхні титанових сплавів після 4 h витримки в азоті за температури 750°C (рис. 5). Зокрема, на дифрактограмі, знятій з поверхні сплаву I, піки фаз Ti₂N та TiN сильніші (рис. 5*a*), ніж на сплаві II (рис. 5*b*), водночас піки α - та β -титану, навпаки, на сплаві II сильніші, оскільки екранувальна нітридна плівка тонша. Це підтверджує факт формування товстішої нітридної плівки на сплаві I.

Рис. 5. Дифракційний рентгенівський спектр, знятий з поверхні зразків сплаву І (*a*) та ІІ (*b*) після азотування за температури 750°С упродовж 4 h i тиску азоту 10⁵ Ра: ● – α-Ti; ▲ – Ti₂N; ■ – TiN; ◆ – β-Ti.

Товстіша нітридна плівка призводить до збільшення шорсткості поверхні обох сплавів, проте шорсткість поверхні сплаву І залишається одного класу шорсткості за усіх температур азотування впродовж 8 h (табл. 2). Шорсткість поверхні сплаву II зі збільшенням температури азотування зростає і за температури 850°С досягає шорсткості поверхні сплаву I, що пов'язано із ростом розміру зерен за підвищення температури азотування.

ВИСНОВКИ

Титановий сплав BT22 за тиску азоту 10^5 Ра при 750, 800 та 850°С активніше поглинав азот за дрібнозеренної глобулярної структури у вихідному стані порівняно з грубозеренною. На сплаві з дрібнозеренною структурою утворюються глибші зміцнені (дифузійні) шари з меншою твердістю поверхні, ніж на сплаві з грубозеренною. Проте на сплаві з грубозеренною структурою утворюється товстіша і твердіша нітридна плівка приблизно одного класу шорсткості за температур 750, 800 та 850°С і тривалості витримки 8 h у азоті з тиском 10^5 Ра. За температури азотування 850°С зі збільшенням тривалості витримки сплаву з вихідною дрібнозеренною структурою α - та β -зерна збільшуються у розмірі і структура стає подібною до грубозеренної.

РЕЗЮМЕ. Исследовано азотирование титанового сплава BT22 разного исходного структурного состояния (крупно- и мелкозеренная структура) при температурах 750, 800 и 850°С, продолжительности выдержки до 8 h и давлении азота 10⁵ Pa. Показано, что исходное структурное состояние сплава влияет на кинетику взаимодействия с азотом, рост упрочненной приповерхностной зоны, формирование и свойства поверхностной нитридной пленки.

Ключевые слова: титановый сплав, исходное структурное состояние, азотирование, диффузионный слой, твердость, шероховатость поверхности.

SUMMARY. The nitriding of the BT22 titanium alloy of different initial structural state (coarse-grained and fine-grained structure) is studied at temperatures of 750, 800 and 850°C,

exposure time up to 8 h at a nitrogen pressure of 10^5 Pa. It is shown that the initial structural state of these alloys has an influence on the kinetics of interaction with nitrogen, growth of the strengthened near-surface zone, formation and properties of the surface nitride film.

Keywords: *titanium alloy, initial structural state, nitriding, diffusion layer, hardness, surface roughness.*

- 1. *Kolli R. Prakash and Devaraj A*. A Review of Metastable Beta Titanium Alloys // Metals. 2018. **8**, № 7. 506. DOI: 10.3390/met8070506
- 2. *Ильин А. А., Колачев Б. А., Полькин И. С.* Титановые сплавы. Состав, структура, свойства: справ. М.: ВИЛС–МАТИ, 2009. 520 с.
- Bloyce A. Surface engineering of titanium alloys for wear protection // J. of Engng. Tribology. – 1998. – 212. – P. 467–476. DOI: 10.1243/1350650981542263
- Characterization of thermochemically surface-hardened titanium by light optical microscopy / N. Gammeltoft-Hansen, S. S. Munch, M. S. Jellesen, M. A. J. Somers, T. L. Christiansen // Materials Performance and Characterization. 2017. 6, № 3. P. 298–310. DOI: 10.1520/MPC20160083
- Müller C., Holzwath U., and Gregory J. K. Influence of nitriding on macrostructure and fatigue behaviour of a solute-rich beta titanium alloy // Fatigue Fract. Engng. Mater. Struct. - 1997. - 20, № 12. - P. 1665–1676.
- 6. *Lisiecki A. and Piwnik J.* Tribological characteristic of titanium alloy surface layers produced by diode laser gas nitriding // Arch. Metall. Mater. 2016. **61**, № 2. P. 543–552.
- 7. *Белоус В. А., Носов Г. И., Клименко И. О.* Упрочнение титановых сплавов ионно-плазменным азотированием // Вопр. атомной науки и техники. – 2017. – № 5. – С. 73–82.
- Зносотривкість титанового сплаву ВТ22 після азотування, суміщеного з термічною обробкою / В. М. Федірко, І. М. Погрелюк, А. Т. Пічугін, О. Г. Лук'яненко // Цільова комплексна програма НАН України "Проблеми ресурсу і безпеки експлуатації конструкцій, споруд та машин". – К.: Ін-т електрозварювання ім. Є. О. Патона НАН України, 2012. – С. 547–552.
- Закономірності термодифузійного насичення азотом за суміщення зі штатною термічною обробкою сплаву ВТ22 / І. М. Погрелюк, В. М. Федірко, С. М. Лаврись, Т. М. Кравчишин // Фіз.-хім. механіка матеріалів. 2016. 52, № 6. С. 87–92. (*Regularities* of thermal diffusion saturation with nitrogen combined with standard heat treatment of VT22 titanium alloy / I. M. Pohrelyuk, V. M. Fedirko, S. M. Lavrys', T. M. Kravchyshyn // Materials Science. 2017. 52, № 6. Р. 841–847.)
- 10. Фромм Е., Гебхардт Е. Газы и углерод в металлах. М.: Металлургия, 1980. 712 с.
- 11. Бокштейн С. З., Зюлина Н. П., Маркович О. В. Диффузионные особенности внутренних поверхностей раздела в титановых сплавах // Физика металлов и металловедение. 1989. **68**, вып. 1. С. 104–109.
- 12. Глазунов С. Г., Моисеев В. Н. Конструкционные титановые сплавы. М.: Металлургия, 1974. 368 с.

Одержано 22.05.2019