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BOUNDARY VALUE PROBLEMS FOR THE GENERALIZED
ANALYTIC AND HARMONIC FUNCTIONS

The study of the Dirichlet problem with arbitrary measurable data for harmonic functions is due
to the famous dissertation of Luzin. Later on, the known monograph of Vekua has been devoted to
boundary value problems (only with Hölder continuous data) for the generalized analytic functions,
i.e., continuous complex valued functions h(z) of the complex variable z = x+ iy with generalized first
partial derivatives by Sobolev satisfying equations of the form ∂z̄h + ah + bh = c , where ∂z̄ :=
1
2

(
∂
∂x

+ i · ∂
∂y

)
, and it was assumed that the complex valued functions a, b and c belong to the class

Lp with some p > 2 in the corresponding domains D ⊂ C. The present paper is a natural continuation
of our articles on the Riemann, Hilbert, Dirichlet, Poincare and, in particular, Neumann boundary
value problems for quasiconformal, analytic, harmonic and the so-called A−harmonic functions with
boundary data that are measurable with respect to logarithmic capacity. Here we extend the correspon-
ding results to the generalized analytic functions h : D → C with the sources g : ∂z̄h = g ∈ Lp,
p > 2 , and to generalized harmonic functions U with sources G : △U = G ∈ Lp, p > 2 . It was also
given relevant definitions and necessary references to the mentioned articles and comments on previous
results. This paper contains various theorems on the existence of nonclassical solutions of the Riemann
and Hilbert boundary value problems with arbitrary measurable (with respect to logarithmic capacity)
data for generalized analytic functions with sources. Our approach is based on the geometric (theoretic-
functional) interpretation of boundary values in comparison with the classical operator approach in
PDE. On this basis, it is established the corresponding existence theorems for the Poincare problem on
directional derivatives and, in particular, for the Neumann problem to the Poisson equations △U = G
with arbitrary boundary data that are measurable with respect to logarithmic capacity. These results
can be also applied to semi-linear equations of mathematical physics in anisotropic and inhomogeneous
media.
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1. Introduction.
The well–known monograph of Vekua [46] has been devoted to the theory of the

generalized analytic functions, i.e., continuous complex valued functions h(z) of
the complex variable z = x + iy with generalized first partial derivatives by Sobolev
satisfying equations of the form

∂z̄h + ah + bh = c , ∂z̄ :=
1

2

(
∂

∂x
+ i · ∂

∂y

)
, (1)
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where it was assumed that the complex valued functions a, b and c belong to the class
Lp with some p > 2 in the corresponding domains D ⊆ C.

The present paper is a natural continuation of the articles [6]– [8], [15]– [20], [47] and
[48] devoted to the Riemann, Hilbert, Dirichlet, Poincare and, in particular, Neumann
boundary value problems for quasiconformal, analytic, harmonic and the so–called
A−harmonic functions with boundary data that are measurable with respect to lo-
garithmic capacity. Here we extend the corresponding results to generalized analytic
and harmonic functions, see relevant definitions with history notes in the mentioned
articles and necessary comments on previous results below.

The first part of the paper is devoted to the proof of existence of nonclassical
solutions of Riemann, Hilbert and Dirichlet boundary value problems with arbitrary
measurable boundary data with respect to logarithmic capacity for the equations

∂z̄h(z) = g(z) (2)

with the real valued function g in the class Lp, p > 2. We will call continuous solutions h
of the equation (2) with the generalized first partial derivatives by Sobolev generalized
analytic functions with sources g.

The second part of the paper contains the proof of existence of nonclassical solutions
to the Poincare problem on the directional derivatives and, in particular, to the Neumann
problem with arbitrary measurable boundary data with respect to logarithmic capacity
for the Poisson equations

△U(z) = G(z) (3)

with real valued functions G of a class Lp(D), p > 2, in the corresponding domains D ⊂
C. For short, we will call continuous solutions to (3) of the class W 2,p

loc (D) generalized
harmonic functions with the source G. Note that by the Sobolev embedding
theorem, see Theorem I.10.2 in [44], such functions belong to the class C1.

The research of boundary value problems with arbitrary measurable data is due
to the famous dissertation of Luzin, see its original text [30], and its reprint [31] with
comments of his pupils Bari and Men’shov. Namely, he has established that, for each
measurable a.e. finite 2π−periodic function φ(ϑ) : R → R, there is a harmonic function
U in the unit disk D such that U(z) → φ(ϑ) for a.e. ϑ as z → ζ := eiϑ along all
nontangential paths to ∂D. The latter was based on his other deep result on the
antiderivatives stated that, for any measurable function ψ : [0, 1] → R, there is a
continuous function Ψ : [0, 1] → R with Ψ′ = ψ a.e., see e.g. his papers [29] and [32].

Later on, the Luzin theorem on harmonic functions was strengthened in the paper
[39], Corollary 5.1, see also [40], by the statement that, for each (Lebesgue) measurable
function φ : ∂D → R, the space of all harmonic functions u : D → R with the
angular limits φ(ζ) for a.e. ζ ∈ ∂D has the infinite dimension. Recall, it is well–known
the uniqueness theorem to the Dirichlet problem in terms of the angular limits e.g.
for bounded harmonic functions u, see Corollary IX.1.1 and Theorem IX.2.3 in [37].
However, in general there is no uniqueness theorem in the Dirichlet problem for the
Laplace equation even under a.e. zero boundary data, see e.g. Theorem 2.1 in [40].

67



V. Gutlyanskii, O. Nesmelova, V. Ryazanov, A. Yefimushkin

The Luzin theorem was key to establish the corresponding result on the Hilbert
boundary value problem in [39], Theorems 2.1 and 5.2: for arbitrary measurable functions
λ : ∂D → C, |λ(ζ)| ≡ 1, and φ : ∂D → R, the space of all analytic functions f : D → C
with angular limits

lim
z→ζ

Re {λ(ζ) · f(z)} = φ(ζ) for a.e. ζ ∈ ∂D (4)

has the infinite dimension. Then this theorem was extended to arbitrary Jordan domains
with rectifiable boundaries in terms of the natural parameter, see Theorem 3.1 in [39].

In turn, these results have been applied in the paper [41] to the study of the Poincare
problem on directional derivatives and, in particular, of the Neumann problem for
harmonic functions with arbitrary boundary data that are measurable with respect to
natural parameter in arbitrary Jordan domains with rectifiable boundaries. Similarly,
the results on the Hilbert and Riemann problems for analytic functions along the so–
called Bagemihl–Seidel systems of Jordan arcs terminating at the boundary in [42]
can be applied to the Poincare and Neumann problems for harmonic functions.

Moreover, a series of the corresponding results have been formulated and proved in
terms of logarithmic capacity, see its definition and properties e.g. in [16]. The base is
the following analog of the Luzin theorem in [7], see also [48], where the abbreviation
q.e. means quasi–everywhere with respect to logarithmic capacity.

Theorem A. Let φ : [a, b] → R be a measurable function with respect to logarithmic
capacity. Then there is a continuous function Φ : [a, b] → R with Φ′(x) = φ(x) q.e.

Furthermore, the function Φ can be chosen in such a way that Φ(a) = Φ(b) = 0 and
|Φ(x)| ≤ ε for any prescribed ε > 0 and all x ∈ [a, b].

On the basis of Theorem A, it was proved the analog of the second Luzin theorem:

Theorem B. Let φ : R → R be 2π-periodic, measurable with respect to logarithmic
capacity and finite q.e. Then a space of harmonic functions u in D with the angular
limits u(z) → φ(ϑ) as z → eiϑ q.e. on R has the infinite dimension.

In turn, on the basis of Theorem B, it was obtain the result on the Hilbert problem:

Theorem C. Let λ : ∂D → C, |λ(ζ)| ≡ 1, be of bounded variation and φ : ∂D → R
be measurable with respect to logarithmic capacity. Then there is a space of analytic
functions f : D → C of the infinite dimension with the angular limits

lim
z→ζ

Re {λ(ζ) · f(z)} = φ(ζ) q.e. on ∂D . (5)

Then this result was extended to domains with the so–called quasiconformal bounda-
ries and, in particular, to arbitrary smooth (C1) domains, see [7] and [48], and it was
also applied to the Poincare and Neumann problems for harmonic and A−harmonic
functions, see [47]. Moreover, it was proved in [19] the following result:

Theorem D. Let D be a Jordan domain with the quasihyperbolic boundary condition,
∂D have a tangent q.e., λ : ∂D → C, |λ(ζ)| ≡ 1, be of countable bounded variation
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and let φ : ∂D → R be measurable with respect to logarithmic capacity. Then there is a
space of analytic functions f : D → C of the infinite dimension with the angular limits

lim
z→ζ

Re{λ(ζ)f(z)} = φ(ζ) q.e. on ∂D. (6)

See the next section for definitions. As usual, this theorem on the Hilbert problem for
analytic functions implies the corresponding theorems on the Poincare and Neumann
problems for harmonic functions. Finally, notice a wide circle of the corresponding
results on boundary value problems in terms of the Bagemihl–Seidel systems in [17].

2. Hilbert problem and angular limits.
In this section, we prove the existence of nonclassical solutions of the Hilbert

boundary value problem for generalized analytic functions with arbitrary boundary
data that are measurable with respect to logarithmic capacity. The result is formulated
in terms of the angular limit that is a traditional tool of the geometric function theory,
see e.g. monographs [5, 26,31,36] and [37].

Recall that the classic boundary value problem of Hilbert, see [24], was formulated
as follows: To find an analytic function f(z) in a domain D bounded by a rectifiable
Jordan contour C that satisfies the boundary condition

lim
z→ζ

Re {λ(ζ) f(z)} = φ(ζ) ∀ ζ ∈ C , (7)

where the coefficient λ and the boundary date φ of the problem are continuously
differentiable with respect to the natural parameter s and λ ̸= 0 everywhere on C.
The latter allows to consider that |λ| ≡ 1 on C. Note that the quantity Re {λ f} in (7)
means a projection of f into the direction λ interpreted as vectors in R2.

The reader can find a rather comprehensive treatment of the theory in the new
excellent books [2, 3, 23, 45]. We also recommend to make familiar with the historic
surveys contained in the monographs [10, 33, 46] on the topic with an exhaustive bib-
liography and take a look at our recent papers, see Introduction.

Next, recall that a straight line L is tangent to a curve Γ in C at a point z0 ∈ Γ if

lim sup
z→z0,z∈Γ

dist (z, L)
|z − z0|

= 0 . (8)

Let D be a Jordan domain in C with a tangent at a point ζ ∈ ∂D. A path in D
terminating at ζ is called nontangential if its part in a neighborhood of ζ lies inside
of an angle with the vertex at ζ. The limit along all nontangential paths at ζ is called
angular at the point.

Following [19], we say that a Jordan curve Γ in C is almost smooth if Γ has a
tangent q.e. In particular, Γ is almost smooth if Γ has a tangent at all its points except
a countable collection. The nature of such a Jordan curve Γ can be complicated enough
because this countable collection can be everywhere dense in Γ.

69



V. Gutlyanskii, O. Nesmelova, V. Ryazanov, A. Yefimushkin

Recall that the quasihyperbolic distance between points z and z0 in a domain
D ⊂ C is the quantity

kD(z, z0) := inf
γ

∫
γ

ds/d(ζ, ∂D) ,

where d(ζ, ∂D) denotes the Euclidean distance from the point ζ ∈ D to ∂D and the
infimum is taken over all rectifiable curves γ joining the points z and z0 in D, see [12].

Further, it said that a domain D satisfies the quasihyperbolic boundary con-
dition if there exist constants a and b and a point z0 ∈ D such that

kD(z, z0) ≤ a + b ln
d(z0, ∂D)

d(z, ∂D)
∀ z ∈ D . (9)

The latter notion was introduced in [11] but, before it, was first implicitly applied in [4].
By the discussion in [20], every smooth (or Lipschitz) domain satisfies the quasihyper-
bolic boundary condition.

Note that it is well–known the so–called (A)−condition by Ladyzhenskaya–Ural’tseva,
which is standard in the theory of boundary value problems for PDE, see e.g. [28]. Recall
that a domain D in Rn, n ≥ 2, is called satisfying (A)-condition if

mes D ∩B(ζ, ρ) ≤ Θ0 mes B(ζ, ρ) ∀ ζ ∈ ∂D , ρ ≤ ρ0 (10)

for some Θ0 and ρ0 ∈ (0, 1), where B(ζ, ρ) denotes the ball with the center ζ ∈ Rn and
the radius ρ, see 1.1.3 in [28].

Recall also that a domain D in Rn, n ≥ 2, is said to be satisfying the outer cone
condition if there is a cone that makes possible to be touched by its top to every
boundary point of D from the completion of D after its suitable rotations and shifts.
It is clear that the outer cone condition implies (A)–condition.

Probably one of the simplest examples of an almost smooth domain D with the
quasihyperbolic boundary condition and without (A)–condition is the union of 3 open
disks with the radius 1 centered at the points 0 and 1± i. It is clear that this domain
has zero interior angle at its boundary point 1.

Given a Jordan domain D in C, we call λ : ∂D → C a function of bounded
variation, write λ ∈ BV(∂D), if

Vλ(∂D) : = sup

k∑
j=1

|λ(ζj+1)− λ(ζj)| < ∞ (11)

where the supremum is taken over all finite collections of points ζj ∈ ∂D, j = 1, . . . , k,
with the cyclic order meaning that ζj lies between ζj+1 and ζj−1 for every j = 1, . . . , k.
Here we assume that ζk+1 = ζ1 = ζ0. The quantity Vλ(∂D) is called the variation of
the function λ.

Now, we call λ : ∂D → C a function of countable bounded variation, write
λ ∈ CBV(∂D), if there is a countable collection of mutually disjoint arcs γn of ∂D,
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n = 1, 2, . . . on each of which the restriction of λ is of bounded variation and the set
∂D \ ∪γn has logarithmic capacity zero. In particular, the latter holds true if the set
∂D \ ∪γn is countable. It is clear that such functions can be singular enough.

Theorem 1. Let D be a Jordan domain with the quasihyperbolic boundary condition,
∂D have a tangent q.e., λ : ∂D → C, |λ(ζ)| ≡ 1, be in CBV(∂D) and let φ : ∂D → R
be measurable with respect to logarithmic capacity.

Suppose that g : D → R is in Lp(D), p > 2. Then there exist generalized analytic
functions h : D → C with the source g that have the angular limits

lim
z→ζ

Re
{
λ(ζ) · h(z)

}
= φ(ζ) q.e. on ∂D . (12)

Furthermore, the space of such functions h has the infinite dimension.
Later on, we often apply the logarithmic (Newtonian) potential NG of sources

G ∈ Lp(C), p > 2, with compact supports given by the formula:

NG(z) :=
1

2π

∫
C

ln |z − w|G(w) dm(w) . (13)

By Lemma 3 in [16], NG ∈W 2,p
loc (C) ∩ C

1,α
loc (C), α := (p− 2)/p, and △NG = G a.e.

Proof. Extending the function g by zero outside of D and setting P = NG with
G = 2g, U = Px and V = −Py, we have that Ux − Vy = G and Uy + Vx = 0. Thus,
elementary calculations show that H := U + iV is just a generalized analytic function
with the source g. Moreover, the function

φ∗(ζ) := lim
z→ζ

Re
{
λ(ζ) ·H(z)

}
= Re

{
λ(ζ) ·H(ζ)

}
, ∀ ζ ∈ ∂D , (14)

is measurable with respect to logarithmic capacity because the function H is continuous
in the whole plane C.

By Theorem 2 in [19], see also Theorems 5.1 and 6.1 in [21], there exist analytic
functions A in D with the angular limits

lim
z→ζ

Re {λ(ζ) · A(z)} = Φ(ζ) q.e. on ∂D (15)

for the function Φ(ζ) := φ(ζ)−φ∗(ζ), ζ ∈ ∂D. The space of such analytic functions A
has the infinite dimension, see e.g. Corollary 8.1 in [21].

Finally, it is clear that the functions h := A + H are desired generalized analytic
functions with the source g satisfying the Hilbert condition (12). Thus, the space of
such functions h has really the infinite dimension. 2

Remark 1. As it follows from the proof of Theorems 1, the generalized analytic
functions h with a source g ∈ Lp, p > 2, satisfying the Hilbert boundary condition (12)
q.e. in the sense of the angular limits can be represented in the form of the sums A+H
with analytic functions A satisfying the corresponding Hilbert boundary condition (15)
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and a generalized analytic function H = U + iV with the same source g, U = Px and
V = −Py, where P is the logarithmic (Newtonian) potential NG with G = 2g in the
class W 2,p

loc (C) ∩ C
1,α
loc (C), α = (p− 2)/p, that satisfies the equation △P = G.

In particular, for the case λ ≡ 1, we obtain the following consequence of Theorem
1 on the Dirichlet problem for the generalized analytic functions.

Corollary 1. Let D be a Jordan domain with the quasihyperbolic boundary condition,
∂D have a tangent q.e., φ : ∂D → R be measurable with respect to logarithmic capacity
and let g : D → R be in Lp(D) for some p > 2.

Then there exist generalized analytic functions h : D → C with the source g that
have the angular limits

lim
z→ζ

Re h(z) = φ(ζ) q.e. on ∂D . (16)

Furthermore, the space of such functions h has the infinite dimension.
3. Hilbert problem and Bagemihl–Seidel systems.
Let D be a domain in C whose boundary consists of a finite collection of mutually

disjoint Jordan curves. A family of mutually disjoint Jordan arcs Jζ : [0, 1] → D,
ζ ∈ ∂D, with Jζ([0, 1)) ⊂ D and Jζ(1) = ζ that is continuous in the parameter ζ is
called a Bagemihl–Seidel system or, in short, of class BS.

Theorem 2. Let D be a bounded domain in C whose boundary consists of a finite
number of mutually disjoint Jordan curves, and let functions λ : ∂D → C, |λ(ζ)| ≡ 1,
φ : ∂D → R and ψ : ∂D → R be measurable with respect to the logarithmic capacity.

Suppose that {γζ}ζ∈∂D is a family of Jordan arcs of class BS in D and that a
function g : D → R is of the class Lp(D) for some p > 2. Then there is a generalized
analytic function f : D → C with the source g such that

lim
z→ζ

Re {λ(ζ) · h(z)} = φ(ζ) , (17)

lim
z→ζ

Im {λ(ζ) · h(z)} = ψ(ζ) (18)

along γζ q.e. on ∂D.
Proof. As in the proof of Theorem 1, the function H = U + iV with U = Px and

V = −Py, where P = NG with G = 2g is a generalized analytic function with the
source g. Moreover, the functions

φ∗(ζ) := lim
z→ζ

Re
{
λ(ζ) ·H(z)

}
= Re

{
λ(ζ) ·H(ζ)

}
, ∀ ζ ∈ ∂D , (19)

ψ∗(ζ) := lim
z→ζ

Im
{
λ(ζ) ·H(z)

}
= Im

{
λ(ζ) ·H(ζ)

}
, ∀ ζ ∈ ∂D , (20)

are measurable with respect to logarithmic capacity because the functionH is continuous
in the whole plane C.
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Next, by Theorem 3 in [17] there is an analytic function A in D that has along γζ
q.e. on ∂D the limits

lim
z→ζ

Re {λ(ζ) · A(z)} = Φ(ζ) , (21)

lim
z→ζ

Im {λ(ζ) · A(z)} = Ψ(ζ) (22)

for the functions Φ(ζ) := φ(ζ) − φ∗(ζ) and Ψ(ζ) := ψ(ζ) − ψ∗(ζ), ζ ∈ ∂D. Thus, the
function h := A+H is a desired generalized analytic function with the source g. 2

Remark 2. As it follows from the proof of Theorems 2, the generalized analytic
functions h with a source g ∈ Lp, p > 2, satisfying the Hilbert boundary condition (17)
q.e. in the sense of the limits along γζ can be represented in the form of the sums A+H
with analytic functions A satisfying the corresponding Hilbert boundary condition (21)
and a generalized analytic function H = U + iV with the same source g, U = Px and
V = −Py, where P is the logarithmic (Newtonian) potential NG with G = 2g in the
class W 2,p

loc (C) ∩ C
1,α
loc (C), α = (p− 2)/p, that satisfies the equation △P = G.

The space of all solutions h of the Hilbert problem (17) in the given sense has the
infinite dimension for any such prescribed φ, λ and {γζ}ζ∈D because the space of all
functions ψ : ∂D → R which are measurable with respect to the logarithmic capacity
has the infinite dimension.

The latter is valid even for its subspace of continuous functions ψ : ∂D → R. Indeed,
by the Riemann theorem every Jordan domain G can be mapped with a conformal
mapping g onto the unit disk D and by the Caratheodory theorem g can be extended
to a homeomorphism of G onto D. By the Fourier theory, the space of all continuous
functions ψ̃ : ∂D → R, equivalently, the space of all continuous 2π-periodic functions
ψ∗ : R → R, has the infinite dimension.

Corollary 2. Let D be a bounded domain in C whose boundary consists of a
finite number of mutually disjoint Jordan curves, and λ : ∂D → C, |λ(ζ)| ≡ 1, and
φ : ∂D → R be measurable functions with respect to the logarithmic capacity.

Suppose also that {γζ}ζ∈∂D is a family of Jordan arcs of class BS in D and that a
function g : D → R is of the class Lp(D), p > 2.

Then there exist generalized analytic functions h : D → C with the source g that
have the limits (17) along γζ q.e. on ∂D. Furthermore, the space of such functions h
has the infinite dimension.

In particular, for the case λ ≡ 1, we obtain the corresponding consequence on the
Dirichlet problem for the generalized analytic functions with the source g along any
prescribed Bagemihl–Seidel system:

Corollary 3. Let D be a bounded domain in C whose boundary consists of a finite
number of mutually disjoint Jordan curves and φ : ∂D → R be a measurable function
with respect to the logarithmic capacity.

Suppose also that {γζ}ζ∈∂D is a family of Jordan arcs of class BS in D and that a
function g : D → R is of the class Lp(D), p > 2.
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Then there exist generalized analytic functions h : D → C with the source g such
that

lim
z→ζ

Re h(z) = φ(ζ) along γζ q.e. on ∂D . (23)

Furthermore, the space of such functions h has the infinite dimension.
4. Riemann problem and Bagemihl–Seidel systems.
Recall that the classical setting of the Riemann problem in a smooth Jordan

domain D of the complex plane C is to find analytic functions f+ : D → C and
f− : C \ D → C that admit continuous extensions to ∂D and satisfy the boundary
condition

f+(ζ) = A(ζ) · f−(ζ) + B(ζ) ∀ ζ ∈ ∂D (24)

with prescribed Hölder continuous functions A : ∂D → C and B : ∂D → C.
Recall also that the Riemann problem with shift in D is to find analytic

functions f+ : D → C and f− : C \D → C satisfying the condition

f+(α(ζ)) = A(ζ) · f−(ζ) + B(ζ) ∀ ζ ∈ ∂D (25)

where α : ∂D → ∂D was a one-to-one sense preserving correspondence having the non-
vanishing Hölder continuous derivative with respect to the natural parameter on ∂D.
The function α is called a shift function. The special case A ≡ 1 gives the so–called
jump problem and B ≡ 0 gives the problem on gluing of analytic functions.

Arguing similarly to the proof of Theorem 1, we obtain by Theorem 8 in [17] on
the Riemann problem for analytic functions the following statement.

Theorem 3. Let D be a domain in C whose boundary consists of a finite number
of mutually disjoint Jordan curves, A : ∂D → C and B : ∂D → C be functions that are
measurable with respect to the logarithmic capacity and let {γ+ζ }ζ∈∂D and {γ−ζ }ζ∈∂D be
families of Jordan arcs of class BS in D and C \D, correspondingly.

Suppose that g : C → R is a function with compact support in the class Lp(C)
with some p > 2. Then there exist generalized analytic functions f+ : D → C and
f− : C \D → C with the source g that satisfy (24) q.e. on ζ ∈ ∂D, where f+(ζ) and
f−(ζ) are limits of f+(z) and f−(z) az z → ζ along γ+ζ and γ−ζ , correspondingly.

Furthermore, the space of all such couples (f+, f−) has the infinite dimension for
every couple (A,B) and any collections γ+ζ and γ−ζ , ζ ∈ ∂D.

Theorem 3 is a special case of the following lemma based on Lemma 3 in [17] on
the Riemann problem with shift that may have of independent interest.

Lemma 1. Under the hypotheses of Theorem 3, let in addition α : ∂D → ∂D be a
homeomorphism keeping components of ∂D such that α and α−1 have the (N)−property
of Luzin with respect to the logarithmic capacity.

Then there exist generalized analytic functions f+ : D → C and f− : C\D → C with
the source g that satisfy (25) for a.e. ζ ∈ ∂D with respect to the logarithmic capacity,
where f+(ζ) and f−(ζ) are limits of f+(z) and f−(z) az z → ζ along γ+ζ and γ−ζ ,
correspondingly.
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Furthermore, the space of all such couples (f+, f−) has the infinite dimension for
every couple (A,B) and any collections γ+ζ and γ−ζ , ζ ∈ ∂D.

Remark 3. Some investigations were devoted also to the nonlinear Riemann pro-
blems with boundary conditions of the form

Φ( ζ, f+(ζ), f−(ζ) ) = 0 ∀ ζ ∈ ∂D . (26)

It is natural as above to weaken such conditions to the following

Φ( ζ, f+(ζ), f−(ζ) ) = 0 q.e. on ζ ∈ ∂D . (27)

It is easy to see that the proposed approach makes possible also to reduce such problems
to the algebraic measurable solvability of the relations

Φ( ζ, v, w ) = 0 (28)

with respect to complex-valued functions v(ζ) and w(ζ), cf. e.g. [13].
Later on, we sometimes say in short "C−measurable"instead of the expression

"measurable with respect to the logarithmic capacity".
Example 1. For instance, correspondingly to the scheme given above, special

nonlinear problems of the form

f+(ζ) = φ( ζ, f−(ζ) ) q.e. on ζ ∈ ∂D (29)

are always solved if the function φ : ∂D × C → C satisfies the Caratheodory
conditions with respect to the logarithmic capacity, that is if φ(ζ, w) is continuous in
the variable w ∈ C for a.e. ζ ∈ ∂D with respect to the logarithmic capacity and it is
C−measurable in the variable ζ ∈ ∂D for all w ∈ C.

Furthermore, the spaces of solutions of such problems always have the infinite
dimension. Indeed, by the Egorov theorem, see e.g. Theorem 2.3.7 in [9], see also
Section 17.1 in [27], the function φ(ζ, ψ(ζ)) is C−measurable in ζ ∈ ∂D for every
C−measurable function ψ : ∂D → C if the function φ satisfies the Caratheodory
conditions, and the space of all C−measurable functions ψ : ∂D → C has the infinite
dimension, see e.g. arguments in Remark 2 above.

5. On mixed boundary value problems.
Remark 3 makes possible to formulate a series of nonlinear boundary value problems

in terms of Bagemihl–Seidel systems for generalized analytic functions including mixed
boundary value problems. In order to demonstrate the potentiality of our approach, we
give here a couple of results. Namely, arguing similarly to the proof of Theorem 1, see
also Theorem 1.10 in [46], we obtain for instance by Theorem 10 and Lemma 5 in [17]
the following statement on mixed boundary value problems.

Theorem 4. Let D be a domain in C whose boundary consists of a finite number
of mutually disjoint Jordan curves, φ : ∂D×C → C satisfy the Caratheodory conditions
and ν : ∂D → C, |ν(ζ)| ≡ 1, be measurable with respect to the logarithmic capacity.
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Suppose also that g : C → R is in Cα(C), α ∈ (0, 1), with compact support, {γ+ζ }ζ∈∂D
and {γ−ζ }ζ∈∂D are families of Jordan arcs of class BS in D and C\D, correspondingly.

Then there exist generalized analytic functions f+ : D → C and f− : C \ D → C
with the source g such that

f+(ζ) = φ

(
ζ,

[
∂f

∂ν

]−
(ζ)

)
q.e. on ∂D , (30)

where f+(ζ) and
[
∂f
∂ν

]−
(ζ) are limits of the functions f+(z) and ∂f−

∂ ν (z) as z → ζ

along γ+ζ and γ−ζ , correspondingly.
Furthermore, the space of all such couples (f+, f−) has the infinite dimension for

any such prescribed functions g, φ, ν and collections γ+ζ and γ−ζ , ζ ∈ ∂D.
Theorem 4 is a special case of the following lemma on the mixed problem with shift.
Lemma 2. Under the hypotheses of Theorem 4, let in addition β : ∂D → ∂D be a

homeomorphism keeping components of ∂D such that β and β−1 have the (N)−property
of Luzin with respect to the logarithmic capacity.

Then there exist generalized analytic functions f+ : D → C and f− : C \ D → C
with the source g such that

f+(β(ζ)) = φ

(
ζ,

[
∂f

∂ν

]−
(ζ)

)
q.e. on ∂D , (31)

where f+(ζ) and
[
∂f
∂ν

]−
(ζ) are limits of the functions f+(z) and ∂f−

∂ ν (z) as z → ζ

along γ+ζ and γ−ζ , correspondingly.
Furthermore, the space of all such couples (f+, f−) has the infinite dimension for

any such prescribed g, φ, ν, β and collections {γ+ζ }ζ∈∂D and {γ−ζ }ζ∈∂D.
6. Poincare and Neumann problems in terms of angular limits.
In this section, we consider the Poincare boundary value problem on the directional

derivatives and, in particular, the Neumann problem for the Poisson equations

△U(z) = G(z) (32)

with real valued functions G of classes Lp(D) with p > 2 in the corresponding domains
D ⊂ C. Recall that a continuous solution U of (32) in the class W 2,p

loc is called a
generalized harmonic function with the source G and that by the Sobolev
embedding theorem such a solution belongs to the class C1.

Theorem 5. Let D be a Jordan domain with the quasihyperbolic boundary condition,
∂D have a tangent q.e., ν : ∂D → C, |ν(ζ)| ≡ 1, be in CBV(∂D) and φ : ∂D → R be
measurable with respect to logarithmic capacity.

Suppose that G : D → R is in Lp(D), p > 2. Then there exist generalized harmonic
functions U : D → R with the source G that have the angular limits

lim
z→ζ

∂U

∂ν
(z) = φ(ζ) q.e. on ∂D . (33)
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Furthermore, the space of such functions U has the infinite dimension.
Proof. Indeed, let us extend the function G by zero outside of D and let P be

the logarithmic potential NG with the source G, see (13). Then by Lemma 3 in [16]
P ∈W 2,p

loc (C) ∩ C
1,α
loc (C) with α = (p− 2)/p and △P = G a.e. in C. Set

φ∗(ζ) = Re ν(ζ)H(ζ) , ζ ∈ ∂D , (34)

where
H(z) := ∇P (z) , z ∈ C , ∇P := Px + iPy , z = x+ iy . (35)

Then by Theorem 1 with g = G/2 in D and λ = ν on ∂D, there exist generalized
analytic functions h with the source g that have the angular limits

lim
z→ζ

Re ν(ζ)h(z) = φ(ζ) q.e. on ∂D (36)

and, moreover, by Remark 4 the given functions h can be represented in the form of
the sums A+H with analytic functions A in D that have the angular limits

lim
z→ζ

Re ν(ζ)A(z) = Φ(ζ) q.e. on ∂D (37)

with Φ(ζ) := φ(ζ)−φ∗(ζ), ζ ∈ ∂D, and the space of such analytic functions A has the
infinite dimension.

Note that any indefinite integral F of such A in the simply connected domain D
is also a single-valued analytic function and the harmonic functions u := Re F and
v := Im F satisfy the Cauchy-Riemann system ux = vy and uy = −vx. Hence

A = F ′ = Fx = ux + i · vx = ux − i · uy = ∇u . (38)

Consequently, setting U∗ = u + P , we see that U∗ is a generalized harmonic function
with the source G and, moreover, by the construction h = ∇U∗.

Note also that the directional derivative of U∗ along the unit vector ν is the
projection of its gradient ∇U∗ into ν, i.e., the scalar product of ν and ∇U∗ interpreted
as vectors in R2 and, consequently,

∂U∗
∂ν

= (ν,∇U∗) = Re ν · ∇U∗ = Re ν · h . (39)

Thus, (36) implies (33) and the proof is complete. 2
Remark 4. We are able to say more in the case of Re n(ζ)ν(ζ) > 0, where n(ζ) is

the inner normal to ∂D at the point ζ. Indeed, the latter magnitude is a scalar product
of n = n(ζ) and ν = ν(ζ) interpreted as vectors in R2 and it has the geometric sense
of projection of the vector ν into n. In view of (33), since the limit φ(ζ) is finite, there
is a finite limit U(ζ) of U(z) as z → ζ in D along the straight line passing through the
point ζ and being parallel to the vector ν because along this line

U(z) = U(z0) −
1∫

0

∂U

∂ν
(z0 + τ(z − z0)) dτ . (40)

77



V. Gutlyanskii, O. Nesmelova, V. Ryazanov, A. Yefimushkin

Thus, at each point with condition (33), there is the directional derivative

∂U

∂ν
(ζ) := lim

t→0

U(ζ + t · ν)− U(ζ)

t
= φ(ζ) . (41)

In particular, in the case of the Neumann problem, Re n(ζ)ν(ζ) ≡ 1 > 0, where
n = n(ζ) denotes the unit interior normal to ∂D at the point ζ, and we have by
Theorem 5 and Remark 4 the following significant result.

Corollary 4. Let D be a Jordan domain in C with the quasihyperbolic boundary
condition, the unit inner normal n(ζ), ζ ∈ ∂D, belong to the class CBV(∂D) and
φ : ∂D → R be measurable with respect to logarithmic capacity.

Suppose that G : D → R is in Lp(D), p > 2. Then one can find generalized harmonic
functions U : D → R with the source G such that q.e. on ∂D there exist:

1) the finite limit along the normal n(ζ)

U(ζ) := lim
z→ζ

U(z) ,

2) the normal derivative

∂U

∂n
(ζ) := lim

t→0

U(ζ + t · n(ζ))− U(ζ)

t
= φ(ζ) ,

3) the angular limit

lim
z→ζ

∂U

∂n
(z) =

∂U

∂n
(ζ) .

Furthermore, the space of such functions U has the infinite dimension.
7. Poincare and Neumann problems and Bagemihl–Seidel systems.
Arguing similarly to the last section, we obtain by Theorem 6 in [17], as well as

Theorem 2 and Remark 2 above, the following statement.
Theorem 6. Let D be a Jordan domain in C, ν : ∂D → C, |ν(ζ)| ≡ 1, and

φ : ∂D → C be measurable functions with respect to the logarithmic capacity and let
{γζ}ζ∈∂D be a family of Jordan arcs of class BS in D.

Suppose that G : D → R is in Lp(D), p > 2. Then there exist generalized harmonic
functions U : D → C with the source G that have the limits along γζ

lim
z→ζ

∂U

∂ν
(z) = φ(ζ) q.e. on ∂D . (42)

Furthermore, the space of such functions U has the infinite dimension.
Remark 5. As it follows from the proofs of Theorems 5 and 6, the generalized

harmonic functions U with a source G ∈ Lp, p > 2, satisfying the Poincare boundary
conditions can be represented in the form of the sums NG + H of the logarithmic
(Newtonian) potential NG that is a generalized harmonic function with the source G
and harmonic functions H satisfying the corresponding Poincare boundary conditions.
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8. Other consequences in terms of Bagemihl–Seidel systems.
Finally, arguing similarly to the proofs of Corollaries 9 and 10 in [17] and supporting

on Lemmas 1 and 2 from Sections 4 and 5, correspondingly, we obtain the following
consequences.

Corollary 5. Let D be a domain in C whose boundary consists of a finite number
of mutually disjoint Jordan curves, B : ∂D → R and C : ∂D → R be functions
that are measurable with respect to the logarithmic capacity and let α : ∂D → ∂D be a
homeomorphism keeping components of ∂D such that α and α−1 have the (N)−property
of Luzin with respect to the logarithmic capacity.

Suppose that G : D → R is in Lp(D), p > 2, {γ+ζ }ζ∈∂D and {γ−ζ }ζ∈∂D are families
of Jordan arcs of class BS in D and C\D, correspondingly. Then there exist generalized
harmonic functions u+ : D → R and u− : C \D → R with the source G such that

u+(α(ζ)) = B(ζ) · u−(ζ) + C(ζ) q.e. on ∂D , (43)

where u+(ζ) and u−(ζ) are limits of u+(z) and u−(z) az z → ζ along γ+ζ and γ−ζ ,
correspondingly.

Furthermore, the space of all such couples (u+, u−) has the infinite dimension for
any such prescribed functions G, B, C, α and collections {γ+ζ }ζ∈∂D and {γ−ζ }ζ∈∂D.

In particular, we are able to obtain from the following corollary solutions of the
problem on gluing of the Dirichlet problem in the unit disk D and the Neumann problem
outside of D in the class of generalized harmonic functions with the source G.

Corollary 6. Let D be a domain in C whose boundary consists of a finite number
of mutually disjoint Jordan curves, ν : ∂D → C, |ν(ζ)| ≡ 1, be a measurable function,
β : ∂D → ∂D be a homeomorphism such that β and β−1 have the (N)−property of
Luzin and φ : ∂D × R → R satisfy the Caratheodory conditions with respect to the
logarithmic capacity.

Suppose that G : C → R is in Cα(C), α ∈ (0, 1), with compact support, {γ+ζ }ζ∈∂D
and {γ−ζ }ζ∈∂D are families of Jordan arcs of class BS in D and C\D, correspondingly.
Then there exist generalized harmonic functions u+ : D → R and u− : C \D → R with
the source G such that

u+(β(ζ)) = φ

(
ζ,

[
∂u

∂ν

]−
(ζ)

)
q.e. on ∂D , (44)

where u+(ζ) and
[
∂u
∂ν

]−
(ζ) are limits of the functions u+(z) and ∂u−

∂ ν (z) as z → ζ
along γ+ζ and γ−ζ , correspondingly.

Furthermore, the space of all such couples (u+, u−) has the infinite dimension for
any such prescribed functions G, ν, β, φ and collections γ+ζ and γ−ζ , ζ ∈ ∂D.

The corresponding results on the boundary value problems for semi–linear equations
of mathematical physics in anisotropic and inhomogeneous media with arbitrary mea-
surable data can be proved on the basis of the factorization theorem in the paper [14],
too.
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В. Гутлянський, О. Нєсмєлова, В. Рязанов, А. Єфiмушкiн
Крайовi задачi для узагальнених аналiтичних i гармонiчних функцiй.

Вивчення задачи Дiрiхле з довiльними вимiрними даними для гармонiчних функцiй сходить до
знаменитої дисертацiї Лузiна. Пiзнiше, вiдома монографiя Вєкуа була присвячена крайовим за-
дачам (тiльки з неперервними по Гельдеру граничними даними) для узагальнених аналiтичних
функцiй, а саме для неперервних комплекснозначних функцiй комплексної змiнної з узагальнени-
ми першими частинними похiдними по Соболєву, якi задовольняють лiнiйним рiвнянням першого
порядку, чиї коефiцiєнти iнтегрованi порядку бiльше 2 у вiдповiдних областях комплексної пло-
щини. Подана стаття є природнiм продовженням наших статей, присвячених крайовим задачам
Рiмана, Гiльберта, Дiрiхле, Пуанкаре i, зокрема, Неймана для квазiконформних, аналiтичних,
гармонiчних i, так званих, A-гармонiчних функцiй з крайовими умовами, вимiрними вiдносно ло-
гарифмiчної ємностi. В цiй роботi ми поширюємо вiдповiднi результати на узагальненi аналiтичнi
функцiї з витоками iнтегрованими порядку бiльше 2, а також на узагальненi гармонiчнi функцiї з
витоками iнтегрованими порядку бiльше 2. Також ми даємо вiдповiднi визначення з необхiдними
посиланнями на згаданi статтi та коментарi до попереднiх результатiв. Стаття мiстить рiзно-
манiтнi теореми iснування некласичних розв’язкiв крайових задач Гiльберта та Рiмана з довiль-
ними вимiрними вiдносно логарифмiчної ємностi даними для узагальнених аналiтичних функцiй
з витоками. Наш пiдхiд грунтується на геометричнiй (теоретико-функциональной) iнтерпрета-
цiї граничних значень в порiвняннi з класичним операторним пiдходом в теорiї диференцiйних
рiвнянь з частинними похiдними. На цiй основi встановленi вiдповiднi теореми iснування для
задачi Пуанкаре про похiднi за напрямами i, зокрема, для задачi Неймана до рiвняння Пуасона
з довiльними крайовими умовами, вимiрними вiдносно логарифмiчної ємностi. Цi результати та-
кож можуть бути застосованi для напiвлiнiйних рiвнянь математичної фiзики в анiзотропних та
неоднорiдних середовищах.

Ключовi слова: рiвняння Пуасона; задачi Рiмана, Гiльберта, Дiрiхле, Неймана та Пуанкаре;
узагальненi аналiтичнi та гармонiчнi функцiї; логарифмiчна ємнiсть.
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