Туннельная спиновая инжекция и особенности проводимости гетероструктур ферромагнетик–сверхпроводник при нулевом напряжении смещения

Э.М. Руденко, И.В. Короташ, Ю.В. Шлапак, Ю.В. Кудрявцев, А.А. Краковный, М.В. Дякин

Институт металлофизики им. Г.В. Курдюмова НАН Украины, бульвар Академика Вернадского, 36, г. Киев-142, 03680, ГСП, Украина E-mail: rudenko@imp.kiev.ua

Статья поступила в редакцию 13 октября 2010 г.

В гетероструктурах ферромагнетик F (Co₂CrAl)–изолятор I–сверхпроводник S (Pb), удельное сопротивление которых изменялось в широких пределах (10^{-7} – 10^{-4} Ом·см²), экспериментально и теоретически исследован эффект гигантской спиновой блокировки туннельного тока, ранее обнаруженный нами (*ФHT* **36**, 234 (2010)). Установлено, что величина этого эффекта зависит от удельного сопротивления контактов в нормальном состоянии и влияния процесса рекомбинационной спиновой деполяризации. Предложена теоретическая модель, адекватно описывающая процессы туннелирования спин-поляризованных электронов в контактах F–I–S-типа. Установлено, что величина нормированной проводимости σ^{FS} туннельного контакта F–I–S-типа может быть существенно меньше величины фундаментальной нормированной проводимости σ^{NS} туннельного контакта N–I–S-типа (N — нормальный металл). В рамках предложенной модели оценена степень спиновой поляризации *p* пленок ферромагнитного полуметалла сплава Гейслера Co₂CrAl с кристаллической структурой B2- и L2₁-типов, которая оказалась близкой к 1 ($p \approx 0,97$). Экспериментально изучена теоретическая модель, адекватно описывающая температурное поведения нормированной проводимости σ^{FS} (*T*) туннельного контакта Со₂CrAl–I–Pb F–I–S-типа. Предложена теоретическая модель, адекватно описывающая температурное поведения нормированной проводимости σ^{FS} (*T*) туннельного контакта Со₂CrAl–I–Pb F–I–S-типа. Предложена теоретическая модель, адекватно описывающая температурное поведения нормированной проводимости σ^{FS} (*T*) с учетом особенностей спин-поляризованного туннелирования.

У гетероструктурах феромагнетик F (Co₂Cral)–ізолятор I–надпровідник S (Pb), питомий опір яких змінювався в широких межах $(10^{-7}-10^{-4} \text{ Om} \cdot \text{cm}^2)$, експериментально й теоретично досліджено ефект гігантського спінового блокування тунельного струму, раніше виявлений нами (ΦHT 36, 234 (2010)). Установлено, що величина цього ефекту залежить від питомого опору контактів у нормальному стані й від впливу процесу рекомбінаційної спінової деполяризації. Запропоновано теоретичну модель, що адекватно описує процеси тунелювания спін-поляризованих електронів у контактах F–I–S-типу. Установлено, що величина нормованої провідності σ^{FS} тунельного контакту F–I–S-типу може бути суттєво менше величини фундаментальної нормованої провідності σ^{NS} тунельного контакту N–I–S-типу (N — нормальний метал). У рамках запропонованої моделі оцінено ступінь спінової поляризації *р* плівок феромагнітного напівметалу сплаву Гейслера Co₂CrAl з кристалічною структурою B2- і L2₁-типів, яка виявилася близькою до 1 ($p \approx 0.97$). Експериментально вивчено температурну залежність $\sigma^{FS}(T)$ тунельного контакту Co₂CrAl–I–Pb F–I–S-типу. Запропоновано теоретичну модель, що адекватно описує температурну поведінку нормованої провідності σ^{FS} з урахуванням особливостей спін-поляризованого тунелювання.

РАСS: 72.25.-b Спин-поляризованный транспорт;

74.78.Fk Мультислои, суперрешетки, гетероструктуры.

Ключевые слова: спиновая поляризация, спиновый ток, сверхпроводник, гетероструктура, туннельный эффект.

1. Введение

Изучение особенностей спин-поляризованного транспорта в гетероструктурах ферромагнетик-сверхпроводник — важная задача как для понимания физических процессов, связанных с появлением спинполяризованных возбуждений в сверхпроводнике, так и использованием новых знаний для становления сверхпроводниковой спиновой электроники. Эти исследования способствуют поиску эффективных источников спин-поляризованного тока — спиновых инжекторов с высокой степенью спиновой поляризации *p*, контролируемыми и стабильными параметрами [1,2].

Перспективными материалами для спиновых инжекторов являются пленки сплава Гейслера (СГ) с кристаллическим упорядочением В2- и L21-типов. В работах [3,4] теоретически показано, что некоторые СГ с формулой X₂YZ (Х и Y — 3*d* переходные металлы, а Z *s*-*p*-металл) — ферромагнитные полуметаллы с 100% спиновой поляризацией электронов на уровне Ферми. Кроме того, СГ на основе Со (в частности, Co₂CrAl) имеют температуру Кюри на уровне комнатной и большой магнитный момент [5,6]. Однако получение высококачественных кристаллически упорядоченных СГ связано с существенными технологическими трудностями. Так, в работе [7] сообщалось, что измеренная микроконтактным методом (point contact Andreev reflection measurements) степень спиновой поляризации объемных образцов сплава Co2CrAl B2-типа упорядочения с включением неупорядоченной фазы А2-типа составила $p \approx 0.62$, что существенно ниже теоретически ожидаемой $p_{\text{th}} = 1$. Еще с большими технологическими трудностями связано получение высококачественных кристаллически упорядоченных пленок СГ с $p \approx 1$, необходимых для интегральных устройств спинтроники.

Ранее нами экспериментально обнаружен эффект гигантской спиновой блокировки туннельного тока в гетероструктурах ферромагнетик (F)–изолятор (I)–сверхпроводник (S) Co₂CrAl–I–Pb [8,9], заключающийся в гигантском росте дифференциального сопротивления контакта R^{FS} при малых напряжениях смещения $V \ll <$ $<< \Delta/e$ (Δ — энергетическая щель сверхпроводника, e заряд электрона). В кратком сообщении [9] дана теоретическая интерпретация обнаруженного эффекта для частного случая стационарного состояния в сверхпроводнике, когда спиновый ток между F и S равен нулю; показано, что величина R^{FS} зависит от степени спиновой поляризации p ферромагнетика, и продемонстрирована возможность использовать обнаруженное явление для определения p.

Проведенные нами далее исследования показали, что для туннельных контактов Co₂CrAl–I–Pb F–I–S-типа величина нормированной проводимости $\sigma^{FS} \equiv G^{FS}/G^{FN}$ существенно меньше величины фундаментальной нормированной проводимости Гиавера $\sigma^{NS} \equiv G^{NS}/G^{NN}$

для туннельного контакта N-I-S-типа [10-12], как рассчитанной в рамках теории БКШ, так и определенной в эксперименте. (Здесь N — нормальный (не ферромагнитный) металл; G^{FS} и G^{NS} — дифференциальная проводимость туннельного контакта при нулевом напряжении смещения, когда сверхпроводник S находится в сверхпроводящем состоянии; G^{FN} и G^{NN} — дифференциальная проводимость того же туннельного контакта, когда сверхпроводник S находится в нормальном состоянии.) Кроме того [10–12], значение σ^{NS} не зависит от G^{NN} и является определенной константой для конкретного сверхпроводящего электрода S при определенной температуре. Однако для некоторых исследованных нами туннельных контактов Co2CrAl-I-Pb даже для пленок Co2CrAl из одной технологической партии значения σ^{FS} изменялись и зависели от G^{FN} . Напомним, Гиавер открыл, что σ^{NS} определяет структуру плотности состояний электродов туннельного N-I-Sконтакта [10-12]. Это открытие положило начало новому уникальному квантово-физическому направлению туннельной спектроскопии с высоким разрешением по энергии, в основе которой лежит определение σ^{NS} [12]. Поэтому обнаруженые нами отклонения от общепринятых постулатов, нашедших такое широкое практическое применение, требуют детального экспериментального и теоретического изучения. Экспериментальному изучению и теоретической интерпретации указанных особенностей нормированной проводимости о го туннельных контактов Co2CrAl-I-Pb F-I-S-типа и посвящена данная работа.

2. Экспериментальные образцы и методика эксперимента

Изготовлены и исследованы туннельные контакты $Co_2CrAl-I-Pb$ F–I–S-типа, удельное сопротивление которых изменялось в широких пределах от 10^{-4} до 10^{-7} Ом·см².

Пленки Co₂CrAl осаждались методом «вспышки» на сапфировые подложки. В зависимости от технологических режимов формирования пленки имели кристаллическую структуру L21- и В2-типов. Получены как мелкозернистые пленки с размером зерна кристалла 30-40 нм, так и крупнозернистые пленки, в которых размер зерна кристалла 1000-1200 нм. Толщина пленок $d \approx 100$ нм. Подчеркнем, что такие высококачественные крупнозернистые пленки ферромагнитного полуметалла Со₂CrAl получены впервые. Микроструктура пленок Co₂CrAl исследована на просвечивающем электронном микроскопе методом пространственно-селективной микродифракции. Магнитные характеристики этих пленок изучены в диапазоне температур 5-350 К на СКВИД-магнитометре. На вибрационном микроскопе в параллельном магнитном поле исследована намагниченность М(Н). Температурная зависимость намагниченности M(T), полученная при охлаждении и измерении в магнитном поле 100 Э, дала температуру Кюри пленок Co₂CrAl $T_C = 330$ К, что соответствовало температуре Кюри массивного сплава [13].

Туннельный барьер формировался путем окисления пленки Co₂CrAl в лабораторных условиях при комнатной температуре. Пленки свинца S осаждались термически на окисленную пленку Co₂CrAl. Все пленки осаждались через маски. Толщина пленок около 100 нм. Размер туннельного контакта 200×200 мкм.

Вольт-амперные характеристики (ВАХ) туннельных контактов Co₂CrAl–I–Pb измерены в гелиевом криостате в диапазоне температур 4,2–5,7 К с использованием четырехзондовой методики в режиме источника тока и определены их дифференциальные G^{FS} , G^{FN} и нормированные σ^{FS} проводимости.

На рис. 1 для температуры 4,2 К приведены экспериментальные значения (σ^{FS})⁻¹, полученные для гетероструктур Co₂CrAl–I–Pb с разным значением проводимости G^{FN} , и расчетные для туннельного контакта F–I–S-типа. Подчернем, что на рис. 1 приведены экспериментальные значения (σ^{FS})⁻¹ для туннельных контактов, сформированных на пленках Co₂CrAl с кристаллической структурой B2-типа из одной технологической партии. Предполагаем постоянство степени спиновой поляризации *p* пленки Co₂CrAl в одной технологической партии, что подтверждается исследованием их магнитных параметров [13]. Расчетные значения (σ^{FS})⁻¹ при *T* = 4,2 К для туннельного контакта F–I–Pb на основе ферромагнитной пленки с *p* ≈ 0,97 получены в рамках предложенной нами далее модели.

На рис. 1 видно, что значение нормированной проводимости $\sigma^{FS} \equiv G^{FS}/G^{FN}$, в отличие от σ^{NS} , зависит от

Рис. 1. Экспериментальная зависимость (квадратики) нормированной проводимости $(G^{FS})^{-1}$ при T = 4,2 К от проводимости в нормальном состоянии $(G^{FN})^{-1}$ для ряда туннельных контактов Co₂CrAl–I–Pb F–I–S-типа и расчетная зависимость (сплошная линия), полученная в рамках предложенной модели, для туннельного контакта F–I–Pb-типа с ферромагнитной пленкой со степенью спиновой поляризации $p \approx 0,97$ и коэффициентом спиновой деполяризации $\theta \sim (G^{FN})^{-1}$.

616

значения проводимости в нормальном состоянии G^{FN} . Так, экспериментальные значения (σ^{FS})⁻¹ при уменьшении (G^{FN})⁻¹ от 2·10⁻² до 10⁻⁴ Ом возростали от 25 до 100 и выше. То есть величина обнаруженного эффекта спиновой блокировки зависила от величины (G^{FN})⁻¹. Расчет в рамках теории БКШ для контакта N–I–Pb при 4,2 К дает (σ^{NS})⁻¹ \approx 6,5. В экспериментах для контактов Sn–I–Pb N–I–S-типа получено (σ^{NS})⁻¹ \approx 5,9 [8,9] и для контактов Al–I–Pb — (σ^{NS})⁻¹ \approx 5,84 [11].

Для ряда туннельных контактов Co₂CrAl-I-Pb проведены исследования поведения нормированной проводимости $\sigma^{FS}(T)$ при изменении температуры. На вставке к рис. 2 приведены полученные экспериментальные и расчетные значения $(\sigma^{FS}(T))^{-1}$ в интервале температур 4,2-5,7 К для гетероструктур, которые при температуре T₀ = 4,2 К имели экспериментальное значение $(\sigma^{FS}(T_0))^{-1} \approx 110$. Как видим, величина $(\sigma^{FS})^{-1}$ интенсивно уменьшается при повышении температуры. На основном рис. 2 приведены температурные зависимости экспериментальных и расчетных значений $(\sigma^{FS}(T))^{-1}$ для контактов Co₂CrAl–I–Pb F–I–S-типа, а также расчетные значения $(\sigma^{NS}(T))^{-1}$ для N–I–S(Pb)контактов, нормированные соответственно на их расчетные значения при 4,2 К. Эти температурные зави-симости для ($\sigma^{FS}(T)$)⁻¹ и ($\sigma^{NS}(T)$)⁻¹ значительно разли-чаются. Расчетные значения ($\sigma^{FS}(T)$)⁻¹ получены в рамках предложенной нами модели, а ($\sigma^{NS}(T)$)⁻¹ — по фундаментальной формуле (2) в рамках модели БКШ.

Рис. 2. Экспериментальная (квадратики) и расчетная (сплошная линия) зависимости нормированной проводимости ($\sigma^{FS}(T)$)⁻¹ от температуры для контактов Co₂CrAl–I–Pb F–I–Sтипа, а также расчетная зависимость (пунктирная линия) нормированной проводимости ($\sigma^{NS}(T)$)⁻¹ для N–I–S(Pb)-контактов, нормированные соответственно на их расчетные значения при $T_0 = 4,2$ К. Расчетные значения ($\sigma^{FS}(T)$)⁻¹ получены в рамках предложенной модели, а ($\sigma^{NS}(T)$)⁻¹ — согласно теории БКШ по формуле (2). На вставке приведены экспериментальная (квадратики) и расчетная (сплошная линия) зависимости ($\sigma^{FS}(T)$)⁻¹ для контактов, которые при $T_0 = 4,2$ К имели экспериментальное значения ($\sigma^{FS}(T_0)$)⁻¹ \approx 110 и $p \approx 0,97$.

Заметим, что в исследованом диапазоне температур с повышением *T* величина $(\sigma^{FS}(T))^{-1}$ уменьшилась в ≈10 раз, а расчетная $(\sigma^{NS}(T))^{-1}$ уменьшилась в ≈ 3 раза.

3. Теоретические модели и обсуждение экспериментальных результатов

3.1. Нормированная проводимость σ^{FS} F–I–S-контактов

Проанализируем экспериментально обнаруженные особенности поведения нормированной проводимости σ^{FS} туннельных контактов Co₂CrAl-I-Pb при нулевом напряжении смещения. Физическая интерпретация эффекта гигантской блокировки туннельного тока в гетероструктурах ферромагнетик-сверхпроводник предложена нами в работе [9]. Там же рассмотрена теоретическая модель для частного случая, когда $\tau_{sf} >>$ >> $\tau_T > \tau_E$ (τ_{sf} — время жизни спин-поляризованного электрона до переворота спина, τ_T — время жизни электрона до туннелирования через барьер, т_Е — время энергетической релаксации), и в стационарном состоянии, когда можно положить равным нулю спиновый ток между ферромагнетиком и сверхпроводником. Рассмотренный в работе [9] случай $\tau_{sf} >> \tau_T$ может быть применен только к контактам с очень высокой прозрачностью туннельного барьера. В настоящей работе предложена расширенная теоретическая модель $\tau_{sf} > \tau_T > \tau_E$ и физическая интерпретация экспериментальных данных, полученных при изучении туннельных контактов Со₂CrAl-I-Pb, удельное сопротивление которых изменялось в широких пределах от 10^{-7} до 10^{-4} Ом·см²

Как известно [12], для туннельного контакта N–I–Sтипа зависимость туннельного тока I от напряжения смещения V при значениях eV малых по сравнению с высотой потенциального барьера определяется соотношением

$$I^{NS}(V) = C \int_{-\infty}^{+\infty} N_T(E_k) [f(E_k) - f(E_k + eV)] dE_k, \quad (1)$$

где $C = e^{-1}G^{NN}$, $G^{NN} = (4\pi e^2 / \hbar) |T|^2 N^{(1)}(0) N^{(2)}(0)$ — сопротивление контакта при нормальном состоянии обоих электродов, T — туннельный матричный элемент перехода, $N^{(1)}(0)$, $N^{(2)}(0)$ — плотности электронных состояний на уровне Ферми в электродах контакта, e — заряд электрона, $N_T(E_k) = \text{Re}(|E_k|/\varepsilon_k)$ плотность состояний элементарных возбуждений сверхпроводника согласно теории БКШ, $f(E_k)$ — функция распределения Ферми–Дирака элементарных возбуждений с импульсом k и энергией $\varepsilon_k = \sqrt{E_k^2 - \Delta^2}$ для сверхпроводника с энергетической щелью Δ . При $eV \ll \Delta$ нормированная проводимость σ^{NS} тун-

При $eV \ll \Delta$ нормированная проводимость σ^{NS} туннельного контакта N–I–S-типа может быть рассчитана как [12]

$$\sigma^{NS}(T) = \frac{(dI/dV)_S}{(dI/dV)_N} = \int_{-\infty}^{+\infty} N_T(E)(-\partial f(E)/\partial E) dE.$$
(2)

В случае замены нормального металла N в N–I–Sконтакте на ферромагнетик F зависимость (1) туннельного тока I от напряжения V для контакта F–I–S-типа принимает вид

$$I^{FS}(V) = \sum_{s} C_{s} \int_{-\infty}^{+\infty} N_{T}(E_{k}) [f(E_{k}) - f(E_{k} + eV)] dE_{k}, \quad (3)$$

где $eC_s = (2\pi e^2 / \hbar) |T|^2 N_s^{(1)}(0) N^{(2)}(0)$ — проводимость контакта для отдельной спиновой подзоны ферромагнетика при нормальном состоянии обоих электродов; спиновый индекс *s* принимает значения $+1(\uparrow)$ и $-1(\downarrow)$; $N_s^{(1)}(0)$, $N^{(2)}(0)$ — плотности электронных состояний на уровне Ферми в ферромагнетике и сверхпроводнике в нормальном состоянии. Тогда $C_{\uparrow} + C_{\downarrow} = e^{-1} G^{FN}$.

Степень спиновой поляризация ферромагнетика *р* можно определить как [14]

$$p = \frac{N_{\uparrow}^{(1)}(0) - N_{\downarrow}^{(1)}(0)}{N_{\uparrow}^{(1)}(0) + N_{\downarrow}^{(1)}(0)} = \frac{C_{\uparrow} - C_{\downarrow}}{C_{\uparrow} + C_{\downarrow}}$$

Неравновесное состояние сверхпроводника изучалось многими авторами [15]. При небольших концентрациях избыточных квазичастиц для описания можно использовать модель Оуна-Скалапино [16], в которой для функции распределения используется эффективный химический потенциал. Тогда при малых напряжениях смещения V и $\tau_T > \tau_E$ (условие восстановления равновесного распределения квазичастиц по энергии) и $\tau_{sf} > \tau_T$ (условие спиновой аккумуляции) функция распределения элементарных возбуждений f(Ek) в сверхпроводнике может быть представлена равновесной фермиевской функцией $f_0(E_k)$ с неравновесной добавкой $\pm \delta \mu_F$ к химическому потенциалу μ для спиновых $\mu_{\uparrow} = \mu + \delta \mu_F$ двух подсистем: И $\mu_{\downarrow} = \mu - \delta \mu_F$ [17]. При $eV \ll \Delta$ величина $\delta \mu_F$ намного меньше энергетической щели Δ и линейно зависит от напряжения [17]. В этом случае зарядовый $(I^{FS} = I_{\uparrow} + I_{\downarrow})$ и спиновый $(I^{FS}_s = I_{\uparrow} - I_{\downarrow})$ туннельные токи в F-I-S-контакте можно представить соответственно как

$$I^{FS}\Big|_{eV <<\Delta} = (C_{\uparrow} + C_{\downarrow})\sigma^{NS}(T)eV - (C_{\uparrow} - C_{\downarrow})\sigma^{NS}(T)\delta\mu_F =$$
$$= (1 - p\kappa)\sigma^{NS}(T)VG^{FN}, \qquad (4)$$

$$I_{S}^{FS}\Big|_{eV <<\Delta} = (C_{\uparrow} - C_{\downarrow})\sigma^{NS}(T)eV - (C_{\uparrow} + C_{\downarrow})\sigma^{NS}(T)\delta\mu_{F} = (p - \kappa)\sigma^{NS}(T)VG^{FN},$$
(5)

где $\kappa = \frac{\delta \mu_F}{eV} \bigg|_{eV \ll \Delta}$.

Физика низких температур, 2011, т. 37, № 6

617

Введем обозначение

$$\alpha \equiv \frac{I_s^{FS}}{I^{FS}}\Big|_{eV <<\Delta} = \frac{p - \kappa}{1 - p\kappa}$$

Тогда, учитывая зависимости (2)–(4) и то, что $\frac{I^{FS}}{V}\Big|_{eV <<\Delta} = \frac{\partial I^{FS}}{\partial V}$, нормированную проводимость

F–I–S-контакта σ^{FS} можна представить в виде

$$\sigma^{FS}(p,T) = \frac{1}{G^{FN}} \frac{I^{FS}}{V} \bigg|_{eV <<\Delta} =$$
$$= (1 - p\kappa)\sigma^{NS}(T) = \frac{1 - p^2}{1 - \alpha p} \sigma^{NS}(T).$$
(6)

Из зависимости (6) следует, что величина нормированной проводимости туннельного F–I–S-контакта σ^{FS} зависит от степени спиновой поляризации p ферромагнетика и величины спин-зависимой неравновесности к в сверхпроводнике. Величина σ^{FS} может быть существенно меньше нормированной проводимости σ^{NS} туннельного контакта N–I–S-типа, рассчитанной согласно теории БКШ (2) и полученной в эксперименте.

Как показано в [18], присутствие избыточных квазичастиц в туннельных контактах N–I–N-типа приводит к незначительному (на единицы процентов) возрастанию дифференциального сопротивления при напряжении смещения V = 0. Наблюдаемый эффект связан с блокировкой избыточными квазичастицами обычно свободных энергетических состояний, что уменьшает вероятность туннелирования. Количество избыточных квазичастиц в контакте N–I–N связано со временем их релаксации на низкоэнергетических фононах, плотность которых невелика.

Аронов [19] теоретически показал, что спинполяризованный туннельный ток в контакте ферромагнетик-сверхпроводник сохраняет свою поляризацию и приводит к спиновой поляризации квазичастичных возбуждений в сверхпроводнике вблизи границы раздела фаз. Эта внешняя инжекция спин-поляризованного тока должна привести к накоплению избыточных неравновесных спин-поляризованных квазичастиц. Физическая причина этого явления связана с тем, что ток в сверхпроводнике переносится синглетными куперовскими парами, а потому инжектированные в прибарьерную область сверхпроводящего электрода спин-поляризованные электроноподобные квазичастицы далее не могут прямо участвовать в токопереносе и не могут просто уйти из прибарьерной области. Для объединения спин-поляризованных электроноподобных квазичастиц в синглетные куперовские пары для части из них сначало необходимы процессы переворота спина

 спин-флип процессы. Вероятность таких процессов в сверхпроводнике в отсутствие магнитных примесей чрезвычайно мала и определяется спин-орбитальным взаимодействием [19]. Именно вероятность этих спинфлип процессов определяет скорость рекомбинации спин-поляризованных квазичастиц в сверхпроводнике. Появление избыточных спин-поляризованных квазичастиц дополнительно к тепловым переводит сверхпроводник в неравновесное спин-поляризованное состояние. В работах [20,21] мы показали, что в сверхпроводнике эффективное время рекомбинации $\tau_R^{\rm eff}$ неравновесных спин-поляризованных квазичастиц в синглетные куперовские пары значительно больше, чем время рекомбинации τ_R неравновесных квазичастиц при инжекции обычного (не поляризованного по спину) тока. Так, для Pb при 4,2 К $\tau_R^{\text{eff}} \approx 30 \tau_R$ [21].

В исследованных нами пленочных F–I–S-структурах в сверхпроводящем Pb нет условий для эффективных спин–флип процессов инжектированных спин-поляризованных квазичастиц, необходимых для рождения синглетных куперовских пар. Поэтому в наших экспериментах возможно накопление неравновесных спинполяризованных квазичастиц, блокировка ими обычно свободных энергетических уровней в сверхпроводнике, что, в итоге, заблокирует сам процесс туннелирования из ферромагнетика и уменьшит проводимость туннельного контакта: возникнет эффект гигантской спиновой блокировки.

Уменьшение σ^{FS} относительно σ^{NS} за счет спиновой блокировки процесса туннелирования произойдет только тогда, когда в сверхпроводнике время жизни спин-поляризованного электрона до переворота спина т_{sf} больше, чем время жизни электрона при данной температуре до туннелирования через барьер $\tau_T \sim [v_{k\perp} P(v_{k\perp})]^{-1}$, где $P(v_{k\perp})$ — вероятность прохождения электрона через барьер, $v_{k\perp}$ — нормальная к барьеру компонента скорости электрона [12]. Если $\tau_T > \tau_E$ (τ_E — время энергетической релаксации), то в промежутке между двумя последовательными процессами туннелирования электрона в сверхпроводнике будет полностью восстанавливаться равновесие по энергии. Однако при $\tau_{sf} > \tau_T$ надо учесть возникновение спиновой неравновесности из-за накопления спинполяризованных квазичастиц и спин-флип процессов.

Отношение количества электроноподобных квазичастиц, испытавших спин-флип процесс, к общему количеству электроноподобных квазичастиц, проникших через барьер в сверхпроводник, равно τ_T/τ_{sf} . Далее эти τ_T/τ_{sf} электроноподобные квазичастицы смогут рекомбинировать в синглетные куперовские пары с τ_T/τ_{sf} электроноподобными квазичастицами с мажорной проекцией спина и дальше участвовать в токопереносе. Таким образом, в сверхпроводнике спин-флип процесс в $2\tau_T/\tau_{sf}$ раза уменьшит количество электроноподобных квазичастиц с мажорной проекцией спина. Это увеличит количество свободных энергетических уровней и уменьшит степень спиновой поляризации *р* избыточных квазичастиц, протуннелировавших в сверхпроводник. Величину эффекта спиновой деполяризации по этому механизму можно охарактеризовать коэффициентом рекомбинационной спиновой деполяризации $\theta = 2\tau_T/\tau_{sf}$. Величина θ определяет долю электроноподобных квазичастиц, рекомбинировавших в синглетные куперовские пары благодаря спин-флип процессу, относительно разности количества электроноподобных квазичастиц с мажорной и минорной проекциями спинов, прошедших в сверхпроводник. Поскольку $\tau_T \sim (P(v_{k\perp}))^{-1} \sim (G^{FN})^{-1}$ [12], коэффициент $\theta \sim (G^{FN})^{-1}$.

Множитель $(p - \kappa)$ в выражении (5) дает уменьшение спин-поляризованной компоненты тока I_s^{FS}

за счет неравновесности (
$$\kappa = \frac{\delta \mu_F}{eV} \Big|_{eV << \Lambda} > 0$$
), обу-

словленной инжекцией спин-поляризованных носителей тока в сверхпроводник. С другой стороны, это же уменьшение равно коэффициенту θ , умноженному на долю носителей тока, дающих вклад в спинполяризованную компоненту тока и равную *p*. Сравнивая эти две величины и учитывая определение I^{FS}

$$\alpha \equiv \frac{I_S^{FS}}{I^{FS}}\Big|_{eV <<\Delta} = \frac{p - \kappa}{1 - p\kappa}$$
, получаем

$$\kappa = p(1-\theta), \tag{7}$$

$$\alpha = \frac{p - \kappa}{1 - p\kappa} = \frac{p\theta}{1 - p^2(1 - \theta)}.$$
(8)

При этом зависимость (6) запишем в виде

$$\sigma^{FS}(p,T) = [1 - p^2(1 - \theta)]\sigma^{NS}(T).$$
(9)

На рис. 3 для F–I–Pb-контакта при 4,2 К приведен ряд зависимостей $(\sigma^{FS})^{-1}/(\sigma^{NS})^{-1}$ от степени спиновой поляризации *p* при разных значениях величины коэффициента θ . Кривая $(1 - p^2)^{-1}$ соответствует ситуации, рассмотренной ранее, при которой в F–I–S-контакте спиновая компонента тока равна нулю ($\alpha = 0$) [9]. В этом случае при полной спиновой поляризации p = 1нормированная проводимость контакта $\sigma^{FS} =$ $= \sigma^{NS}(1 - p^2) = 0$, т.е. наступает *полная спиновая блокировка туннельного тока инжекции*.

Из зависимости (9) при *p* = 1 получаем

$$\sigma^{FS}(1, T) = \theta(T)\sigma^{NS}(T), \tag{10}$$

т.е. при температуре T отличие величины нормированной проводимости $\sigma^{FS}(1,T)$ туннельного F–I–Sконтакта от величины нормированной проводимости $\sigma^{NS}(T)$ туннельного N–I–S-контакта определяется ин-

Рис. 3. Зависимость нормированной проводимости σ^{FS} F–I–S-контакта от степени спиновой поляризации *p* при *T* = 4,2 К и разных значениях коэффициента рекомбинационной спиновой деполяризации θ : $\theta_0 = 0$; $\theta_1 = 0,05$; $\theta_2 = 0,15$; $\theta_3 = 0,25$; $\theta_4 = 0,4$; $\theta_5 = 0,6$.

тенсивностью процессов *рекомбинационной спиновой деполяризации*, характеризуемой коэффициентом $\theta(T)$. Поскольку $\theta(T) = 2\tau_T / \tau_{sf} \sim (G^{FN})^{-1}$, где $\tau_T \sim (P(v_{k\perp}))^{-1} \sim (G^{FN})^{-1}$ [12], становится ясной экспериментально обнаруженная нами зависимость $\sigma^{FS}(p,T)$ от проводимости контактов в нормальном состоянии G^{FN} , особенно явно наблюдаемая для F–I–S-контактов на основе высококачественных пленок Co₂CrAl, у которых $p \rightarrow 1$. Для F–I–S-контактов с высокой прозрачностью ($\theta \rightarrow 0$) будет наблюдаться эффект гигантской спиновой блокировки $\sigma^{FS}(p,T) \rightarrow 0$.

Полученные теоретические результаты могут быть использованы для экспериментального определения степени спиновой поляризации *p* ферромагнетиков или тока спиновых инжекторов в интегральном пленочном исполнении.

Проведем оценку спиновой поляризации, опираясь на зависимость (9). Так, для двух разных F–I–S-контактов, образованных одними и теми же ферромагнетиком и сверхпроводником, зависимость (9) дает $\sigma_{1,2}^{FS}(p,T) = \sigma^{NS}(T)[(1-p^2(1-\theta_{1,2})]$. Определив в эксперименте величины нормированных проводимостей $\sigma_{1,2}^{FS}$ и $G_{1,2}^{FN}$, определяем степень спиновой поляризации *p* ферромагнетика:

$$1 - p^{2} = \frac{\sigma_{1}^{FS}}{\sigma^{NS}(T)} \frac{\frac{\theta_{2}}{\theta_{1}} - \frac{\sigma_{2}^{FS}}{\sigma_{1}^{FS}}}{\frac{\theta_{2}}{\theta_{1}} - 1} = \frac{\sigma_{1}^{FS}}{\sigma^{NS}(T)} \frac{\frac{G_{1}^{FN}}{G_{2}^{FN}} - \frac{\sigma_{2}^{FS}}{\sigma_{1}^{FS}}}{\frac{G_{1}^{FN}}{G_{2}^{FN}} - 1}, \quad (11)$$

где

$$\frac{\theta_2}{\theta_1} = \frac{\tau_{T2}}{\tau_{T1}} = \frac{P_1(v_{k\perp})}{P_2(v_{k\perp})}$$

Физика низких температур, 2011, т. 37, № 6

и учтено, что $\theta_2 / \theta_1 = G_1^{FN} / G_2^{FN}$, так как вероятность туннелирования $P(v_{k\perp})$ пропорциональна прозрачности контакта D и, соответственно, проводимости контакта в нормальном состоянии $G^{FN} : P(v_{k\perp}) \sim D \sim G^{FN}$ [12].

По экспериментальным значениям G_i^{FN} и σ_i^{FS} ряда Co₂CrAl–I–Pb-контактов, полученных на пленках ферромагнитного полуметалла Co₂CrAl из одной технологической партии (рис. 1), по формуле (11) определена степень спиновой поляризации p этих пленок Co₂CrAl. Для пленок Co₂CrAl с кристаллическим упорядочением B2-типа $p \approx 0,97$. В формуле (11) использована рассчитанная согласно теории БКШ величина $(\sigma^{NS})^{-1} = 6,5$ для температуры $T_0 = 4,2$ К. На рис. 1 представлена также теоретическая кривая для нормированной проводимости σ^{FS} , рассчитанная по формуле (9) для степени спиновой поляризации $p \approx 0,97$ и коэффициента $\theta \sim (G^{FN})^{-1}$. Эта теоретическая кривая, учитывающая эффект рекомбинационной спиновой деполяризации, хорошо совпадает с экспериментальными значениями для σ^{FS} исследованных пленок Co₂CrAl.

Процесс рекомбинационной спиновой деполяризации, характеризуемый коэффициентом $\theta \sim (G^{FN})^{-1}$, с ростом $(G^{FN})^{-1}$ при $(G^{FN})^{-1} > 2 \cdot 10^{-2}$ Ом (см. рис. 1) вызвал частичное освобождение заблокированных по спину энергетических уровней в сверхпроводнике, что привело к уменьшению величины эффекта спиновой блокировки туннельного тока и, соответственно, уменьшению измеренной величины $(\sigma^{FS})^{-1}$, определяемой непосредственно из ВАХ. При этом степень спиновой поляризации $p \approx 0.97$ ферромагнетика не изменилась! Поэтому пренебрежение коэффициентом θ в формуле (9) для $(\tilde{G}^{FN})^{-1} > 2 \cdot 10^{-2}$ Ом (т.е. с понижением прозрачности барьера) может привести к занижению реальной величины *р* исследуемого спинового инжектора. Для контакта с $(G^{FN})^{-1} \approx 5 \cdot 10^{-2}$ Ом и $(\sigma^{FS})^{-1} \approx 50$ (см. рис. 1) эта ошибка составила $\Delta p \approx 0,037$ (см. рис. 3 или формулу (9)), а для контакта с $(G^{FN})^{-1} \approx 2 \cdot 10^{-1}$ Ом и $(\sigma^{FS})^{-1} \approx 25$ — величина $\Delta p \approx 0,11$. Кроме того, получив по предлагаемой методике величину р для конкретного спинового инжектора F, по формуле (9) или из рис. З можно определить степень влияния процесса рекомбинационной спиновой деполяризации на становление неравновесного сверхпроводящего состояния, величину эффекта спиновой блокировки в конкретных туннельных контактах и найти отношение времен $\tau_T/\tau_{sf.}$ Для упомянутого контакта с $(\sigma^{FS})^{-1} \approx 50$ коэффициент $\theta \approx 0,073$ и отношение $au_T/ au_{sf} \approx 0,0365$, а для контакта с $(\sigma^{FS})^{-1} \approx 25$ коэффициент $\theta \approx 0,20$ и отношение $\tau_T / \tau_{sf} \approx$ ≈ 0,10. При высокой прозрачности туннельного контакта $((G^{FN})^{-1} < 2 \cdot 10^{-2}$ Ом) процесс рекомбинационной спиновой деполяризации можно не учитывать, а степень спиновой поляризации р определить из формулы (9), положив $\theta = 0$, или по кривой $(1 - p^2)^{-1}$ (рис. 3), совпадающей с результатами работы [9].

Таким образом, мы определили, что степень спиновой поляризации высококачественных пленок ферромагнитного полуметалла Co₂CrAl с кристаллическим упорядочением B2- и L2₁-типов составляет $p \approx 0.97$, что близко к теоретической $p_{th} = 1$.

3.2. Температурная зависимость нормированной проводимости $\sigma^{FS}(T)$ F–I–S-контактов

На рис. 2 представлена экспериментальная температурная зависимость нормированной проводимости σ^{FS} для одного из типичных образцов туннельных контактов Co₂CrAl-I-Pb F-I-S-типа, в котором, как мы определили, степень спиновой поляризации р пленки ферромагнитного полуметалла Co₂CrAl $p \approx 0.97$. На этом же рисунке представлена теоретическая температурная зависимость фундаментальной нормированной проводимости Гиавера $\sigma^{NS}(T)$ N–I–S-контакта, полученная из (2) для Pb и $T_0 = 4,2$ K. Экспериментальная зависимость $\sigma^{FS}(T)$ сильно отличается от расчетной зависимости $\sigma^{NS}(T)$. В исследованном диапазоне температур с повышением *T* величина $(\sigma^{FS}(T))^{-1}$ уменьшилась в ≈ 10 раз, а расчетная $(\sigma^{NS}(T))^{-1}$ — в ≈ 3 раза. Рассмотрим подробно физическую природу такого поведения нормированной проводимости $\sigma^{FS}(T)$ и дадим адекватное теоретическое обоснование. Так как температура Кюри пленок T_C = 330 К, считаем, что при низких температурах p не зависит от T.

Для адекватного моделирования температурной зависимости поведения нормированной проводимости F–I–S-контакта $\sigma^{FS}(T)$ в формулу (9) необходимо ввести температурную зависимость коэффициента рекомбинационной спиновой деполяризации $\theta(T) = 2\tau_T / \tau_{sf}$. Для этого учтем, что, во-первых, от температуры зависит усредненное время жизни электрона до туннелирования через барьер [12] $\tau_T \sim [v_{k\perp}P(v_{k\perp})]^{-1} \sim (G^{NN})^{-1}$. Вероятность туннелирования электрона через барьер $P(v_{k\perp}) \sim G^{NN}$, а $\sigma^{NS} \sim (G^{NN})^{-1} (G^{NN})^{-1}$ проводимость контакта в нормальном состоянии). Учтем, что при рассмотрении туннелирования в сверхпроводящем состоянии при $eV \ll \Delta$ и $V \rightarrow 0$ основной характеристикой туннельного контакта будет дифференциальная проводимость G^{NS} , а более полной — фундаментальная нор-мированная проводимость $\sigma^{NS}(T) \equiv G^{NS}(T)/G^{NN}(T)$ и ее зависимость от температуры. Поэтому логично записать температурную зависимость $\tau_T(T)$ для описания туннелирования и в сверхпроводящем состоянии в виде

$$\tau_T(T) = \tau_0 \sigma^{NS}(T), \qquad (12)$$

где τ_0 — не зависящая от температуры константа, индивидуальная для каждого контакта; $\sigma^{NS}(T)$ описывается уравнением (2).

Во-вторых, электрическое поле проникает в сверх-проводник на зависящую от температуры глубину [22] $\lambda_E(T) = \lambda_E(0) [1 - (T/T_C)]^{-1/4}$, и протуннелировавшие

электроноподобные квазичастицы могут проникнуть на эту глубину до того, как произойдет спин-флип процесс и сможет образоваться синглетная куперовская пара. Характерное время этого процесса $\tau_O(T) = (v_{f\perp})^{-1} \lambda_E(T).$

Таким образом, эффективным временем жизни электрона до туннелирования $\tau^*(T)$, определяющим процесс спиновой блокировки при температуре *T*, будет большее из двух времен $\tau_T(T)$ и $\tau_O(T)$:

$$\tau^*(T) = \max\left(\tau_T(T); \tau_O(T)\right). \tag{13}$$

При этом коэффициент рекомбинационной спиновой деполяризации $\theta(T)$ равен

$$\Theta(T) = \begin{cases} \frac{2\tau^{*}(T)}{\tau_{sf}}, & \text{при} \quad 2\tau^{*}(T) < \tau_{sf}, \\ 1, & \text{при} \quad 2\tau^{*}(T) \ge \tau_{sf}. \end{cases}$$
(14)

В уравнении (14) пренебрегаем зависимостью от температуры τ_{sf} . Это допустимо для анализа наших экспериментальных результатов в диапазоне температур (0,6–0,8) T_C , где, как показано в работах [23–26], τ_{sf} очень слабо зависит от температуры.

На рис. 4 представлены температурные зависимости $\tau_T(T)$ и $\tau_Q(T)$. Величина $\tau_T(T)$ при низких температурах мала и возрастает с увеличением температуры, достигая некоторого конечного значения при T_C . Величина $\tau_Q(T)$ принимает некоторое конечное значение $\tau_Q(0)$ при T = 0, увеличиваясь с нарастающей скоростью при увеличении температуры. Зависимости $\tau_Q(T)$ и $\tau_T(T)$ пересекаются при двух значениях температуры: T_1 и T_2 . Значение $T_Q(T)$ растет очень быстро. Как видим, в интервале температур между T_1 и T_2 определяющим для коэффициента рекомбинационной спиновой деполяризации $\theta(T)$ является $\tau_T(T)$.

Рис. 4. Температурные зависимости характерных времен $\tau_O(T)$ и $\tau_T(T)$.

Рассмотрим поведение $\sigma^{FS}(T)$ в интервале температур $T_1 < T < T_2$. В этом случае из (12)–(14) находим

$$\theta(T) = \frac{2\tau_0 \sigma^{NS}(T)}{\tau_{sf}}.$$
 (15)

При этом из (9) получаем

$$\sigma^{FS}(p,T) = \left(1 - p^2 \left(1 - \frac{2\tau_0}{\tau_{sf}} \sigma^{NS}(T)\right)\right) \sigma^{NS}(T) .$$
(16)

Сравним полученные зависимости в предложенной теоретической модели с экспериментальными результатами. Для наших пленок Co₂CrAl, которые, как показано выше, имеют поляризацию $p = 0,97 \approx 1$, согласно (16), запишем

$$\frac{2\tau_0}{\tau_{sf}} = \frac{\sigma^{FS}(1,T)}{\left(\sigma^{NS}(T)\right)^2}.$$
(17)

При $T_0 = 4,2$ К ($T_1 < T_0 < T_2$) и $p \approx 1$ экспериментальные данные (рис. 2) дают $\sigma^{FS}(1,T_0) = 0,008$, а из (2) вычисляем $\sigma^{NS}(T_0) = 0,154$ и, подставляя в (15)–(17), получаем $\theta(T_0) = 0,052$, $2\tau_0 / \tau_{sf} = 2,96$,

$$\sigma^{FS}(1,T) = 2,96 \left(\sigma^{NS}(T)\right)^2.$$

На рис. 2 сплошной линией показана полученная зависимость $\sigma^{FS}(1,T)$ и приведены экспериментальные данные (квадратики). Видно, что рассчитанная в рамках предложенной модели кривая находится в хорошем согласии с экспериментальными данными.

Заключение

1. Обнаружено явление гигантской спиновой блокировки туннельного тока в контактах Co₂CrAl–I–Pb F–I–Sтипа на основе пленок ферромагнитного полуметалла Co₂CrAl, которое может привести к гигантскому уменьшению нормированной проводимости контакта σ^{FS} при напряжении смещения $V \rightarrow 0$. Установлено, что величина спиновой блокировки зависит от степени спиновой поляризации ферромагнетика p и эффективности процессов рекомбинационной спиновой деполяризации, характеризуемых коэффициентом $\theta = 2\tau_T / \tau_{sf}$.

2. Установлено, что величина нормированной проводимости σ^{FS} туннельного контакта F–I–S-типа может быть существенно меньше величины фундаментальной нормированной проводимости σ^{NS} туннельного контакта N–I–S-типа, которая в контакте N–I–S-типа является определенной константой для конкретного сверхпроводящего электрода при определенной температуре. Так, для контактов Co₂CrAl–I–Pb при T = 4,2 К σ^{FS} может быть меньше, чем 0,01, в то время как σ^{NS} (T == 4,2 K) = 0,154 для контакта N–I–Pb. Показано, что отклонение σ^{FS} от σ^{NS} обусловлено накоплением в сверхпроводнике спин-поляризованных электроноподобных квазичастиц и блокировкой ими обычно свободных энергетических уровней.

Предложена теоретическая модель, адекватно описывающая процессы туннелирования спин-поляризованных электронов в контактах F–I–S-типа, и получена формула, связывающая нормированную проводимость σ^{FS} контакта F–I–S-типа с фундаментальной нормированной проводимостью σ^{NS} контакта N–I–S-типа: $\sigma^{FS}(p,T) = (1 - p^2(1 - \theta))\sigma^{NS}(T)$.

3. Показано, что обнаруженная для контактов F-I-Sтипа зависимость величины σ^{FS} от величины проводимости контакта в нормальном состоянии G^{FN} связана с процессами рекомбинационной спиновой деполяризации туннельного тока в сверхпроводнике, приводящими к понижению величины мажорной спиновой поляризации квазичастиц в S.

Определены границы значений G^{FN} , где процессы рекомбинационной спиновой деполяризации влияют на величину σ^{FS} .

4. Показано, что изучение нормированной проводимости σ^{FS} в туннельных контактах ферромагнетик– изолятор–сверхпроводник при нулевом напряжении смещения позволяет определить степень спиновой поляризации *р* ферромагнетика.

5. Получены высококачественные пленки ферромагнитного полуметалла сплава Гейслера Co₂CrAl, степень спиновой поляризации которых $p \approx 0,97$, что близко к теоретической $p_{\text{th}} = 1$.

6. Экспериментально изучена температурная зависимость нормированной проводимости $\sigma^{FS}(T)$ туннельного контакта Co₂CrAl–I–Pb F–I–S-типа. Предложена теоретическая модель, адекватно описывающая температурное поведения проводимости $\sigma^{FS}(T)$ с учетом особенностей спин-поляризованного туннелирования.

- S.A. Wolf, D.D. Awschlom, R.A. Buhrman, I.M. Daughton, S. Von Molnar, M.L. Roukes, A.Y. Chtchekanova, and D.M. Treger, *Science* 294, 1488 (2001); I. Malajovich, J.J. Berry, N. Samarth, and D.D. Awschlom, *Nature* 411, 770 (2001); M.L. Roukes, *Nature* 411, 747 (2001); S. Das Sarma, *American Scientist* 89, 516 (2001).
- I. Žutič, J. Fabian, and S. Das Sarma, *Rev. Mod. Phys.* 76, 323 (2004).
- 3. S. Fujii, S. Sugimura, S. Ishida, and S. Asano, J. Phys.: Condens. Matter 2, 8583 (1990).
- S. Ishida, S. Sugimura, S. Fujii, and S. Asano, J. Phys.: Condens. Matter 3, 5793 (1991).
- I. Galanakis, P.H. Dederichs, and N. Papanikolaou, *Phys. Rev.* B66, 174429 (2002).

- Y. Miura, K. Nagao, and M. Shirai, *Phys. Rev.* B69, 144413 (2004).
- S.V. Karthik, A. Rajanikanth, Y.K. Takahashi, T. Okhubo, and K. Hono, *Appl. Phys. Lett.* 89, 052505 (2006).
- E. Rudenko, I. Korotash, M. Belogolovskii, Yu. Kudryavtsev, and I. Boylo, Proc. German-Ukrainian Symposium on Nanoscience & Nanotechnology 2008 (GUS-2008), 22–25 September 2008, Untversität Duisburg-Essen, Essen, Germany, p. 107.
- Э.М. Руденко, И.В. Короташ, Ю.В. Кудрявцев, А.А. Краковный, М.А. Белоголовский, И.В. Бойло, ФНТ 36, 234 (2010) [Low. Temp. Phys. 36, 186 (2010)].
- I. Giaever, *Phys. Rev. Lett.* 5, 147 (1960); I. Giaever, *Science* 183, 1253 (1974).
- J. Nicol, S. Shapiro, and P.H. Smith, *Phys. Rev. Lett.* 5, 461 (1960).
- 12. Е.Л. Вольф, Принципы электронной туннельной спектроскопии, Перевод с англ., Наукова думка, Киев (1990).
- Y.V. Kudryavtsev, V.N. Uvarov, V.A. Oksenenko, Y.P. Lee, J.B. Kim, Y.H. Hyun, K.W. Kim, J.Y. Rhee, and J. Dubowik, *Phys. Rev.* B77, 195104 (2008).
- R.J. Soulen, Jr., J.M. Byers, M.S. Osofsky, B. Nadgorny, T. Ambrose, S.F. Cheng, P.R. Broussard, C.T. Tanaka, J. Nowak, J.S. Moodera, A. Barry, and J.M.D. Coey, *Science* 282, 85 (1998).
- В.Ф. Елесин, Ю.В. Копаев, УФН 133, 259 (1981); Ј.J. Chang and D.J. Scalapino, *Phys. Rev.* B15, 2651 (1977).
- T.S. Owen and D.J. Scalapino, *Phys. Rev. Lett.* 28, 1559 (1972).
- 17. А.Г. Аронов, Б.З. Спивак, ФНТ 4, 1365 (1978) [Sov. J. Low Temp. Phys. 4, 641 (1978)].
- P.N. Trofimenkoff, H.J. Kreuzer, W.J. Wattamaniuk, and J.G. Adler, *Phys. Rev. Lett.* **29**, 597 (1972); J.G. Adler, H.J. Kreuzer, and J. Straus, *Phys. Rev.* **B11**, 2812 (1975).
- 19. А.Г. Аронов, ЖЭТФ **71**, 370 (1976).
- E.M. Rudenko, I.V. Korotash, M.V. Dyakin, Y.V. Kudryavtsev, and A.A. Krakovny, *Металлофиз. новейшие технол.* **31**, 429 (2009).
- 21. E.M. Rudenko, I.V. Korotash, Y.V. Kudryavtsev, A.A. Krakovny, and M.V. Dyakin, *Physica* C470, 378 (2010).
- В.В. Шмидт, Введение в физику сверхпроводников, Изд. 2-е, испр. и доп., МЦНМО, Москва (2000).
- T. Yamashita, S. Takahashi, H. Imamura, and S. Maekawa, *Phys. Rev.* B65, 172509 (2002).
- 24. N. Poli, J.P. Morten, M. Urech, A. Brataas, D.B. Haviland, and V. Korenivski, *Phys. Rev. Lett.* **100**, 136601 (2008).
- J.P. Morten, A. Brataas, and W. Belzig, *Phys. Rev.* B70, 212508 (2004); J.P. Morten, A. Brataas, and W. Belzig, *Phys. Rev.* B72, 014510 (2005).
- 26. J. Fabian and S. Das Sarma, Phys. Rev. Lett. 83, 1211 (1999).

Tunnel spin injection and conductivity pecularities of ferromagnet–superconductor heterostructures at zero bias

E.M. Rudenko, I.V. Korotash, Yu.V. Shlapak, Y.V. Kudryavtsev, A.A. Krakovny, and M.V. Dyakin

The effect of giant spin blocking of the tunnel current discovered previously by us (*Low. Temp. Phys.* **36**, 186 (2010)) is investigated theoretically and experimentally in ferromagnet F (Co₂CrAl)–insulator I–superconductor S (Pb) heterostructures. The specific resistance of such heterostructures fabricated by us is varied in a wide range $(10^{-7}-10^{-4} \text{ Ohm} \cdot \text{cm}^2)$. It is established that the magnitude of this effect depends on junction specific resistance in a normal state and on recombinational spin depolarization. A theoretical model, adequately describing the processes of spin-polarized electrons tunneling in the F–I–S junction, is proposed. It is shown that the magnitude of the normalized conductivity σ^{FS} of this F–I–S tunnel junction can be substan

tially lower than that of the fundamental normalized conductivity σ^{NS} of the N–I–S tunnel junction (N — normal metal). Within the framework of the proposed model the spin polarization degree p of ferromagnetic halfmetalic Heusler alloy Co₂CrAl films with B2- and L2₁-type crystalline structures is evaluated. It appears to be close to 1 ($p \approx 0.97$). The temperature dependence of $\sigma^{FS}(T)$ for the F–I–S tunnel junction Co₂CrAl–I–Pb is experimentally studied. A theoretical model which considers the peculiarities of spin-polarized tunneling and describes the temperature behavior of normalized conductivity $\sigma^{FS}(T)$ is proposed.

PACS: **72.25.-b** Spin polarized transport; 74.78.Fk Multilayers, superlattices, heterostructures.

Keywords: spin polarization, spin current, superconductor, heterostructure, tunnel effect.