Фазовые переходы в двумерной ферромагнитной модели Поттса при *q* = 3 на треугольной решетке

А.К. Муртазаев^{1,2}, А.Б. Бабаев^{1,3}, Г.Я. Атаева¹

¹Институт физики им. Х.И. Амирханова Дагестанского научного центра РАН ул. Ярагского, 94, г. Махачкала, 367003, Россия

²Дагестанский государственный университет, ул. М. Гаджиева, 43а, г. Махачкала, 367025, Россия

³Дагестанский государственный педагогический университет, г. Махачкала, 367003, Россия E-mail: b_albert78@mail.ru

Статья поступила в редакцию 11 июня 2012 г., после переработки 9 августа 2012 г.

Методом Монте-Карло исследованы фазовые переходы в двумерной ферромагнитной модели Поттса с числом состояний спина q = 3 на треугольной решетке. Рассмотрены системы с линейными размерами L = 20-120. Используя метод кумулянтов Биндера четвертого порядка, показано, что в двумерной ферромагнитной модели Поттса наблюдается фазовый переход второго рода. На основе теории конечноразмерного скейлинга рассчитаны статические критические индексы теплоемкости α , восприимчивости γ , намагниченности β и индекса радиуса корреляции ν .

Методом Монте-Карло досліджено фазові переходи в двовимірній феромагнітній моделі Поттса з числом станів спіна q = 3 на трикутній гратці. Розглянуто системи з лінійними розмірами L = 20-120. Використовуючи метод кумулянтів Біндера четвертого порядку, показано, що в двовимірній феромагнітній моделі Поттса спостерігається фазовий перехід другого роду. На основі теорії кінцево-розмірного скейлінга розраховано статичні критичні індекси теплоємності α , сприйнятливості γ , намагніченості β та індексу радіуса кореляції v.

PACS: 75.40.Сх Статические свойства (параметр порядка, статическая восприимчивость, теплоемкость, критические индексы и т.д.);

75.40.Мg Численное моделирование.

Ключевые слова: модель Поттса, фазовый переход, критические явления.

Введение

Современная теория фазовых переходов (ФП) и критических явлений (КЯ) в основном базируется на идеях, заложенных в гипотезе скейлинга, универсальности и в теории ренормализационной группы [1,2]. Несмотря на серьезные результаты, полученные при исследовании ФП и КЯ в трехмерных спиновых системах, низкоразмерные системы все еще остаются слабоизученными. В частности, много вопросов вызывают критические свойства двумерных спиновых решеточных систем, описываемых моделями Поттса. Отметим, что успехи, достигнутые в последние годы при изучении ФП и КЯ в спиновых системах, во многом связаны с применением методов вычислительной физики [3,4].

В настоящей работе методом Монте-Карло (МК) исследованы фазовые переходы и термодинамические

свойства двумерной ферромагнитной модели Поттса с числом состояний спина q = 3 на треугольной решетке.

Интерес к этой модели обусловлен тем, что модель Поттса служит основой теоретического описания широкого ряда разнообразных объектов и явлений в физике конденсированных сред. К их числу относятся сложные анизотропные ферромагнетики кубической структуры, многокомпонентные сплавы, жидкие смеси и различные адсорбированные пленки. В частности, адсорбция инертных газов на адсорбентах типа графита может описываться моделями решеточного газа Поттса. Такие физически адсорбированные пленки дают экспериментальную реализацию ФП в двумерных системах [5,6].

Несмотря на интенсивные теоретические исследования двумерных спиновых решеточных систем, описываемых моделями Поттса в течение последних тридцати лет, к настоящему времени существует совсем немного надежно установленных фактов. Известно, что в чистой модели Поттса с состоянием $q > q_c(d)$, где d — размерность системы, наблюдается ФП первого рода, а ФП второго рода в случае $q < q_c(d)$ [5,7]. Для двумерной модели Поттса величина $q_c(d=2) = 4$ [7], в то время как для трехмерной модели $q_c(d=3) =$ = 2,45 [8]. Причем для $q_c(d=2) = 4$ наблюдается ФП второго рода, а для $q_c(d=3) = 2,45$ — слабовыраженный ФП первого рода.

Приведем формулировку двумерной модели Поттса с числом состояний спина q = 3 на треугольной решетке.

При построении такой модели необходимо иметь в виду следующие особенности.

1. В узлах двумерной треугольной решетки расположены спины S_i , которые могут находиться в одном из $q \ge 2$ состояний.

2. Энергия связи между двумя узлами равна нулю, если они находятся в разных состояниях (безразлично, в каких именно), и равна |J|, если взаимодействующие узлы находятся в одинаковых состояниях (не имеет значения, в каких именно).

С учетом этих особенностей микроскопический гамильтониан такой системы может быть представлен в виде [6]

$$H = -\frac{1}{2}J\sum_{i,j}\delta(S_i, S_j), \quad S_i = 1, 2, 3,$$
(1)

где J — параметр обменного ферромагнитного (J > 0) взаимодействия,

$$\delta(S_i, S_j) = \begin{cases} 1, & \text{если } S_i = S_j, \\ 0, & \text{если } S_i \neq S_j. \end{cases}$$

Кластерные алгоритмы метода МК [9,10] хорошо зарекомендовали себя при изучении критических явлений в различных системах и моделях [11,12]. Критические параметры, рассчитанные на основе данных, которые получены с помощью кластерных алгоритмов, обладают высокой точностью и надежностью [11]. Из всех вариантов кластерных алгоритмов метода МК наиболее эффективным на сегодняшний день, по-видимому, является алгоритм Вольфа [9]. Этот алгоритм был использован нами для исследования двумерной ферромагнитной модели Поттса на треугольной решетке. Более подробные сведения о реализации алгоритма Вольфа даны нами в следующих работах [4,13–16].

Исследованы системы с линейными размерами $L \times L \times L = N$, L = 20-120. Начальные конфигурации задавали таким образом, чтобы все спины были в одинаковом состоянии. Для вывода системы в равновесное состояние вычисляли время релаксации τ_0 для всех систем с линейными размерами *L*. Затем усреднение проводили по участку марковской цепи длиной

Рис. 1. Температурная зависимость теплоемкости *С* для двумерной ферромагнитной модели Поттса на треугольной решетке.

 $\tau = 150\tau_0$. Кроме того, для повышения точности расчетов усредняли по 10-ти различным начальным конфигурациям.

Для наблюдения за температурным ходом поведения теплоемкости и восприимчивости использовали флуктуационные соотношения [17]:

$$C = (NK^2) \left(\langle U^2 \rangle - \langle U \rangle^2 \right), \qquad (2)$$

$$\chi = (NK) \left(\langle m^2 \rangle - \langle m \rangle^2 \right), \tag{3}$$

где $K = |J|/k_BT$, $N = L^3$ — число магнитных узлов, U — внутренняя энергия, m — намагниченность, угловые скобки означают термодинамическое усреднение. В качестве намагниченности для ферромагнитной модели Поттса использовали следующее выражение [18]:

$$m = \left\langle \frac{3}{2} \sum_{\alpha=1}^{3} \left(\frac{N_{\alpha}}{N} - \frac{1}{3} \right)^2 \right\rangle^{1/2}, \qquad (4)$$

где $N_{\alpha} = \{N_1, N_2, N_3\}$, N_{α} — число спинов в состоянии с $q = \alpha$. $N = L^3$.

На рис. 1 представлены характерные зависимости теплоемкости C от температуры T для двумерной ферромагнитной модели Поттса с числом состояний спина q = 3 для систем с линейными размерами L = 20; 40; 60; 80. Здесь и далее на всех рисунках погрешность данных не превосходит размеров символов, используемых для обозначения зависимости. Отметим, что в температурных зависимостях теплоемкости C для всех исследуемых нами систем проявляются четко выраженные максимумы, и эти максимумы в пределах погрешности приходятся на одну температуру.

Для анализа характера фазового перехода использован метод кумулянтов Биндера четвертого порядка [19,20]:

$$V_L(T) = 1 - \frac{\langle E^4 \rangle_L}{3 \langle E^2 \rangle_L^2},\tag{5}$$

$$U_L(T) = 1 - \frac{\left\langle m^4(T,L) \right\rangle_L}{3\left\langle m^2(T,L) \right\rangle_L^2}, \qquad (6)$$

где E — энергия и m — намагниченность системы с линейным размером L. Выражения (5) и (6) позволяют определить T_c с большой точностью в фазовых переходах первого и второго рода соответственно. Следует отметить, что применение кумулянтов Биндера позволяет также хорошо тестировать тип фазового перехода в системе. Известно, что фазовые переходы первого рода характеризуются следующими отличительными особенностями [21]: усредненная величина $V_L(T)$ стремится к некоторому нетривиальному значению V^* согласно выражению

$$V(T) = V^* + bL^{-d} \tag{7}$$

при $L \to \infty$ и $T = T_c(L)$, где V^* отлична от 2/3, а минимальная величина $V_{L,\min}(T = T_{\min})$ расходится: $V_{L,\min}(T = T_{\min}) \to -\infty$ при $L \to \infty$. Кроме того, в случае ФП второго рода кривые температурной зависимости кумулянтов Биндера $U_L(T)$ имеют четко выраженную точку пересечения. Характерные зависимости кумулянтов Биндера $U_L(T)$ для двумерной феромагнитной модели Поттса от температуры для систем с разными линейными размерами L приведены на рис. 2. Как видно на рисунке, в критической области наблюдается четко выраженная точка пересечения, что и свидетельствует о ФП второго рода. Кроме того, этот рисунок демонстрирует, насколько точно можно определить критическую температуру T_c . На рис. 3 представлены температурные зависимости $V_L(T)$ для двумерной ферромагнитной модели Поттса. Как видно на

Рис. 2. Температурная зависимость кумулянтов Биндера $U_L(T)$ для двумерной ферромагнитной модели Поттса с q = 3.

Рис. 3. Температурная зависимость энергетических кумулянтов Биндера $V_L(T)$ для двумерной ферромагнитной модели Поттса с q = 3.

вставке этого рисунка, в критической области $V_L(T)$ не стремится к нетривиальному значению $V_L^*(T)$, а стремится к 2/3, что и характерно для $\Phi\Pi$ второго рода.

Для всех рассмотренных систем, в которых наблюдается ФП второго рода, нами на основе теории конечноразмерного скейлинга (КРС) рассчитывались статические критические индексы (КИ) теплоемкости α , восприимчивости γ и намагниченности β . Согласно этой теории, свободная энергия для достаточно большой системы с ПГУ при температуре *T*, близкой к *T*_c бесконечно большой системы, может быть представлена в виде [22]

$$F(T,L) \propto L^{-d} F_0(tL^{1/\nu}), \qquad (8)$$

где $t = |T - T_c|/T_c$, $T_c = T_c(L = \infty)$ и v — статический критический индекс радиуса корреляции бесконечной системы $(L = \infty)$.

Уравнение (8) ведет к аналогичным уравнениям для теплоемкости, восприимчивости и спонтанной намагниченности, приходящихся на один спин

$$C(T,L) \propto L^{\alpha/\nu} C_0(tL^{1/\nu}), \qquad (9)$$

$$\chi(T,L) \propto L^{\gamma/\nu} \chi_0 \left(t L^{1/\nu} \right), \qquad (10)$$

$$m(T,L) \propto L^{-\beta/\nu} m_0 \left(t L^{1/\nu} \right), \qquad (11)$$

где α , γ , β — статические критические индексы для системы с $L = \infty$, связанные соотношением гиперскейлинга: $2 - \alpha = d\nu = 2\beta + \gamma$ [1,23].

Кроме того, в настоящее время на основе теории конечноразмерного скейлинга предложен целый ряд способов определения критического индекса радиуса корреляции v [24]. В соответствии с этой теорией в точке фазового перехода выполняется соотношение

$$V_n = L^{1/\nu} g_{V_n},$$
 (12)

где g_{Vn} — некоторая постоянная, а в качестве V_n могут выступать:

$$V_i = \frac{\langle m^i E \rangle}{\langle m^i \rangle} - \langle E \rangle, (i = 1, 2, 3),$$
(13)

$$V_{3} = \frac{dU_{L}}{d\beta} = \frac{1}{3\langle m^{2}\rangle^{2}} \left[\langle m^{4} \rangle \langle E \rangle - 2 \frac{\langle m^{4} \rangle \langle m^{2}E \rangle}{\langle m^{2} \rangle^{2}} + \langle m^{2}E \rangle \right],$$
(14)

где $\beta = 1/T$, *T* — температура.

Из соотношений (10), (11) следует, что в системе с размерами $L \times L \times L$ при $T = T_c$ и достаточно больших L восприимчивость и намагниченность удовлетворяют следующим аналитическим выражениям:

$$\chi \sim L^{\gamma/\nu}, \qquad (15)$$

$$m \sim L^{-\beta/\nu} \,. \tag{16}$$

Эти соотношения мы использовали для определения величин γ и β . Аналогичное выражение для теплоемкости не описывает наблюдаемые на практике результаты, что было продемонстрировано в работах [24,25]. Для аппроксимации температурной зависимости теплоемкости от *L* как правило используются другие выражения, например [17]:

$$C_{\max}(L) = C_{\max}(L = \infty) - AL^{\alpha/\nu} , \qquad (17)$$

где *А* — некоторый коэффициент.

Для расчета КИ α , β , γ и ν построены зависимости C, m, χ , и V_n от L. Анализ данных, выполненный с использованием нелинейного метода наименьших квадратов, позволил определить значения α/ν , β/ν , γ/ν и $1/\nu$. Затем с использованием значений ν , полученных в рамках данного исследования, определены индексы α , β и γ .

На рис. 4 в двойном логарифмическом масштабе представлена характерная зависимость восприимчивости от линейных размеров решетки *L* для двумерной ферромагнитной модели Поттса на треугольной решетке.

Обратим внимание на то, что данные, полученные для восприимчивости, не отклоняются от прямой даже при малых значений *L*. Очевидно, что использованное

Рис. 4. Зависимость восприимчивости χ от линейных размеров системы *L* для двумерной ферромагнитной модели Поттса с q = 3 при $T = T_c$.

для усреднения количество различных начальных конфигураций и размеры $L \ge 20$ изучаемых систем позволяют достичь асимптотического критического режима. Очень важным моментом является и то, что индекс v вычислялся непосредственно из результатов численного эксперимента в рамках настоящего исследования, тогда как во многих других работах этот индекс определялся из различных скейлинговых соотношений.

Значения КИ, полученные в результате исследований, представлены в табл. 1. Приведенные численные значения критических индексов для теплоемкости α и намагниченности β вполне соответствуют известным данным, полученным в работах [5,18,26]. Критический индекс для восприимчивости γ для этой модели, повидимому, вычислен впервые нами. Заметим, что критическая температура $T_c = 1,5846$, определенная в настоящей работе, практически совпадает с точным значением, полученным Бакстером [5,26] для вершинных моделей на треугольной решетке.

В данной работе с соблюдением единой методики исследованы фазовые переходы в двумерной ферромагнитной модели Поттса с числом состояний спина q = 3 на треугольной решетке. Полученные данные свидетельствуют о следующем.

1. В двумерной ферромагнитной модели Поттса с q = 3 на треугольной решетке наблюдается фазовый переход второго рода.

2. Определен полный набор статических критических индексов для двумерной ферромагнитной моде-

Таблица 1. Критические индексы двумерной феромагнитной модели Поттса с числом состояний спина *q* = 3 на треугольной решетке, определенные на основе теории конечно-размерного скейлинга

Критический пара-	k T / I	1/v	V	α/ν	α	γ/γ	27	ß/v	ß
метр	$\kappa_{B^{I}c}$ / J	1/ 1	•	00, V	a	1, •	1	P' *	4
Наши данные	1,5846	1,1723	0,8530	0,3519	0,3002	1,7047	1,4541	0,1245	0,1060
[18]	1,88503		1,3(2)		0,31(1)				0,10(1)
[5,26]	1,5849				0,3333				0,1111

ли Поттса с q = 3 на треугольной решетке и показано, что они в пределах погрешности численного эксперимента достаточно хорошо согласуются с данными других авторов.

Работа поддержана грантом РФФИ (№10-02-00130а, 12-02-96504-р-юг-а) и выполнена в рамках реализации ФЦП «Научные и научно-педагогические кадры инновационной России» на 2009–2013 гг. (госконтракт №П559 и №02.270.11.03.97), «Исследования и разработки по приоритетным направлениям развития научно-технического комплекса России» на 2007–2013 гг. (госконтракт №16.552.11.7051).

- А.З. Паташинский, В.Л. Покровский, Флуктуационная теория фазовых переходов, Наука, Москва (1982).
- 2. В.С. Доценко, УФН 165, 481 (1995).
- 3. Р. Фольк, Ю. Головач, Т. Яворский, УФН 173, 175 (2003).
- А.К. Муртазаев, И.К. Камилов, А.Б. Бабаев, ЖЭТФ 126, 1377 (2004) [*JETP* 99, 1201 (2004)].
- 5. F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982).
- 6. А.Н. Ермилов, Физика элементарных частиц и атомного ядра 20, 1379 (1989).
- 7. M. Loulidi, Physica A 287, 177 (2000).
- 8. A.J. Guttmann and I.G. Enting, J. Phys. A 27, 5801 (1994).
- 9. U. Wolff, Phys. Lett. 62, 361 (1989).
- 10. J.-S. Wang and R.H. Swendsen, Physica A 167, 565 (1990).
- 11. D. Loison, Phys. Lett. A 257, 83 (1999).
- В.В. Прудников, П.В. Прудников, А.Н. Вакилов, А.С. Криницин, ЖЭТФ 132, 417 (2007).
- А.К. Муртазаев, А.Б. Бабаев, Г.Я. Азнаурова, ЖЭТФ 136, 516 (2009) [*JETP* 109, 442 (2009)].
- А.К. Муртазаев, А.Б. Бабаев, Г.Я. Азнаурова, ΦΤΤ 50, 703 (2008) [*Phys. Solid State* 50, 733 (2008)].
- A.K. Murtazaev and A.B. Babaev, J. Magn. Magn. Mater. 321, 2630 (2009).
- А.К. Муртазаев, А.Б. Бабаев, Г.Я. Азнаурова, ФНТ 37, 167 (2011) [Low Temp. Phys. 37, 134 (2011)].
- P. Peczac, A.M. Ferrenberg, and D.P. Landau, *Phys. Rev. B* 43, 6087 (1991).

- 18. Y. Saito, J. Phys. A 15, 1885 (1982).
- 19. K. Binder, Phys. Rev. Lett. 47, 693 (1981).
- 20. K. Eichhorn and K. Binder, J. Phys.: Condens. Matter 8, 5209 (1996).
- 21. D. Loison and K.D. Schotte, Eur. Phys. J. B 5, 735 (1998).
- 22. M.E. Fisher and M.N. Barber, Phys. Rev. Lett. 28, 1516 (1972).
- Ш. Ма, Современная теория критических явлений, Мир, Москва (1980).
- 24. A. Mailhot, M.L. Plumer, and A. Caille, *Phys. Rev. B* 50, 6854 (1994).
- А.К. Муртазаев, И.К. Камилов, А.К. Магомедов, ЖЭТФ 120, 1535 (2001).
- 26. Р. Бэкстер, Точно решаемые модели в статистической механике, Мир, Москва (1985).

Phase transitions in two-dimensional ferromagnetic Potts model with q = 3 on a traingular lattice

A.K. Murtazaev, A.B. Babaev, and G.Y. Ataeva

Phase transitions in the two-dimensional ferromagnetic Potts model with a number of spin states q = 3 on a triangular lattice are studied by the Monte-Carlo method. The systems of linear size L = 20-120 are considered. The method of fourth order Binder cumulants is used to show that the second order phase transition can be observed in the two-dimensional ferromagnetic Potts model. The static critical exponents of heat capacity α , susceptibility γ , magnetization β and the correlation radius index v are calculated on the basis of the finite-size scaling theory.

PACS: 75.40.Cx Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.); 75.40.Mg Numerical simulation studies.

Keywords: Potts model, phase transition, critical phe-

nomena.