Особенности поведения термоэдс CeNi₄Ga с нестабильной валентностью Ce

М.Д. Котерлин

Университет Казимира Великого, пл. Вейссенгоффа, 11, г. Быдгощ, 85072, Польша

О.И. Бабич

Львовский национальный университет имени Ивана Франко, ул. Драгоманова, 50, г. Львов, 79005, Украина

Г.М. Котерлин

Западный научный центр НАН Украины и МОН Украины, ул. Матейка, 4, г. Львов, 79007, Украина E-mail: koterlyn@mail.lviv.ua

Статья поступила в редакцию 28 февраля 2019 г., опубликована онлайн 27 августа 2019 г.

Представлены результаты исследований в широком диапазоне температур (4–900 К) коэффициента термоэдс твердых растворов $RNi_{4+x}Ga_{1-x}$ (R = Ce, La; $0 \le x \le 0,5$), содержащих церий в состоянии валентной нестабильности. На их основе проведен анализ вклада *f*-состояний церия в термоэдс CeNi₄Ga с учетом транспортных свойств кристаллической матрицы, в которой находится подсистема *f*-электронов. Показано, что особенности температурного поведения термоэдс CeNi₄Ga обусловлены совместным проявлением эффектов некогерентного кондовского рассеяния электронов проводимости на локализованных *f*-центрах и рассеяния на спиновых флуктуациях в узкой *d*-зоне подрешетки никеля. Наблюдаемый при этом аномально низкий кондовский вклад в общую термоэдс предлагается связывать с возможным ослаблением кондо-компенсации магнитного момента ионов церия вследствие структурного атомного беспорядка в его ближайшем окружении.

Ключевые слова: редкоземельные металлы и сплавы, валентная нестабильность, электросопротивление, термоэдс, магнитная восприимчивость.

Введение

В проблеме физики сильно коррелированных электронных систем важное место занимают металлические системы с валентной нестабильностью (ВН) церия. Несмотря на повышенный интерес к таким системам, фундаментальные вопросы основного состояния системы, роли различных взаимодействий в его формировании пока остаются не вполне понятными. В связи с этим уже несколько десятилетий наблюдается постоянный рост интереса к исследованиям тройных соединений типа СеМ_{*n*}Х_{*m*} (М — переходной *d*-элемент, Х — *p*-элемент III или IV группы), которые обнаруживают большое разнообразие свойств основного состояния подрешетки Се (магнитные и немагнитные решетки Кондо, образование тяжелых фермионов с ферми- и нефермижидкостным поведением основных свойств, состояние типа квантовой критической точки и др.) [1-3]. Существование больших изоструктурных рядов в группе соединений этого типа позволяет рассматривать их в качестве очень удобных модельных объектов при изучении роли различного рода взаимодействий в формировании основного состояния подсистемы сильно коррелированных *f*-электронов на микроскопическом уровне.

Среди ряда сравнительно хорошо изученных соединений типа CeM_nX_m особый интерес представляют фазы состава CeNi₄X (X = Cu, Al, Ga, Si). Результаты исследований электрических, магнитных и спектроскопических свойств показывают, что соединения ряда CeNi₄X и твердые растворы на их основе образуют интересную группу систем, в которых реализуется весьма широкий спектр фазовых переходов в подрешетке Ce [4–14]. Данные соединения кристаллизуются в гексагональной структуре типа CaCu₅ (пространственная группа *P6/mmm*). Элементарная ячейка CeNi₄X содержит одну формульную единицу с атомом Ce в

кристаллографической позиции 1a (0, 0, 0), два атома Ni располагаются в позиции 2c (1/3, 2/3, 0), а остальные атомы Ni и атомы X статистически распределены в позиции 3g (1/2, 0, 1/2) [4,6,7,12,14]. Согласно данным измерений спектроскопических и магнитных свойств CeNi₄X [4,6-8,11-14], заселенность *f*-состояний Се находится в пределах 0,8 < n_f < 0,9 и связанный с ними локализованный магнитный момент (ЛММ) является сильно редуцированным ($\mu_{eff} \approx 0, 4-0, 9\mu_B$) в сравнении с его теоретическим значением для свободного иона Ce^{+3} (µ_{eff} = 2,54µ_B). Особенностью CeNi₄X является то, что ЛММ Се наблюдается в интервале низких температур (T < 50 K), при которых валентно-нестабильный Се должен находиться в немагнитном состоянии. Подобное поведение систем с ВН Се часто связывают с наличием примесной фазы, содержащей церий в состоянии Ce^{+3} , или с образованием ЛММ на атомах Ni. Однако для некоторых соединений CeNi₄X не удалось обнаружить образования примесных фаз даже в случае сравнительно больших ЛММ Се [4,6,7]. Исследования магнитной восприимчивости χ так называемых «немагнитных» аналогов LaNi₄X показывают, что подрешетка никеля может находиться в немагнитном состоянии типа парамагнетика Паули [12,15], либо в состоянии обменно-усиленного парамагнетика с заметной температурной зависимостью χ [16,17]. В последнем случае зависимость $\chi(T)$ в ограниченном интервале температур можно описать модифицированным законом Кюри-Вейсса и определить эффективный ЛММ на атомах Ni. По-видимому, на оценки величины ЛММ Се в CeNi₄X имеет влияние состояние подрешетки Ni. Из анализа совокупности имеющихся исследований транспортных, магнитных и спектроскопических свойств [4-14] следует, что соединения CeNi₄X можно рассматривать как системы с ВН Се или кондо-решетки (КР) с высокими температурами Кондо T_K (>100 К). Хорошо известно, что электронные свойства таких систем характеризуются фермижидкостным поведением электрического сопротивления и парамагнитной восприимчивости при низких температурах ($\rho \propto AT^2$ и $\chi \propto \text{const}$ для $T \ll T_K$), сравнительно невысокими значениями коэффициента электронной составляющей удельной теплоемкости (у ~ ~ 20-40 мДж/К²·моль) и большими положительными значениями коэффициента термоэдс (S ~ 10² мкВ/К) с максимумом в области температур порядка T_K [1,3,18]. При этом следует отметить, что характер зависимости S(T) обычно хорошо описывается уравнением $S(T) \approx aT / (T^2 + b)$, которое отражает образование возле уровня Ферми E_F узкого пика плотности состояний $g_f(E)$ шириной ~ T_K , связанного с кондовским рассеянием электронов проводимости на локализованных fцентрах [19-21]. С такой общей характеристикой КР с высокими Т_К не вполне согласуются некоторые свойства соединений CeNi₄X. В частности, на температурных зависимостях электросопротивления и магнитной восприимчивости не наблюдается характерного ферми-жидкостного участка [4-9,11-14]. В широком интервале температур термоэдс соединений CeNi₄X принимает отрицательные значения и зависимости S(T) не обнаруживают в явном виде составляющей вида $S(T) \approx aT / (T^2 + b)$ [10,22]. Естественно предположить, что отсутствие характерного вклада в термоэдс может быть связано с частичным подавлением кондовского механизма рассеяния свободных носителей заряда, вызванного конкурирующим косвенным обменным взаимодействием Рудермана-Киттеля-Касуи-Иосиды (РККИ) в подсистеме локализованных *f*-электронов. Однако в цериевых системах с валентной неустойчивостью ионов Се магнитные корреляции f-центров обычно сильно подавлены и не оказывают существенного влияния на формирование локальной резонансной структуры $g_{f}(E)$ [1]. В связи с этим представляет интерес проведение более детального анализа вклада *f*-состояний Се в термоэдс CeNi₄X с учетом транспортных свойств кристаллической матрицы, в которой находится подрешетка церия. Для этой цели нами было использовано соединение CeNi₄Ga, которое является одним из наиболее изученных представителей соединений ряда CeNi₄X.

В настоящей работе приведены исследования термоэдс поликристаллических образцов твердых растворов RNi_{4+x}Ga_{1-x} (R = La, Ce; $0 \le x \le 0.5$) в наиболее широком интервале температур (4–900 K). Использование сплавов с частичными атомными замещениями Ga \rightarrow Ni, а также их аналогов с La является очень удобным при изучении взаимосвязи состояния BH Ce с особенностями поведения термоэдс в металлических системах подобного типа [20].

Результаты измерений. Анализ вклада *f*-состояний Се в термоэдс CeNi_{4+x}Ga_{1-x}

Поликристаллические образцы $RNi_{4+x}Ga_{1-x}$ (R = Ce, La; $0 \le x \le 0.5$) были получены путем синтеза стехиометрических количеств высокочистых компонентов в дуговой печи в атмосфере очищенного аргона. Образцы гомогенизировались при 1100 К на протяжении 250 ч. Контроль фазового состава образцов осуществлялся методами рентгеноструктурного анализа (установка ДРОН–3М, Си Кα-излучение) при температуре 300 К. Образцы всех исследуемых составов имели кристаллическую структуру типа CaCu5 и в пределах экспериментальной погрешности не содержали посторонних фаз. Полученные параметры решетки для соединений RNi_4Ga (R = La, Ce) находились в хорошем согласии с данными предыдущих исследований [11,12,15]. В случае сплавов CeNi_{4+x}Ga_{1-x} параметры решетки показывают приблизительно линейную зависимость от состава х (рис. 1). Подготовка образцов и методика их измерений аналогичны описанным в [20].

На рис. 2 приведены результаты измерений температурных зависимостей термоэдс *S* и удельного элек-

Рис. 1. Зависимости параметров решетки a (а), c (б) и объема элементарной ячейки (V) (в) от состава твердого раствора CeNi_{4+x}Ga_{1-x}.

тросопротивления ρ сплавов CeNi_{4+x}Ga_{1-x}. Для образца состава CeNi₄Ga зависимость S(T) качественно хорошо согласуется с приведенной в работе для интервала температур T < 300 K [10]. Измерения термоэдс в области высоких температур (300 < T < 900 K) показывают, что обнаруженная ранее нелинейность поведения зависимости S(T) может быть связана со слабо выраженным

Рис. 2. (Онлайн в цвете) Температурные зависимости термоэдс твердого раствора CeNi_{4+x}Ga_{1-x}. На вставке — температурные зависимости нормированных значений удельного сопротивления для составов с x = 0 (*1*) и 0,5 (*2*). Сплошная кривая соответствует зависимости $\rho(T) / \rho(300 \text{ K}) = 0.81 + AT^2$, где $\rho(300 \text{ K}) = 122 \text{ мкОм} \cdot \text{см}$ и $A = 8 \cdot 10^{-6} \text{ K}^{-2}$.

кондовским рассеянием на локализованных f-состояниях. Такой общий вид зависимости S(T), в принципе, может быть результатом суммирования двух вкладов: отрицательной термоэдс кристаллической матрицы $(S_{\rm crvs} \propto T)$ и положительного вклада вида $S_f(T) \approx$ $\approx aT/(T^2+b)$ в предположении выполнения соотношения $|S_{crvs}| > S_f$. Аномально малые значения составляющей Sf обычно наблюдаются в концентрированных системах Кондо в режиме ярко выраженной конкуренции кондовских флуктуаций с магнитным обменным взаимодействием типа РККИ. В случае сплавов CeNi_{4+x}Ga_{1-x} видно, что только положительный экстремум зависимости S(T) является чувствительным к составу и его поведение можно связывать с изменением состояния ВН Се. Согласно общим представлениям о взаимосвязи термоэдс с состоянием ВН Се, в металлических системах положение максимума термоэдс $T_{S \max}$ находится в корреляции с T_K и заселенностью f-оболочки n_f $(T_{S \max} \propto T_K \propto 1/n_f$ [23,24]). Замещение Ga на Ni приводит к возрастанию валентности Ce [12] (уменьшению n_f) и, следовательно, сдвигу максимума S_{max} в область высоких температур. Природа минимума термоэдс при $T \approx 70$ К пока не имеет однозначной интерпретации. По мере замещения атомов Ga на Ni абсолютные значения экстремумов возрастают при сравнительно устойчивом положении минимума термоэдс ($T_{S\min}(x) \approx$ \approx const). Характерно, что в области T_{Smin} каких-либо аномалий поведения сопротивления не наблюдается (рис. 2, вставка). Как видно, для состава с x = 0 наблюдается линейная зависимость сопротивления без насыщения при низких температурах. Отсутствие фермижидкостного участка $\rho \propto AT^2$ и сравнительно малое изменение сопротивления (~ 10%) в широком интервале температур (4 К < T < 300 К) указывают, повидимому, на некогерентный характер спиновых флуктуаций в CeNi₄Ga. В случае сплава с x = 0,5 наблюдается участок с поведением сопротивления, подобным ферми-жидкостному $(\rho(T) / \rho(300 \text{ K}) = 0.81 + AT^2$, где $\rho(300 \text{ K}) = 122 \text{ мкОм см}, A = 8 \cdot 10^{-6} \text{ K}^{-2}$ для T < 70 K),что можно связывать с ослаблением механизма рассеяния носителей заряда на атомном беспорядке, создаваемым статистическим заполнением 3g-позиций разновалентными атомами (Ni и Ga).

На рис. 3 представлены температурные зависимости термоэдс *S* для сплавов LaNi_{4+x}Ga_{1-x} (x = 0, 0,5), используемых в качестве аналога CeNi_{4+x}Ga_{1-x}. Зависимости *S*(*T*) показывают приблизительно линейный характер поведения в области низких температур ($S \sim T$ при T < 100 K) с последующим существенным отклонением от линейности и тенденцией к насыщению при T > 700 К. Подобное поведение термоэдс свойственно некоторым немагнитным переходным *d*-металлам и сплавам на их основе [25,26] и связано с рассеянием легких носителей заряда *s* на межполосных переходах *s*-*d*-типа. Согласно данным зонных расчетов [27], структуры

Рис. 3. (Онлайн в цвете) Температурные зависимости термоэдс твердого раствора $LaNi_{4+x}Ga_{1-x}$ для составов с x = 0 и 0,5. Сплошные кривые — расчетные зависимости термоэдс согласно (1). На вставках — температурные зависимости нормированных значений удельного сопротивления (нижняя) и предполагаемой магнитной составляющей термоэдс (верхняя).

плотности состояний в области энергий Ферми Е_F сплавов LaNi_{4+x}Ga_{1-x} с x = 0 и 0,5 весьма похожи и качественно могут быть представлены пиком высокой плотности d-состояний Ni (N_d(E)), который расположен в полосе с низкой плотностью spd-состояний, связанных с La и Ga. Центр тяжести пика $N_d(E)$ находится ~ 2 эВ ниже уровня Ферми E_F и образует большую крутизну спада плотности состояний в окрестности Е_F (большие абсолютные значения $dN_d(E)/dE|_{E=E_F}$). Замещение Ga атомами Ni приводит к возрастанию $N_d(E)$ и абсолютных значений $dN_d(E)/dE|_{E=E_F}$ на уровне E_F . В рамках такой модели энергетического спектра естественно предположить, что транспортные свойства LaNi_{4+x}Ga_{1-x} формируются преимущественно рассеянием легких носителей заряда s на межполосных переходах *s*-*d*-типа и перескоках типа $(s, d) \rightarrow (d', d'')$, инициированных кулоновским отталкиванием [28]. Следовательно, можно ожидать, что экспериментальные кривые термоэдс в первом приближении можно описать зависимостью типа $S = \alpha T + \beta T^2$ [28,29]. Оказывается, что такая зависимость удовлетворительно описывает экспериментальные данные во всем интервале температур 4 К < T < 900 К при некотором расхождении расчета с экспериментом в интервале средних температур (100 К < T < 300 К). Более детальный анализ показывает, что характер этих расхождений хорошо описывается дополнительным вкладом вида $S(T) \propto \propto T/(T^2 + \delta)$, который можно связывать с рассеянием легких носителей заряда на локальных спиновых флуктуациях в узкой *d*-зоне. Подобные вклады в термоэдс характерны для слабомагнитных металлических сплавов [30,31] и часто качественно отличаются от разбавленных кондовских систем только величиной эффекта. Таким образом, окончательное выражение для термоэдс LaNi_{4+x}Ga_{1-x} можно представить в виде

$$S = S_d + S_{sd} + S_{mag} = \alpha T + \beta T^2 + cT / (T^2 + \delta)$$
, (1)

где S_d означает диффузионную составляющую термоэдс, S_{sd} — вклад электрон-электронного рассеяния и S_{mag} — магнитный вклад, связанный со спиновыми флуктуациями в узкой *d*-зоне; α, β, c, δ — подгоночные параметры. На рис. 3 приведены расчетные зависимости S(T) (сплошная линия), вычисленные по формуле (1). Оптимальное согласование с экспериментом достигается при значениях параметров: $\alpha = -2,0\cdot 10^{-2}$ и $-2,9\cdot 10^{-2}$ мкВ/К², $\beta = 0,94\cdot 10^{-5}$ и $1,42\cdot 10^{-5}$ мкВ/К³, c = -140 и -785 мкВ, $\delta = 3,0\cdot 10^{4}$ и $4,6\cdot 10^{4}$ К² соответственно для составов с x = 0 и 0,5. Отрицательные значения а связаны с отрицательной кривизной плотности состояний на уровне Ферми ($\alpha \propto dN_d(E)/dE|_{E=E_F}$). Параметр β учитывает роль электрон-электронного рассеяния при переходах типа $(s, d) \rightarrow (d', d'')$ и принимает значения, близкие к приведенным в [29] для чистых молибдена и вольфрама. Параметры с и δ описывают составляющую S_{mag}, которая принимает минимальные значения при $T_{S\min}$ = 180 и 220 К соответственно для составов с x = 0 и 0,5 (рис. 3, верхняя вставка). Сравнительно малые значения S_{mag} в случае состава с x = 0связаны, по-видимому, с ослаблением рассеяния на спиновых флуктуациях вследствие уменьшения вклада d-состояний Ni в общую плотность в области E_F и более эффективного рассеяния носителей заряда на атомном беспорядке. На сопротивлении это отражается отсутствием участка насыщения при $T \to 0$ (рис. 3, нижняя вставка).

Из анализа приведенных данных следует, что доминирующим фактором в формировании термоэдс LaNi_{4+x}Ga_{1-x} являются межполосные *s*-*d* переходы и перескоки типа (*s*, *d*) \rightarrow (*d'*, *d''*), вызванные наличием пика локальной плотности *d*-состояний Ni вблизи уровня Ферми *E_F*. Дополнительный вклад в термоэдс, связанный со спиновыми флуктуациями в *d*-зоне Ni, в случае LaNi₄Ga пренебрежимо мал. Согласно данным расчетов зонной структуры соединений LaNi₄Ga [27] и CeNi₄Ga [6], замена атомов La на Ce приводит к некоторому уширению и сдвигу в область низких энергий пика *N_d*(*E*), что может, в принципе, вызвать уменьшение абсолютных значений *dN_d*(*E*)/*dE* $|_{E=E_F}$. Кроме того, следует учитывать возможность дополнительной трансформации пи-

ка $N_d(E)$ в области E_F для CeNi₄Ga, связанной со значительной f-d-гибридизацией (~ 68 мэВ [11]) в режиме валентной неустойчивости Се. Как видим, выделение «чистого» вклада f-электронов в общую термоэдс CeNi₄Ga является весьма нетривиальной задачей и его оценки будут иметь лишь приближенный характер.

На рис. 4 приведены температурные зависимости вклада *f*-состояний Се в термоэдс $CeNi_{4+x}Ga_{1-x}$ с x = 0

Рис. 4. (Онлайн в цвете) Температурные зависимости вклада f-состояний Се в общую термоэдс CeNi₄Ga (*a*) и CeNi_{4,5}Ga_{0,5} (б). Зависимости получены путем прямого вычитания термоэдс аналога, $S_f = S(Ce) - S(La)$, где S(Ce) и S(La) обозначают термоэдс сплавов с Се и La (1), и при помощи соотношения Гортера–Нордгейма (2). Сплошные и пунктирные кривые расчетные зависимости термоэдс S_f и ее составляющих (кондовской S_K и магнитной S_{mag}) согласно (2) и (3) (см. текст).

и 0,5, определенные из соотношений $S_f = S(\text{Ce}) - S(\text{La})$ и $S_f = (\rho(\text{Ce})S(\text{Ce}) - \rho(\text{La})S(\text{La}))/(\rho(\text{Ce}) - \rho(\text{La}))$, где $\rho(Ce), \rho(La)$ и S(Ce), S(La) обозначают удельное сопротивление и термоэдс сплавов с Се и La. Последнее соотношение, называемое правилом Гортера-Нордгейма (ГН), обычно используется с целью более детального анализа составляющих общей термоэдс, связанных с различными механизмами рассеяния свободных носителей заряда [28]. В данном случае правило ГН применено для анализа только низкотемпературной части зависимости $S_f(T)$. Как видно, для обоих сплавов зависимости $S_f(T)$ качественно напоминают поведение термоэдс цериевых систем с низкими значениями Т_К (< 100 К) [1,23,32]. Отрицательный минимум S_f при низких температурах сменяется положительным максимумом. В таких системах минимум термоэдс связывают со спиновыми межцентровыми корреляциями либо с когерентностью кондовских флуктуаций в подсистеме f-электронов и его положение коррелирует с T_K . Положение максимума термоэдс определятся энергией расщепления *f*-уровня кристаллическим полем δ ($k_B T_{Smax} \approx \delta/3$, $k_B T_K < \delta$) [32]. Для систем такого типа характерным является наблюдение определенной чувствительности к атомным замещениям отрицательного вклада в термоэдс и сравнительно высокой устойчивости положения максимума [1], что не наблюдается в нашем случае. Если кондо-решетка находится в состоянии с $T_K \ge \delta$, то термоэдс принимает положительные значения с максимумом при $T \approx (0,6-0,9)T_K$ [24], который обычно является очень чувствительным к атомным замещениям [19,22], как это и наблюдается в нашем случае. Обращают на себя внимание сравнительно малые абсолютные значения S_f для состава с x = 0, нетипичные для концентрированных кондо-систем на основе Се. Отрицательная составляющая вклада $S_f(T)$ с минимумом при $T \approx 75$ К более четко проявляется в случае применения при обработке эксперимента правила ГН.

При интерпретации поведения термоэдс в интерметаллидах с ВН Се составляющую S_f обычно связывают с образованием тонкой резонансной структуры $g_{f}(E)$ в плотности электронных состояний возле уровня Ферми E_{F} , параметры которой определяются режимом спиновых флуктуаций в подсистеме *f*-электронов. В случае некогерентного режима флуктуаций и сильного орбитального вырождения *f*-состояний ($N_f >> 1$), которое обычно реализуется в цериевых системах с $T_K > 100$ K, резонансная структура $g_f(E)$ принимает форму пика, близкую к лоренцевской [24]. Для таких систем составляющая S_f качественно хорошо описывается формулой $S_f(T) \approx aT/(T^2+b)$, которая может быть использована для оценки температуры Кондо Т_К [19-21]. В предположении реализации полного орбитального вырождения основного состояния ${}^{2}F_{5/2}$ иона Ce⁺³ $(N_f = 2J + 1 = 6)$ и сравнительно устойчивых параметров пика $g_f(E)$ по отношению к изменениям температуры в пределах проводимых измерений, температуру Кондо можно оценить по формуле

$$T_{K} = \sqrt{b / (3 / \pi^{2} + 3 / N_{f}^{2})}$$

или, если использовать данные о температурном положении максимума термоэдс $T_{Sf \max}$,

$$T_K = \pi T_{Sf \max} / \sqrt{3 + 3\pi^2 / N_f^2}$$
 [20].

В нашем случае вклад $S_f(T)$ в общую термоэдс CeNi_{4+x}Ga_{1-x} определяется, по-видимому, суммой двух составляющих: кондовской S_K , с зависимостью вида $S_K(T) \approx aT / (T^2 + b)$, и магнитной S_{mag} , связанной со спиновыми корреляциями в подсистеме *f*- или *d*-электронов.

Анализ отклонений $|\Delta S_f|$ экспериментальных значений термоэдс от вычисленных по формуле $S_K(T) \approx$ $\approx aT/(T^2+b)$ для CeNi₄Ga показывает, что способ определения экспериментальных значений S_f (прямое вычитание значений термоэдс аналога или применение правила ГН) сказывается главным образом на величине $|\Delta S_f|$ и не влияет на характер зависимости $\Delta S_f(T)$. В обоих случаях $\Delta S_f \sim T$ в области T < 60 К и $\Delta S_f \sim T^{-2}$ при T > 100 К, принимая максимальные значения $|\Delta S_f| \sim 0,5-3,0$ мкВ/К при $T \approx 75$ К. Такое поведение $\Delta S_f(T)$ качественно соответствует вкладу в термоэдс межцентровых спиновых корреляций [1,32,33], которые, как уже отмечалось, существенно влияют на транспортные свойства концентрированных кондо-систем с $T_K < 100$ К. Подобный вклад в термоэдс характерен также для разбавленных *d*-сплавов вблизи перехода от магнитного к немагнитному состоянию и связан с эффектами локальных спиновых флуктуаций в окружении примесных магнитных центров [28,30,31]. К сожалению, применяемые к настоящему времени модели при изучении влияния подобных эффектов на термоэдс кондовских систем не позволяют представить результаты расчета в аналитической форме. Однако в целом анализ работ [30,31,33] показывает, что вклад в термоэдс обсуждаемых корреляционных эффектов можно приближенно описать соотношением $S_{\text{mag}}(T) \propto T / (T^3 + b_1)$, которое соответствует характеру поведения $\Delta S_f(T)$. Таким образом, зависимость вклада S_f от T для CeNi₄Ga можно представить в виде

$$S_f(T) = S_{\text{mag}}(T) + S_K(T) = a_1 T / (T^3 + b_1) + a_2 T / (T^2 + b_2),$$
(2)

где S_{mag} означает термоэдс, связанную с возможными магнитными корреляциями в подрешетках Се или Ni, S_K — кондовскую составляющую термоэдс; a_1 , b_1 , a_2 , b_2 — подгоночные параметры. На рис. 4(а) приведены расчетные зависимости вклада $S_f(T)$ и его составля-

ющих, вычисленные по формуле (2). Согласование расчета с экспериментом проводилось по принципу совпадения значений термоэдс в точках экстремумов. Наилучшее согласие расчетной кривой $S_{f}(T)$ с экспериментальной для CeNi4Ga достигается в интервале температур $T \le 500$ К при значениях подгоночных параметров: $a_1 = -5,2\cdot 10^4$ мкВ·К, $b_1 = 1,0\cdot 10^6$ К³ и $a_2 = 2,7\cdot 10^3$ мкВ, $b_2 = 7,0\cdot 10^4$ К². В области температур T > 500 К расхождение расчета с экспериментом следует связывать с возможным изменением параметров пика $g_f(E)$ (ширина пика и его положение относительно уровня Ферми могут быть весьма чувствительными к изменениям температуры [19,21,34]). В предположении полного орбитального вырождения f-состояний Ce зависимость $S_K(T)$ соответствует температуре Кондо $T_{K} = 425$ К. Составляющая термоэдс $S_{mag}(T)$ характеризуется минимумом ~ -2,7 мкВ/К при T = 75 К. Аналогичное согласование расчета с данными, полученными из соотношения $S_f = S(Ce) - S(La)$, дает подобные результаты. Основные отличия касаются абсолютных значений минимума S_{mag} (уменьшение ~ 50%) и положения максимума составляющей S_K (сдвиг ~ 50 К в область более высоких температур), которому соответствует температура Кондо $T_K = 455$ К. Как видим, использование двух подходов при вычислении вклада $S_{f}(T)$ в общую термоэдс с последующим выделением составляющей S_K определяет температуру Кондо для CeNi₄Ga в пределах $T_K \approx 420-460$ К.

В случае сплава CeNi_{4,5}Ga_{0,5} составляющая термоэдс $S_{mag}(T)$ несколько меняет характер поведения и зависимость $S_f(T)$ более удобно представить уравнением

$$S_f(T) = S_{\text{mag}}(T) + S_K(T) = a_3 T / (T^2 + b_3) + a_4 T / (T^2 + b_4).$$
(3)

Согласование с экспериментом проводилось по принципу совпадения расчетных и экспериментальных значений термоэдс в точках экстремумов. На рис. 4(б) приведены расчетные зависимости вклада $S_f(T)$ и его составляющих, полученные при следующих значениях подгоночных коэффициентов: $a_3 = -1,1\cdot10^3$ мкВ, $b_3 = 0,6\cdot10^4$ K² и $a_4 = 2,9\cdot10^4$ мкВ, $b_4 = 4,1\cdot10^5$ K². Положительная составляющая термоэдс S_K в рамках модели [19,20] соответствует температуре Кондо $T_K = 1030$ К. Составляющая термоэдс $S_{mag}(T)$ характеризуется минимумом ~ -7,4 мкВ/К при T = 75 К.

Таким образом, при замещении в CeNi₄Ga 50% атомов Ga на Ni наблюдается ~ 2-кратное увеличение температуры Кондо и ~ 4-кратное увеличение значения максимума составляющей термоэдс S_K , связанной с ВН Ce. Абсолютное значение магнитной составляющей термоэдс S_{mag} также является чувствительным к атомным замещениям, однако положение минимума на зависимости $S_{mag}(T)$ проявляет высокую степень устойчивости.

Обсуждение результатов и заключение

Хорошо известно, что общей характеристикой металлических систем с ВН Се или кондо-решеток с высокими температурами Кондо T_K (> 100 K) являются сравнительно большие значения термоэдс ($S \sim 10^2$ мкB/K) и наличие положительного пика при температурах $T_{\rm max} \approx$ $\approx (0,6-0,9)T_K$ [24], который приближенно описывается формулой $S(T) \approx aT / (T^2 + b)$ [19–21]. В нашем случае из представленных исследований следует, что состояния ВН Се в CeNi₄Ga характеризуются аномально малым вкладом в общую термоэдс, описываемым формулой $S(T) \approx aT / (T^2 + b)$ в ограниченном интервале температур (100 < T < 500 K), и высокой температурой Кондо в пределах значений 420 К < T < 460 К. Для большей определенности целесообразно сравнить полученную температуру Кондо Тк с ее оценками на основании других, например, спектроскопических измерений. В рамках однопримесной модели Андерсона [35] Т_К можно оценить из соотношения

$$T_K = \frac{2J+1}{\pi} \Gamma\left(\frac{1-n_f}{n_f}\right),\tag{4}$$

где Г — параметр гибридизации между *f*-электронами и электронами проводимости. По данным рентгеновской фотоэмиссионной спектроскопии [11] состояние ВН Се в CeNi₄Ga характеризуется при T = 300 К заселенностью *f*-состояний $n_f = 0,76$ и гибридизационным уширением *f*-уровня $\Gamma = 68$ мэВ. После подстановки этих данных в уравнение (4) получаем значение $T_K = 476$ K, которое сравнительно хорошо согласуется с оценками, полученными при обработке результатов измерений термоэдс. По совокупности проведенных оценок можно принять, что температура Кондо для CeNi4Ga находится в интервале значений $T_K = (420-480)$ К. Термоэдс цериевых соединений с $T_K > 100$ К обычно принимает положительные значения и в случае некогерентного состояния f-подрешетки линейно зависит от температуры при $T < T_K$ [1,23,24]. Появление в нашем случае отрицательной составляющей термоэдс S_{mag} в области температур $T < T_K$ следует связывать, по-видимому, с проявлением локальных спиновых флуктуаций в *d*-зоне подрешетки никеля.

Высокая чувствительность кондовской составляющей термоэдс S_K в CeNi_{4+x}Ga_{1-x} к составу вызвана доминирующей ролью Ni в формировании состояний BH Ce. Согласно расчетам электронного строения сплавов-аналогов LaNi_{5-y}Ga_y (y = 0, 0, 5, 1, 0) [27], увеличение содержания Ni приводит к возрастанию вклада *d*-электронов Ni в общую плотность состояний на уровне E_F . Такая трансформация энергетического спектра существенно влияет на степень *f*-*d*-гибридизации и, соответственно, состояние валентной неустойчивости Ce. Аномально малые значения S_K для CeNi₄Ga следует связывать с влиянием атомного беспорядка в ближайшем окружении Се на структуру кондовского пика плотности состояний $g_f(E)$. Статистическое распределение разновалентных атомов Ga и Ni в позиции 3g может вызывать ослабление кондо-компенсации (экранирования) ЛММ Се и, как следствие, частичное размытие тонкой структуры $g_f(E)$. Это приведет к уменьшению составляющей S_K, которая является особенно чувствительной к параметрам пика $g_f(E)$ (в первом приближении $S_K \sim T dg_f(E) / dE |_{E=E_F}$ [24]). Подтверждением данного предположения могут служить измерения термоэдс соединения CeNi₄Cu [20], которое характеризуется приблизительно таким же валентным состоянием Се с заселенностью *f*-оболочки $n_f = 0.8$ [8]. В случае CeNi₄Cu хаотическое потенциальное поле, вызванное статистическим заполнением 3g-позиций атомами почти одинаковой валентности (Ni и Cu), значительно слабее. Следовательно, пик $g_f(E)$ существенно не размывается и, как следствие, кондовская составляющая термоэдс S_K значительно возрастает (~ 6-кратное увеличение максимума вклада $S_f(T)$ в общую термоэдс [20]). По-видимому, неполным экранированием ЛММ Се можно также объяснить высокую чувствительность магнитной восприимчивости χ CeNi₄Ga к условиям приготовления образцов. Согласно данным работ [6,11–13], зависимость $\chi(T)$ для CeNi₄Ga в области температур T < 50 К описывается модифицированным законом Кюри-Вейсса со сравнительно большим разбросом значений эффективного ЛММ $\mu_{eff} \approx 0,35-0,8\mu_B$ / форм. ед.). Кроме того, наблюдается также существенный разброс значений дополнительной намагниченности в области температур T < 150 К, которая проявляется в разной степени отклонениях от кюри-вейссовской зависимости $\chi(T)$.

Сравнительный анализ проведенных измерений термоэдс и имеющихся данных о магнитной восприимчивости [11-14] соединений RNi₄Ga (R = Ce, La) дает основание полагать, что составляющая термоэдс S_{mag} связана со спиновыми флуктуациями в узкой полосе d-состояний Ni. Минимум составляющей S_{mag} приблизительно совпадает с областью дополнительного вклада χехс в восприимчивость CeNi4Ga, связанного с обменноусиленной частью спиновой восприимчивости подрешетки Ni [13]. В случае LaNi4Ga спин-флуктуационные возбуждения плотности *d*-состояний Ni существенно ослаблены. На зависимостях S(T) и $\chi(T)$ это отражается слабым магнитным вкладом S_{mag} в общую термоэдс (см. рис. 4(а)) и восприимчивостью типа Паули со слабой температурной зависимостью [15]. Частичное замещение атомов галлия никелем в $RNi_{4+x}Ga_{1-x}$ (R = La, Се) приводит к усилению спин-флуктуационного эффекта и увеличению магнитного вклада S_{mag} в общую термоэдс (рис. 3 и 4). Также к увеличению абсолютных значений S_{mag} приводит вовлечение в химическую связь f-состояний ионов Се. Уменьшение заселенности f-оболочки Се в CeNi_{4+x}Ga_{1-x} при замещении атомов галлия никелем [12] и связанное с этим процессом возрастание степени f-d-гибридизации вызывает усиление спинфлуктуационного эффекта в *d*-зоне. Качественно подобная корреляция отрицательной составляющей термоэдс S_{mag} и магнитного состояния подрешетки 3d-переходного элемента характерна, по-видимому, для родственного сплава CeNi_{5-v}Cu_v со структурой типа CaCu₅ [16,20,36] и соединений ряда CeM₂Si₂ (M = Fe, Co, Ni) с $T_K \sim 10^3$ К [37–39]. Известно, что для исходного сплава CeNi₅ на зависимости S(T) наблюдается два положительных максимума при T = 110 и 650 K, связанных, соответственно, со спиновыми флуктуациями в подрешетках Ni и Ce [20,36]. Положение максимума S_{max1} хорошо коррелирует с положением максимума магнитной восприимчивости χ_{max} при $T \approx 100$ K, поведение которой соответствует состоянию обменно-усиленного зонного парамагнетика [40]. Уже при сравнительно малых замещениях Ni атомами Cu ($y \le 0.5$) наблюдается резкая трансформация максимума Smax1 в отрицательный минимум [36]. При этом появлению минимума термоэдс сопутствует смещение максимума χ_{max} в область низких температур и полное его размытие, что указывает на изменение характера спиновых флуктуаций в подрешетке Ni [16,41]. По-видимому, в случае соединений CeM₂Si₂ имеет место подобная связь термоэдс с магнитным состоянием подрешетки М элемента. Уменьшение вклада температурно-зависимой части χ_{exc} в общую восприимчивость по мере заполнения 3d-оболочки М элемента [38,39] хорошо коррелирует с уменьшением отрицательного вклада в общую термоэдс в области температур T < 200 К [37]. Следует подчеркнуть, что общим свойством рассмотренных систем является нахождение подрешетки 3*d*-элемента в состоянии, близком к стонеровской магнитной нестабильности, когда небольшое возрастание плотности состояний может привести к спиновой поляризации. Именно для таких систем, возможно, характерно появление отрицательного вклада в общую термоэдс в области низких температур [30,31,33,42].

Отметим также, что при исследовании подобных систем естественно возникает вопрос о возможной корреляции спиновых флуктуаций в подрешетках никеля и церия. Однако, насколько нам известно, в настоящее время отсутствует какой-либо системный анализ исследований кондовских систем с эффектами совместного проявления спиновых флуктуаций в подсистемах *f*- и *d*-электронов. По-видимому, этот вопрос заслуживает отдельного обсуждения и более детального рассмотрения, выходящего за рамки настоящей работы.

Таким образом, из совокупности приведенных данных и их анализа можно заключить, что аномальное поведение коэффициента термоэдс CeNi4Ga обусловлено совместным проявлением эффектов некогерентного кондовского рассеяния электронов проводимости на локализованных *f*-центрах Се и рассеяния, вызванного спиновыми корреляциями в *d*-зоне подрешетки никеля. Наблюдаемый аномально низкий кондовский вклад в общую термоэдс CeNi₄Ga предлагается связывать с ослаблением кондо-компенсации магнитного момента ионов церия вследствие структурного атомного беспорядка в его ближайшем окружении.

- 1. N.B. Brandt and V.V. Moshchalkov, Adv. Phys. 33, 373 (1988).
- 2. G.R. Stewart, Rev. Mod. Phys. 73, 797 (2001).
- 3. В.Ю. Ирхин, *УФН* **187**, 801 (2017).
- T. Toliński, A. Kowalczyk, G. Chełkowska, M. Pugaczowa-Michalska, B. Andrzejewski, V. Ivanov, A. Szewczyk, and M. Gutowska, *Phys. Rev. B* 70, 064413 (2004).
- T. Toliński, V. Ivanov, and A. Kowalczyk, *Materials Science-Poland* 24, 789 (2006).
- A. Kowalczyk, M. Pugaczowa-Michalska, and T. Toliński, *Phys. Status Solidi B* 242, 433 (2005).
- A. Kowalczyk, T. Toliński, B. Andrzejewski, and A. Szlaferek, J. Alloys Comp. 413, 1 (2006).
- T. Toliński, A. Kowalczyk, A. Szewczyk, and M. Gutowska, J. Phys.: Condens. Matter 18, 3435 (2006).
- T. Toliński, A. Kowalczyk, V. Ivanov, G. Chełkowska, and M. Timko, *Czech. J. Phys.* 54, D287 (2004).
- T. Toliński, V. Zlatić, and A. Kowalczyk, *J. Alloys Comp.* 490, 15 (2010).
- T. Toliński, G. Chełkowska, M. Falkowski, and A. Kowalczyk, J. Magn. Magn. Mater. 323, 1678 (2011).
- H. Flandorfer, P. Rogl, K. Hiebl, E. Bauer, A. Lindbaum, E. Gratz, C. Godart, D. Gignoux, and D. Schmitt, *Phys. Rev. B* 50, 15527 (1994).
- J. Tang, L. Li, C.J. O'Connor, and Y.S. Lee, *J. Alloys Comp.* 207/208, 241 (1994).
- A. Kowalczyk, M. Falkowski, V.H. Tran, and M. Pugaczowa-Michalska, J. Alloys Comp. 440, 13 (2007).
- Devang A. Joshi, C.V. Tomy, D.S. Rana, R. Nagarajan, and S.K. Malik, *Solid State Commun.* 137, 225 (2006).
- E. Burzo, S. G. Chiuzbăian, L. Chioncel, and M. Neumann, J. Phys.: Condens. Matter 12, 5897 (2000).
- E. Burzo, S.G. Chiuzbăian, M. Neumann, and L. Chioncel, J. Phys.: Condens. Matter 14, 8057 (2002).
- V. Zlatić, I. Milat, B. Coqblin, and G. Czycholl, *Phys. Rev. B* 68, 104432 (2001).
- M.D. Koterlyn, R.I. Yasnitskii, G.M. Koterlyn, and B.S. Morokhivskii, *J. Alloys Comp.* 348, 52 (2003).
- M.D. Koterlyn, O.I. Babych, and G.M. Koterlyn, *J. Alloys Comp.* 325, 6 (2001).
- M. Koterlyn, B. Morokhivskii, and R. Yasnitskii, *Chem. Met. Alloys* 4, 107 (2011).
- М.Д. Котерлин, О.И. Бабич, Б.С. Морохивский, М.Б. Конык, Р.В. Луцив, *ФТТ* 30, 1512 (1988).
- T.A. Costi, A.C. Hewson, V. Zlatič, J. Phys.: Condens. Matter 6, 2519 (1994).
- 24. N.E. Bickers, D.L. Cox, and J.W. Wilkins, *Phys. Rev. B* 36, 2036 (1987).

- 25. T. Aisaka and M. Shimizu, J. Phys. Soc. Jpn. 28, 646 (1970).
- 26. E. Gratz, J. Magn. Magn. Mater. 24, 1 (1981).
- D. Chen, G.X. Li, D.L. Zhang, and T. Gao, *Acta Metall. Sin.* (*Engl. Lett.*) 21, 157 (2008).
- Ф.Дж. Блатт, П.А. Шредер, К.Л. Фойлз, Д. Грейг, *Термоэлектродвижущая сила металлов*, Металлургия, Москва (1980).
- 29. L.J. Colquitt, H.R. Fankhauser, and F.J. Blatt, *Phys. Rev. B* 4, 292 (1971).
- 30. K. Fischer, J. Low Temp. Phys. 17, 87 (1974).
- 31. I. Fisk and A.B. Kaiser, J. Low Temp. Phys. 61, 1 (1985).
- V. Zlatić, B. Horvatić, I. Milat, B. Coqblin, G. Czycholl, and C. Grenzebach, *Phys. Rev. B* 68, 104432 (2003).
- 33. K. Fischer, Z. Phys. B 76, 3156 (1989).
- C. Grenzebach, F.B. Anders, G. Czycholl, and T. Pruschke, *Phys. Rev. B* 74, 195119 (2006).
- P.S. Riseborough and J.M. Lawrence, *Rep. Prog. Phys.* 79, 084501 (2016).
- S. Cabus, K. Gloos, U. Gottwick, S. Horn, M. Klemm, J. Kubler, F. Steglich, and R.D. Parks, *Solid State Commun.* 51, 909 (1984).
- M. Koterlyn, I. Shcherba, R. Yasnitskii, and G. Koterlyn, *J. Alloys Comp.* 442, 176 (2007).
- C. Ammarguellat, M. Escorne, A. Mauger, E. Beaurepaire, M.F. Ravet, G. Krill, F. Lapierre, P. Haen, and C. Godart, *Phys. Status Solidi B* 143, 159 (1987).
- Marián Mihalik, Matúš Mihalik, and Vladimír Sechovsky, *Physica B* 359–361, 163 (2005).
- D. Gignoux, F. Givord, R. Lemaire, H. Launois, F. Sayetat, *J. Physique* 43, 173 (1982).
- Г.Е. Гречнев, А.В. Логоша, И.В. Свечкарев, А.Г. Кучин, Ю.А. Куликов, Р.А. Korzhavyi, О. Eriksson, *ФНТ* 32, 1498 (2006) [*Low Temp. Phys.* 32, 1140 (2006)].
- 42. T. Okabe, J. Phys.: Condens. Matter 22, 115604 (2010).

Особливості поведінки термоерс CeNi₄Ga з нестабільною валентністю Ce

М.Д. Котерлин, О.Й. Бабич, Г.М. Котерлин

Представлено результати досліджень у широкому діапазоні температур (4–900 К) термоерс твердих розчинів $RNi_{4+x}Ga_{1-x}$ (R = Ce, La; $0 \le x \le 0,5$), що містять церій в стані валентної нестабільності. На їх основі проведено аналіз внеску f-станів церію в термоерс CeNi4Ga з урахуванням транспортних властивостей кристалевої матриці, в якій знаходиться підсистема f-електронів. Показано, що особливості температурної поведінки термоерс CeNi4Ga обумовлені спільним проявом ефектів некогерентного кондівського розсіювання електронів провідності на локалізованих f-центрах та розсіювання на спінових флуктуаціях у вузькій d-зоні підгратки нікелю. Спостережений при цьому аномально низький кондівський внесок в загальну термоерс пропонується пов'язувати з можливим ослабленням кондо-компенсації магнітного моменту іонів церію внаслідок структурного атомного безладу у його найближчому оточенні.

Ключові слова: рідкісноземельні метали та сплави, валентна нестабільність, електроопір, термоерс, магнітна сприйнятливість.

Specificities of the behavior of thermoelectric power in CeNi₄Ga with an instable valence of Ce

M.D. Koterlyn, O.I. Babych, and G.M. Koterlyn

The results of the studies in a wide temperature range (4-900 K) of the thermoelectric power for solid solutions $RNi_{4+x}Ga_{1-x}$ (R = = Ce, La; $0 \le x \le 0.5$) containing cerium in a state of valence instability are presented. Based on them, an analysis was made of the contribution of the cerium f-states to the thermopower of CeNi4Ga with taking into account the transport properties of the crystal matrix containing the f-electron subsystem. It is shown that the specificities of the temperature behavior of the CeNi4Ga thermopower are caused by a joint manifestation of the effects of the incoherent Kondo scattering of conduction electrons on localized f-centers and scattering on spin fluctuations in the narrow d-band of the nickel sublattice. The anomalously low Kondo contribution to the total thermopower observed in this case is suggested to be associated with the possible weakening of the Kondo-compensation of the magnetic moment of cerium ions due to the structural atomic disorder in its immediate environment.

Keywords: rare earth metals and alloys, valence instability, electrical resistivity, thermoelectric power, magnetic susceptibility.