Магнитные и диэлектрические свойства твердых растворов мультиферроиков (1–*x*)ВiFeO₃–*x*YMnO₃

В.Т. Довгий

Донецкий физико-технический институт им. А.А. Галкина НАН Украины пр. Науки, 46, г. Киев, 03028, Украина E-mail: vladimirdovgii@gmail.com

Н.Н. Кулик, А.В. Боднарук

Институт физики НАН Украины, пр. Науки, 46, г. Киев, 03028, Украина

Д.Д. Татарчук

Национальный технический университет Украины «КПИ» им. И. Сикорского пр. Победы, 37, г. Киев, 03056, Украина

Статья поступила в редакцию 9 апреля 2019 г., после переработки 5 июня 2019 г., опубликована онлайн 27 августа 2019 г.

Изучены петли магнитного гистерезиса, полученные в магнитном поле от 0 до $\pm 2,5$ кЭ, и диэлектрическая проницаемость ε (при 1 кГц, 1 МГц и 8,3 ГГц) композиционных мультиферроиков (1–*x*)BiFeO₃–*x*YMnO₃ ($0 \le x \le 0,5$). Керамические образцы твердых растворов изготовлены по нитратной технологии. Установлено, что составы (1–*x*)BiFeO₃–*x*YMnO₃ (0,1 < x < 0,5) — магнитомягкие ферромагнетики, чувствительные к слабому магнитному полю. Поле коэрцитивности H_c для них составляет ~ 20–32 Э. Максимальная намагниченность наблюдалась у образца с x = 0,35. Для образцов с $0 \le x \le 0,4$ при T = 300 К на частоте 1 кГц $\varepsilon \sim 17,6-248,6$, на частоте 1 МГц $\varepsilon \sim 7,8-63,2$, а на частоте 8,3 ГГц $\varepsilon \sim 4\pm0,3$.

Ключевые слова: твердые растворы BiFeO₃-*x*YMnO₃, мультиферроики, петли магнитного гистерезиса, магнитомягкие ферромагнетики.

Введение

Развитие микроэлектроники в области спинтроники связано с открытием и исследованием новых материалов, обладающих спин-поляризованной проводимостью (манганиты), ферроэлектрическим, ферромагнитным упорядочением, а также пьезоэффектом, магнитоэлектрическим эффектом и магнитострикцией (мультиферроики). С одной стороны, интерес к данной тематике обусловлен фундаментальными свойствами мультиферроиков, с другой стороны, ожидаются вполне конкретные практические применения в таких областях, как сенсорная техника, спинтроника, логические устройства [1–4].

Среди мультиферроиков наиболее интересным является BiFeO₃. Установлено, что в чистом BiFeO₃ имеются три температурных фазовых перехода: ферроэлектрический ($T_{FE} \sim 1083$ K), антиферромагнитный ($T_N = 643$ K) и сегнетоэластический ($T_{SE} \sim 1193$ K) [2]. Однако сущест-

вование пространственной спин-модулированной структуры циклоидного типа с периодом, несоразмерным периоду кристаллической структуры, обнуляет линейные магнитоэлектрические свойства при усреднении по объему. Существуют различные способы разрушения или подавления спиновой циклоиды, например получение тонких пленок из BiFeO₃ [2,3].

В последние годы появилось много работ по разнообразным системам твердых растворов и пленок на основе этого материала [3–9]. В частности, выделяются комбинации твердых растворов BiFeO₃ и хорошо известных сегнетоэлектриков или антисегнетоэлектриков со структурами типа перовскита (BaTiO₃, PbTiO₃ и др.) [5]. Другими видами систем являются соединения на основе BiFeO₃ с частичным замещением ионов Bi рядом трехвалентных (преимущественно редкоземельных) или двухвалентных ионов [6], а также с частичным замещением ионов Fe ионами Mn, Co или Cr [7].

Системы твердых растворов, где в качестве вторых компонентов к BiFeO3 содержатся гексагональные манганиты hex-RMnO₃, рассмотрены в [8,9]. В работе [8]достаточно подробно описаны структурные изменения в системе BiFeO₃-YMnO₃, но не проведены исследования магнитных и электрических свойств. Авторами работы [9] методом импульсного лазерного напыления были изготовлены тонкие пленки (1-x)BiFeO3-xYMnO3 с концентрацией x = 0, 0.05, 0.1 и 0.15 на подложке (001)SrTiO₃ с буферным слоем La_{0,67}Sr_{0,33}MnO₃. Рентгеноструктурный анализ показал, что пленки получились эпитаксиальными. При комнатной температуре были построены петли гистерезиса электрической поляризации в зависимости от напряженности электрического поля P(E) и петли магнитного гистерезиса M(H). Причем поляризация в поле напряженностью 300 кВ/см достигала значения $P = 15 \text{ мкКл/см}^2$ в пленках с концентрацией x = 0,1 и порядка 10 мкКл/см² — с x = 0,05 и 0,15. Максимальная намагниченность наблюдалась для x = 0,1, она уменьшалась для x = 0.05 и 0.15, а самая низкая была у пленок BiFeO₃.

ВіFеO₃ и YMnO₃ являются мультиферроиками 1-го типа и антиферромагнетиками. В них сегнетоэлектричество проявляется при более высоких температурах, чем магнетизм. В пленках спонтанная поляризация *P* часто достигает величины ~ 10–150 мкКл/см². Например, в пленке ВіFeO₃ ($T_{FE} = 1083$ K, $T_N = 643$ K) вдоль оси [111] *P* ~ 60 мкКл/см² [2,3], а в YMnO₃ ($T_{FE} ~ 950$ K, $T_N = 77$ K) *P* ~ 5 мкКл/см² [9,10]. Связь между магнетизмом и сегнетоэлектричеством в этих материалах, как правило, довольно слабая. Следует ожидать, что физические свойства твердых растворов ВіFeO₃ с YMnO₃ зависят от соотношения компонентов.

В настоящей работе проведены исследования структурных, магнитных и диэлектрических свойств композиционной системы твердых растворов (керамических образцов) состава (1–*x*)ВіFeO₃–*x*YMnO₃. Цель работы выяснить особенности магнитных и диэлектрических свойств (1–*x*)ВіFeO₃–*x*YMnO₃в зависимости от концентрации *x*.

Приготовление образцов

Образцы керамик состава (1-x)ВіFеO₃-xYMnO₃ были получены по нитратной технологии из окислов Bi₂O₃, Y₂O₃, Mn₃O₄ и карбонильного железа марки OCЧ, взятых в стехиометрическом соотношении. Стехиометрическую смесь порошков растворяли в разбавленной азотной кислоте HNO₃. После разложения нитратов до окислов твердые растворы (1-x)ВіFeO₃-xYMnO₃ с x = 0,1, 0,2, 0,25, 0,3, 0,35, 0,4 и 0,5 были синтезированы при T = 600 °C в течение 10 ч. Продукты синтеза после перетирки были спрессованы в таблетки диаметром 8 мм и толщиной d = 1,5 мм. Таблетки спекались при T = 1000 °C на воздухе в течение 18 ч.

Приготовление образцов для магнитных и диэлектрических измерений заключалось в сошлифовывании таблеток диаметром 8 мм до дисков толщиной d == (1 ± 0,002) мм. Для диэлектрических измерений на торцы дисков серебряной краской наносились контакты диаметром 8 мм. Толщину и плоскопараллельность поверхностей контролировали микрометром.

Экспериментальная часть

Рентгенофазовый анализ (РФА) осуществлялся на рентгеновском дифрактометре ДРОН-2 (излучение CuK_{α}). РФА для всех значений *x* показал образование фаз со структурой перовскита и небольшое количество примесной фазы ~ 5–10%, предположительно Bi₂₅FeO₃₉. В диапазоне температур 5–950 К данная фаза демонстрирует парамагнитное поведение [11].

Запись петель перемагничивания производилась как с помощью вибрационного магнитометра LDJ-9500, так и индуктивно-частотной установки. Результаты измерений намагниченности *M* на магнитометре LDJ-9500 для керамических дисков (1–*x*)BiFeO₃–*x*YMnO₃представлены на рис. 1(а) и (б).

На рис. 1(а) видно, что из всех составов (1-x)BiFeO₃-xYMnO₃, где 0,1 < x < 0,5, максимальной намагниченности стабильно достигают образцы с x = 0,35(петли 1, 2). Далее по мере убывания намагниченности M при H = 2,5 кЭ следуют образцы с x = 0,2 (петля 3), x = 0,25 (петля 4), x = 0 (петля 5), x = 0,1 (петля 6) и x = 0,5 (петля 7). На рис. 1(б) для той же системы приведены аналогичные петли магнитного гистерезиса, снятые при температуре T = 300 К. Видно, что по сравнению с результатами, полученными при T = 110 K, намагниченность образцов уменьшилась, но закономерность ее изменения в зависимости от состава осталось прежней. На вставке к рис. 1(б) показан фрагмент петли гистерезиса для образца 0,65BiFeO₃-0,35YMnO₃. Несимметричность петли гистерезиса свидетельствует о том, что в образце кроме ферромагнитной фазы присутствует и антиферромагнитная.

По ширине петель магнитного гистерезиса (см. рис. 2) можно сделать вывод, что (1-x)ВiFeO₃-xYMnO₃ (0,1 < x < 0,5) являются магнитомягкими ферромагнетиками, поле коэрцитивности H_c для них составляет ~ 20–32 Э.

Для образцов с x = 0,2, 0,25 и 0,35 по касательной к точке перегиба кривых M(T) определены температуры ферромагнитного упорядочения, значения которых оказались довольно близкими — 548, 549 и 551 К. Эти данные подтверждают, что за ферромагнетизм отвечает одна и та же фаза.

Рис. 1. Петли магнитного гистерезиса для образцов системы (1-x)ВіFеO₃-хYMnO₃, измеренные при T = 110 K (а) и 300 K (б) для различных значений x: (а) — 0,35 (1, 2) (2 — для дополнительного образца), 0,2 (3), 0,25 (4), 0,3 (5), 0,1 (6), 0,5 (7); (б) 0,35 (1), 0,2 (2), 0,25 (3), 0,3 (4), 0,1 (5), 0,5 (6). На вставке показан фрагмент петли гистерезиса для образца 0,65ВіFeO₃-0,35YMnO₃.

Диэлектрические свойства образцов измерялись при комнатной температуре в конденсаторной ячейке с обкладками в виде дисков диаметром 8 мм с помощью RLC-метров E7-8 (частота 1кГц) и E7-12 (1 МГц). Диэлектрическая проницаемость ε_x определялась как отношение емкости ячейки с образцом C_x к емкости ячейки с воздухом C_{air} :

$$\varepsilon_x = C_x / C_{\text{air}}$$

Здесь $C_x = \varepsilon_x \varepsilon_0 S/d$, $C_{air} = \varepsilon_{air} \varepsilon_0 S/d$, где $\varepsilon_0 = 8,85 \cdot 10^{-12}$ Ф/м, S — площадь обкладок и d — расстояние между обкладками конденсатора. Эта формула справедлива, так как с достаточной точностью диэлектрическая проницаемость воздуха $\varepsilon_{air} = 1$. Кроме диэлектриче-

Рис. 2. Температурные зависимости намагниченности M при H = 2,5 кЭ (\circ) и поля коэрцитивности H_c (**■**) для (1–*x*)ВіFeO₃–*x*YMnO₃ с различной концентрацией *x*: 0,2 (a), 0,25 (б), 0,35(в).

ской проницаемости є приборы позволяют измерить тангенс угла диэлектрических потерь tg δ и адмиттанс G — аналог проводимости. Результаты измерений приведены в табл. 1.

Диэлектрическая проницаемость образцов є состава (1-x)ВіFеO₃–xYMnO₃ для значений x = 0; 0,25 и 0,35 измерялась и в области СВЧ на частоте $f_{res} = 8,3$ ГГц. Оказалось, для данного состава є ~ 4 ± 0,3 независимо от величины x в предположении, что значения магнитной проницаемости μ_x в области СВЧ стремятся к единице.

x	tg\delta _x	G_{x} , мкСм	<i>С</i> _{<i>x</i>} , пФ	$C_{\rm air}$, пФ	$\epsilon_x \pm \Delta \epsilon$
1 кГц					
0	0,16	1,23	21,5	1,22	$17,6 \pm 0,8$
0,10	0,20	1,93	51,5	1,22	$42,2 \pm 2$
0,20	0,15	3,80	292,7	1,22	240 ± 10
0,25	0,17	3,65	147,2	1,22	$120,7 \pm 5$
0,30	0,20	2,41	295,5	1,22	$242,2 \pm 10$
0,35	0,10	3,25	185,6	1,22	$152,1 \pm 5$
0,40	0,20	2,12	303,3	1,22	$248,6 \pm 10$
1 МГц					
0	0.07	0,2	7,0	0,9	$7,8 \pm 0,5$
0,10	0.10	5,40	28,9	0,9	$32,2 \pm 1,5$
0,20	0,12	5,20	56,9	0,9	$63,2 \pm 3$
0,25	0,12	4,60	28,9	0,9	$32 \pm 1,5$
0,30	0,14	2,12	30,4	0,9	$33,8 \pm 1,5$
0,35	0,12	3,25	20,3	0,9	22,6 ± 1
0,40	0,10	3,70	30,1	0,9	33,4 ± 1,5

Таблица 1. Диэлектрические параметры образцов (1-x)BiFeO3-xYMnO3, измеренные RLC-метрами E7-8 (1 кГц) и E7-12 (1 МГц)

Обсуждение

В системе твердых растворов (1-x)BiFeO₃-xYMnO₃ за магнитное упорядочение могут отвечать как взаимодействие Дзялошинского (в чистом BiFeO₃) [2,12], так и суперобменные взаимодействия Fe-O-Fe, Fe-O-Mn и Mn-O-Mn [6,7]. Анализ кривых намагниченности М(Н) (см. рис. 1) позволяет сделать вывод, что в этой системе в диапазоне концентраций 0,1 < x < 0,5 наблюдается ферромагнитное упорядочение. По данным работы [9], в которой исследовались тонкие пленки (1-x)ВіFeO₃-хҮМпО₃, максимум намагниченности соответствует составу с x = 0,1. Изучение керамических объемных образцов этой же системы в данной работе показывает, что максимум намагниченности соответствует составу с x = 0,35. Преимущество образцов этой композиционной системы в том, что они достигают намагниченности насышения в малых магнитных полях и величина намагниченности значительно больше, чем образцов с частичным замещением ионов висмута рядом трехвалентных (преимущественно редкоземельных) или двухвалентных ионов, а также с частичным замещением ионов Fe. Как видно на рис. 2, поле коэрцитивности *H_c* для твердых растворов (1-*x*)ВіFeO₃-*x*YMnO₃ с концентрацией $0,1 \le x \le 0,35$ составляет ~ 20–32 Э. Эти данные подтверждают наш вывод о том, что такие материалы являются магнитомягкими ферромагнетиками, чувствительными к слабому магнитному полю. Указанное свойство делает их перспективными для использования в устройствах переключения электрической поляризации магнитным полем и, наоборот, переключения намагниченности электрическим полем.

Выводы

1. Обнаружено ферромагнитное упорядочение в системе твердых растворов (1-x)ВіFеO₃–*х*YMnO₃ в диапазоне концентраций 0,1 < *x* < 0,4.

2. Установлено, что поле коэрцитивности H_c для твердых растворов (1–x)ВiFeO₃–хYMnO₃ (0,1 < $x \le 0,4$) составляет ~ 20–32 Э. Следовательно, они являются магнитомягкими ферромагнетиками, чувствительными к слабому магнитному полю.

3. Показано, что максимум намагниченности керамических объемных (в отличие от пленочных) образцов исследуемой системы соответствует составу с x = 0.35.

4. Обнаружено, что диэлектрическая проницаемость образцов (1-x)BiFeO₃-xYMnO₃ (0 < x < 0,4) на частоте 1 кГц составляет ~17,6 - 248,6, на частоте 1 МГц ~7,8-63,2, а на частоте 8,3 ГГц ~ 4,3.

- A.M. Kadomtseva, Yu.F. Popov, A.P. Pyatakov, G.P. Vorob'ev, A.K. Zvezdin, and D. Viehland, *Phase Transitions* 79, 1019 (2006).
- 3. А.П. Пятаков, А.К. Звездин, *УФН* 182, 593 (2012).
- C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, *J. Appl. Phys.* **103**, 031101 (2008).
- J. Silva, A. Reyes, H. Esparza, H. Camacho, and L. Fuentes, *Integr. Ferroelect.* 126, 47 (2011).
- И.И. Макоед, А.Ф. Ревинский, В.В. Лозенко, А.И. Галяс, О.Ф. Демиденко, А.М. Живулько, К.И. Янушкевич, В.В. Мощалков, *ФТТ* 59, 1514 (2017).

^{1.} M. Fiebig, J. Phys. D 38, R123 (2005).

- В.С. Покатилов, В.С. Русаков, А.С. Сигов, А.А. Белик, *ФТТ* 59, 1535 (2017).
- А.В. Назаренко, А.Г. Разумная, М.Ф. Куприянов, Ю.В. Кабиров, А.Г. Рудская, *ФТТ* 53, 1523 (2011).
- Peng-Xiao Nie, Yi-Ping Wang, Ying Yang, Guo-Liang Yuan, Wei Li, and Xue-Ting Ren, *Energy Harvest. System* 2, 157 (2015).
- H. Sim, J. Oh, J. Jeong, M.D. Le, and J.-G. Park, *Acta Crystallogr. B* 72, 3 (2016).
- R. Koferstein, T. Buttlar, and S.G. Ebbinghaus, J. Solid State Chem. 217, 50 (2014).
- 12. И.Е. Дзялошинский, ЖЭТФ 32, 1547 (1957).

Магнітні та діелектричні властивості твердих розчинів мультифероїків (1–x)ВіFeO₃–xYMnO₃

В.Т. Довгий, М.М. Кулик, А.В. Боднарук, Д.Д. Татарчук

Вивчено петлі магнітного гістерезису, які отримано у магнітному полі від 0 до ± 2,5 кЕ, та діелектрична проникність є (при 1 кГц, 1 МГц та 8,3 ГГц) композиційних мультифероїків (1–*x*)ВіFeO₃–*x*YMnO₃ (0 < *x* < 0,5). Керамічні зразки твердих розчинів виготовлено за нітратною технологією. Встановлено, що сполуки (1–*x*)ВіFeO₃–*x*YMnO₃ (0,1 < *x* < 0,5) — магніто-м'які феромагнетики, які чутливі до слабкого магнітного поля. Поле коерцитивності H_c для них становить ~ 20–32 Е. Максимальна намагніченість спостерігалась у зразка з *x* = 0,35.

Для зразків з 0 < x < 0,4 при T = 300 К на частоті 1 кГц є ~ ~ 17,6–248,6, на частоті 1 МГц є ~ 7,8–63,2, а на частоті 8,3 ГГц є ~ 4±0,3.

Ключові слова: тверді розчини BiFeO₃-хYMnO₃, мультифероїки, петлі магнітного гістерезису, магнітом'які феромагнетики.

Magnetic and dielectric properties of solid solutions of multiferroics (1–x)BiFeO₃–xYMnO₃

V.T. Dovgii, N.N. Kulyk, A.V. Bodnaruk, and D.D. Tatarchuk

The loops of magnetic hysteresis in the magnetic field ranging from 0 to \pm 2.5 kOe and dielectric permittivity ε (at 1 kHz, 1 MHz and 8.3 GHz) of composite multiferroics of $(1-x)BiFeO_3-xYMnO_3$ $(0 \le x \le 0.5)$ are studied. The ceramic samples of solid solutions are obtained by nitrate technology. It is found that compositions of $(1-x)BiFeO_3-xYMnO_3$ ($0 \le x \le 0.5$) are magnetically-soft ferromagnetics that are sensitive to a weak magnetic field. The coercive field is $H_c \sim 20-32$ Oe. The maximum magnetization has been observed in the sample characterized by x = 0.35. The permittivity ε at T = 300 K at the frequency of 1 kHz, 1 MHz and 8.3 GHz is equal to 17.6–248.6, 7.8–63.2 and 4 ± 0.3 , respectively (the data are presented for the samples with $0 \le x \le 0.4$).

Keywords: solid solutions of BiFeO₃-xYMnO₃, multiferroics, magnetic hysteresis loops, soft ferromagnets.