Особенности поведения избыточной проводимости в магнитном сверхпроводнике Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B₄

А.Л. Соловьев, А.В. Терехов, Е.В. Петренко, Л.В. Омельченко

Физико-технический институт низких температур им. Б.И. Веркина НАН Украины пр. Науки, 47, г. Харьков, 61103, Украина E-mail: solovjov@ilt.kharkov.ua

Zhang Cuiping

Superconducting Material Research Center (SMRC), Northwest Institute for Non-Ferrous Metal Research (NIN) Xi'an, China

Статья поступила в редакцию 24 июня 2019 г., опубликована онлайн 27 сентября 2019 г.

Впервые исследованы температурные зависимости избыточной проводимости $\sigma'(T)$ и возможной псевдощели (ПЩ) $\Delta^*(T)$ в поликристалле $\mathrm{Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4}$. Показано, что $\sigma'(T)$ вблизи T_c хорошо описывается флуктуационной теорией Асламазова–Ларкина (АЛ), демонстрируя 3D–2D кроссовер при повышении температуры. По температуре кроссовера T_0 определена длина когерентности $\xi_c(0)$ вдоль оси c. Выше $T_{2D} > T_0$ обнаружена необычная зависимость $\sigma'(T)$, которая не описывается флуктуационными теориями в интервале $T_0 - T_{FM}$, где происходит ферромагнитный переход. Интервал, в котором существуют сверхпроводящие флуктуации, оказывается довольно узким и составляет $\Delta T_{\mathrm{fl}} \approx 2,8$ К. Полученная температурная зависимость параметра ПЩ $\Delta^*(T)$ имеет вид, типичный для магнитных сверхпроводников с особенностями при $T_{\mathrm{max}} \approx 154$ К и температуре возможного структурного перехода $T_s \sim 95$ К. Ниже T_s зависимость $\Delta^*(T)$ имеет форму, типичную для ПЩ в купратах, что позволяет говорить о возможности реализации ПЩ состояния в $\mathrm{Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4}$ в этом интервале температур. Сравнение $\Delta^*(T)$ с теорией Питерса–Бауэра позволило определить плотность локальных пар вблизи T_c , $\langle n_1 n_1 \rangle \langle T_G \rangle \approx 0,35$, что в 1,17 раза больше, чем в оптимально допированных монокристаллах $\mathrm{YBa_2Cu_3O_{7-\delta}}$.

Ключевые слова: сверхпроводимость, магнетизм, избыточная проводимость, псевдощелевое состояние, намагниченность, локальные пары.

Введение

В последнее время при исследовании физических свойств новых материалов все чаще сталкиваются с так называемой нетрадиционной сверхпроводимостью [1,2]. Механизмы сверхпроводящего (СП) спаривания носителей заряда в таких материалах могут быть отличными от фононного, например экситонный или магнонный [3]. Кроме того, симметрия спаривания в нетрадиционных сверхпроводниках может отличаться от описываемой в теории БКШ, и нередко имеет место обращение в нуль параметра сверхпроводящего порядка в некоторых точках импульсного пространства (например, в случае p-или d-волновой симметрии) [3]. В теории БКШ суммарный спин пары электронов равен нулю (S=0), то-

гда как, например, в триплетных сверхпроводниках S=1, что также выходит за рамки этой теории. К нетрадиционным относятся и сверхпроводники, в которых магнетизм сосуществует со сверхпроводимостью (магнитные сверхпроводники), что также противоречит теории БКШ [3–6].

Одними из ярких представителей магнитных сверхпроводников являются тройные редкоземельные бориды родия RERh₄B₄ (RE — редкоземельный элемент) [6]. В этих материалах, в зависимости от типа редкой земли, могут наблюдаться различные типы магнитного упорядочения (ферромагнитное (Φ M), антиферромагнитное (Φ M), а также спиральные пространственно-модулированные магнитные структуры). В случае Φ M сверхпроводников (например, $ErRh_4B_4$) при более высоких

температурах возникает переход в сверхпроводящее состояние, а затем, при более низких, появляется ФМ упорядочение, которое подавляет сверхпроводимость.

Это наблюдается при изучении некоторых объемных свойств (намагниченность, электросопротивление), например, в виде появления возвратной сверхпроводимости (переходе материала при низких температурах из сверхпроводящего в нормальное состояние под действием внутреннего магнетизма [4,6]). В случае АФМ материалов, например NdRh₄B₄, SmRh₄B₄, TmRh₄B₄, AФМ переход наблюдался также ниже температуры СП перехода, однако в отличие от случая ФМ соединений сверхпроводимость подавлялась только частично и таким образом эти два вида упорядочения сосуществовали вплоть до самых низких температур [4,6].

Самый интересный случай сосуществования сверхпроводимости и магнетизма наблюдался в системах, в которых происходило частичное замещение магнитной редкой земли на немагнитный элемент [7]. Среди таких соединений можно выделить редкоземельные бориды родия $\mathrm{Dy}_{1-x}\mathrm{Y}_x\mathrm{Rh}_4\mathrm{B}_4$ (x=0,0,2,0,4) с тетрагональной объемно центрированной кристаллической структурой типа $\mathrm{LuRu}_4\mathrm{B}_4$ [6]. В этих материалах магнитное упорядочение появляется выше температуры СП перехода и сосуществует со сверхпроводимостью вплоть до самых низких температур [8,9].

В [8] было показано, что магнитный переход в $Dy_{1-x}Y_xRh_4B_4$ с x=0, 0,2, 0,4 является ферримагнитным, а температура магнитного перехода T_C сильно зависит от концентрации немагнитного Y и снижается с ростом его концентрации от 37 K в $DyRh_4B_4$ до 7 K в $Dy_{0,2}Y_{0,8}Rh_4B_4$. Соответственно температура сверхпроводящего перехода T_c растет с ростом концентрации Y от 4,7 K для $DyRh_4B_4$ до 10,5 K в YRh_4B_4 [8]. Измерения теплоемкости соединений $Dy_{0,8}Y_{0,2}Rh_4B_4$, $Dy_{0,6}Y_{0,4}Rh_3$,85 $Ru_{0,15}B_4$ показали, что ниже температуры сверхпроводящего перехода может происходить еще одно магнитное превращение [10].

Не исключено, что низкотемпературные магнитные переходы возможны и при других концентрациях Y. Недавно в магнитных сверхпроводниках $\mathrm{Dy}_{1-x}\mathrm{Y}_x\mathrm{Rh}_4\mathrm{B}_4$ (x=0,0,2,0,4) были обнаружены особенности поведения некоторых физических величин, нетипичные для систем с традиционной сверхпроводимостью. Среди них парамагнитный эффект Мейсснера [11,12] и немонотонное поведение зависимостей $H_{c2}(T)$ и $\Delta(T)$ [9,13–15].

Исследования твердых растворов $Dy(Rh_{1-x}Ru_x)_4B_4$ [16] показали, что замена родия на рутений может приводить к изменению типа магнитных взаимодействий: для x < 0.5 имеет место $A\Phi M$ упорядочение, а для x > 0.5 — ферромагнитное. Это может быть связано с тем, что при замене родия на рутений меняется РККИ-обменное взаимодействие, которое происходит между атомами Dy через электроны проводимости ато-

мов Rh или Ru [16]. Недавно мы исследовали магнитные свойства $Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4$ (будет опубликовано в ближайшее время) и показали, что ниже 19 К происходит переход в ФМ состояние ($\mu_{sat} \approx 6.2\mu_B$ на ион Dy^{3+} при 2 K), а ниже 6,7 К появляется сверхпроводимость и оба эти состояния сосуществуют.

Таким образом, исследование физических свойств семейства боридов $\mathrm{Dy}_{1-y}\mathrm{Y}_y(\mathrm{Rh},\mathrm{Ru})_4\mathrm{B}_4$ с различным содержанием диспрозия (ответственного за магнитные взаимодействия) и родия с рутением (ответственных как за магнитные взаимодействия, так и за сверхпроводимость) представляет заметный интерес для изучения различных аспектов сосуществования сверхпроводимости и магнетизма, а также выявления признаков проявления нетрадиционной сверхпроводимости. В настоящей работе впервые проводятся детальные исследования поведения избыточной проводимости $\mathrm{Dy}_{0,6}\mathrm{Y}_{0,4}\mathrm{Rh}_{3,85}\mathrm{Ru}_{0,15}\mathrm{B}_4$ вблизи T_c в рамках существующих флуктуационных теорий, а также изучается вопрос о возможности существования псевдощелевого состояния, его природе и влиянии на него магнитного упорядочения.

1. Образцы и методики эксперимента

Образцы $Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4$ изготавливались аргонно-дуговой плавкой исходных компонентов с последующим отжигом в течение нескольких дней, как описано в [14]. В результате были получены однофазные текстурированные поликристаллические образцы со структурой типа $LuRu_4B_4$ (пространственная группа I4/mmm) (рис. 1), о чем свидетельствуют результаты рентгенофазового и рентгеноструктурного анализа [8,9]. Критическая температура СП перехода $T_c(R=0) \sim 6,4$ К (рис. 2). Ориентируясь на литературные источники, мы полагаем, что геометрические параметры кристаллической решетки нашего образца: $a=b\approx 7,45$ Å, $c\approx 15$ Å [9].

Частичная замена Rh на Ru позволяла синтезировать образцы при нормальном давлении, что было бы

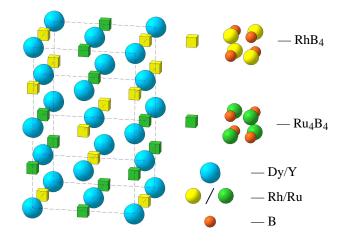


Рис. 1. (Онлайн в цвете) Идеализированная тетрагональная объемно центрированная кристаллическая структура $Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B_4$.

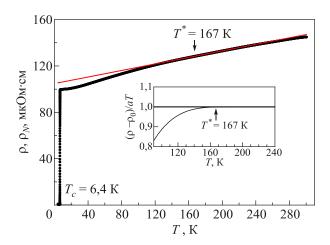


Рис. 2. (Онлайн в цвете) Температурная зависимость $\rho(T)$ поликристалла $\mathrm{Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4}$. Красная прямая определяет $\rho_N(T)$, экстраполированное в область низких температур. Вставка воспроизводит более точный метод определения $T^* = 167 \ \mathrm{K} \ \mathrm{c}$ использованием критерия $(\rho - \rho_0)/aT = 1 \ [19]$.

неосуществимо без такой замены [6]. Известно, что тетраэдры Rh₄B₄/Ru₄B₄ имеют различные ориентации и изображены для наглядности в увеличенном виде на рис. 1. В структуре типа LuRu₄B₄ атомы Dy и Y занимают позиции Lu. Видно, что атомы Dy в плоскостях окружены неэквивалентными тетраэдрами Rh₄B₄/Ru₄B₄, так как расстояния между атомами Rh либо Ru в тетраэдрах, ориентированных различным образом, заметно отличаются: 2,98 и 3,10 Å соответственно.

Измерения электросопротивления выполнены с помощью стандартной четырехзондовой схемы на автоматизированном комплексе Quantum Design PPMS-9 при переменном токе I=8 мА (f=97 Γ ц). На рис. 2 представлена температурная зависимость удельного сопротивления $\rho(T)$ исследуемого образца. В интервале температур от $T^* = (167 \pm 0.5)$ К до ~ 280 К зависимость $\rho(T)$ линейная с наклоном $a = d\rho/dT = 0.14$. Наклон определялся линейной аппроксимацией экспериментальной кривой и подтверждает отличную линейность $\rho(T)$ со среднеквадратичной ошибкой 0,0012 ± 0,0002 во всем отмеченном интервале температур. Как обычно, температура $T^* >> T_c$ определялась как температура, при которой резистивная кривая отклоняется от линейности в сторону меньших значений [5,17] (рис. 2). Видно, что в данном случае ниже T^* $\rho(T)$ приобретает форму, характерную для магнитных сверхпроводников с положительной кривизной [5,18].

Для более точного определения T^* (с точностью $\pm\,0.5$ K) использовано модифицированное уравнение прямой линии $[\rho(T)-\rho_0]/aT=1$ [19], как показано на вставке на рис. 2. Здесь, как и выше, $a=d\rho/dT$ обозначает наклон температурной зависимости удельного сопротивления в нормальном состоянии, $\rho_N(T)$, экстраполированного в область низких температур, и ρ_0 —

остаточное сопротивление, определяемое пересечением ρ_N с осью Y. Оба метода дают одинаковые значения T^* .

Из резистивных измерений определены флуктуационные вклады в избыточную проводимость $\sigma'(T)$ и проведен расчет и анализ температурной зависимости параметра псевдощели $\Delta^*(T)$. Полученные результаты показывают, что в области СП флуктуаций вблизи T_c $\sigma'(T)$ хорошо аппроксимируется флуктуационной теорией Асламазова-Ларкина (АЛ) для трехмерных систем [20]. Однако область СП флуктуаций весьма мала и выше по температуре $\sigma'(T)$ неожиданно возрастает, демонстрируя максимум вблизи температуры ФМ перехода $T_{FM} \sim 19$ К. Соответствующая зависимость $\Delta^*(T)$ имеет форму, аналогичную найденной для поликристаллов FeSe_{0.94} [21]. Однако полученная из сравнения $\Delta^*(T)$ с теорией Питерса-Бауэра [22] плотность локальных пар $\langle n_{\uparrow}n_{\downarrow}\rangle$ вблизи T_c оказалась в 1,17 раза больше. Детальный анализ этих результатов приводится ниже.

2. Результаты

2.1. Флуктуационная проводимость

Температурная зависимость избыточной проводимости определялась стандартным образом из уравнения [17,23]

$$\sigma'(T) = \sigma(T) - \sigma_N(T) = \frac{1}{\rho(T)} - \frac{1}{\rho_N(T)}.$$
 (1)

Важным параметром дальнейшего анализа является приведенная температура

$$\varepsilon = \frac{T - T_c^{mf}}{T_c^{mf}},\tag{2}$$

которая входит во все уравнения данной статьи. Здесь $T_c^{mf} > T_c$ — критическая температура в приближении среднего поля, которая отделяет область флуктуационной проводимости (ФЛП) от области критических флуктуаций или флуктуаций СП параметра порядка Δ непосредственно вблизи T_c , не учтенных в теории Гинзбурга—Ландау [24,25]. Отсюда видно, что правильное определение T_c^{mf} играет определяющую роль в расчетах ФЛП и ПЩ. Для нахождения T_c^{mf} используется тот факт [5,17], что вблизи T_c во всех ВТСП $\sigma'(T)$ всегда описывается стандартным уравнением теории Асламазова—Ларкина [20] с критическим показателем степени $\lambda = -1/2$, которое определяет ФЛП в любой трехмерной (3D) системе:

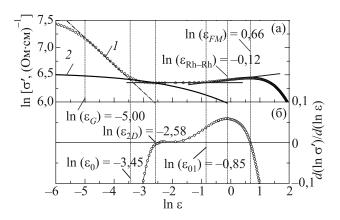
$$\sigma'_{AL3D} = C_{3D} \frac{e^2}{32\hbar \xi_c(0)} \varepsilon^{-1/2},$$
 (3)

где $\xi_c(0)$ — длина когерентности вдоль оси c и C_{3D} — коэффициент (C-фактор), на который необходимо ум-

ножать данные теории, определяемые уравнением (3), для их совмещения с экспериментальными результатами. Как известно [26,32], чем ближе C-фактор к 1, тем лучше структура образца, и наоборот. Трехмеризация ВТСП вблизи T_c , наиболее вероятно, является следствием гауссовских флуктуаций в 2D-металлах, к которым можно отнести ВТСП соединения, проявляющие ярко выраженную квазидвумерную анизотропию проводящих свойств [17 и ссылки в ней].

Учет гауссовских флуктуаций приводит к тому, что критическая температура идеального 2D-металла оказывается равной нулю (теорема Мермина–Вагнера—Хоэнберга), а ее конечное значение получается лишь при включении трехмеризующих факторов [27–29]. Таким образом, 3D ФЛП всегда реализуется в ВТСП при приближении T к T_c [30,31]. В результате T_c^{mf} определяется экстраполяцией линейной в области 3D-флуктуаций зависимости σ'^{-2} от T до ее пересечения с осью температур, поскольку, когда $T \to T_c^{mf}$, σ' должна расходиться как $(T - T_c^{mf})^{-1/2}$ (см. (3)) [32]. Отметим, что всегда $T_c^{mf} > T_c$. В купратах этот сдвиг ~ 1 –2 К, что, в первом приближении, дает величину области критических флуктуаций выше T_c .

Подчеркнем, что когда T_c^{mf} определена правильно, данные $\sigma'(T)$ в области 3D-флуктуаций вблизи T_c всегда описываются уравнением (3). Еще одна характеристическая температура — это температура Гинзбурга $T_G > T_c^{mf}$, отмеченная как $\ln \varepsilon_G = -5,0$ на рис. 3, до которой работают флутуационные теории. Эта температура обычно определяется критерием Гинзбурга, который относится к случаю, когда теория среднего поля ГЛ перестает работать при описании СП перехода [33,34]. Видно (рис. 3), что ниже T_G данные отклоняются вниз от прямой АЛ, указывая на переход в режим критических флуктуаций вблизи T_c [32,35].



Puc. 3. (а) Зависимость $\ln \sigma'$ от $\ln \epsilon$ поликристалла $Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4$ в сравнении с флуктуационными теориями вблизи T_c : 3D АЛ (I, пунктир), 2D МТ (2, сплошная кривая). (б) Производная $d(\ln \sigma')/d(\ln \epsilon)$ от $\ln \epsilon$. Все характеристические температуры обозначены вертикальными пунктирными линиями.

Определив $T_c^{mf}=6,62$ К, по уравнению (2) можно найти $\varepsilon(T)$ и построить зависимость $\sigma'(\varepsilon)$ в принятых в литературе двойных логарифмических координатах (рис. 3). В рамках модели локальных пар (ЛП) [36–38] было показано, что ФЛП, измеренная для всех без исключения ВТСП, всегда демонстрирует кроссовер из 3D ($\xi_c(T)>d$) вблизи T_c в 2D ($\xi_c(T)<d$) состояние по мере роста T [5,17,31,32 и ссылки в них], где $d=c\approx15$ Å—размер элементарной ячейки вдоль оси c [30]. При температуре кроссовера T_0 $\xi_c(T_0)=\xi_c(0)\varepsilon_0^{-1/2}=d$ [30]. Отсюда

$$\xi_c(0) = d\sqrt{\varepsilon_0}, \tag{4}$$

что дает возможность определить $\xi_c(0)$. На верхней панели рис. З зависимость $\ln \sigma'$ от $\ln \varepsilon$ построена в сравнении с флуктуационными теориями. Как и ожидалось, выше $T_G \approx 6,67$ К ($\ln \varepsilon_G = -5,0$) и до $T_0 = 6,8$ К ($\ln \varepsilon_0 = -3,45$) $\sigma'(T)$ хорошо описывается уравнением (3) (пунктирная прямая I) с $\xi_c(0) = (2,67 \pm 0,02)$ Å, определенной согласно уравнению (4), и $C_{3D} = 0,38$. Выше T_0 данные отклоняются вверх от линейной зависимости, указывая на переход в область 2D-флуктуаций. Видно, что в интервале от T_0 до $T_{2D} = 7,1$ К ($\ln \varepsilon_{2D} = -2,58$), $\ln \sigma'(\ln \varepsilon)$ определяется флуктуационным вкладом Маки–Томпсона (МТ2D) [39,40] (уравнение (5)) (сплошная кривая 2) теории Хиками–Ларкина (ХЛ) для ВТСП:

$$\sigma'_{MT2D} = \frac{e^2}{8d\hbar} \frac{1}{1 - \alpha/\delta} \ln \left(\frac{\delta}{\alpha} \frac{1 + \alpha + \sqrt{1 + 2\alpha}}{1 + \delta + \sqrt{1 + 2\delta}} \right) \varepsilon^{-1}, \quad (5)$$

работающим в области 2D-флуктуаций [26,30]. Здесь параметр связи

$$\alpha = 2\left(\frac{\xi_c(0)}{d}\right)^2 \varepsilon^{-1},\tag{6}$$

параметр распаривания

$$\delta = \beta \frac{16}{\pi \hbar} \left(\frac{\xi_c(0)}{d} \right)^2 k_B T \tau_{\varphi}, \tag{7}$$

а время фазовой релаксации τ_ϕ определяется уравнением

$$\tau_{\rm m}\beta T = \pi\hbar / (8k_R \varepsilon) = A / \varepsilon, \tag{8}$$

где $A=2,998\cdot 10^{-12}$ с·К. Сомножитель $\beta=1,203(l/\xi_{ab})$, где l — длина свободного пробега и ξ_{ab} — длина когерентности в плоскости ab, учитывает приближение чистого предела $(l>\xi)$ [17,26]. Однако область МТ флуктуаций в данном случае очень мала, $\Delta T_{\rm fl}=T_{2D}-T_G\approx 0.4$ К (рис. 3(a)). При $\ln \epsilon_{2D}=-2,58$, которую мы

обозначили как T_{2D} , экспериментальные точки отклоняются вверх от кривой МТ, а первая производная экспериментальной кривой обращается в нуль (рис. 3(б)). Выше T_{2D} ФЛП уже не подчиняется классическим флуктуационным теориям.

Как правило, в ВТСП с ростом температуры выше области 2D-флуктуаций экспериментальные данные отклоняются вниз от кривой МТ [17,26]. Обнаруженное в данном случае необычное поведение ФЛП, наиболее вероятно, обусловлено наличием, как отмечено выше, большого магнитного момента у диспрозия в нашем соединении (~ 6,2µ_B). В результате на зависимости $\ln \sigma'$ от $\ln \epsilon$ в указанном интервале температур имеется несколько особых точек. Видно (рис. 3(а)), что выше T_{2D} экспериментальные данные могут быть аппроксимированы двумя прямыми, которые пересекаются при ln $\epsilon_{01} \approx -0.85$, показывая, что при этой температуре зависимость резко меняет наклон. В этой точке первая производная имеет точку перегиба (рис. 3(б)), что подтверждается второй производной (не показана), которая в этой точке демонстрирует максимум.

Необходимо подчеркнуть, что при этой температуре на температурной зависимости $\Delta^*(T)$ наблюдается небольшой, но резкий минимум (рис. 5), обозначенный как T_{01} . Этот минимум на $\Delta^*(T)$ наблюдается для всех исследованных нами ВТСП: купратов [5,17,41], пниктидов [18] и халькогенидов FeSe [21]. Он отвечает температуре T_{01} , которая ограничивает сверху область СП флуктуаций вблизи T_c , где флуктуационные куперовские пары (ФКП) ведут себя почти как классические куперовские пары, но без дальнего порядка, так называемые «short-range phase correlations» [22,42–45]. Причем в этом интервале температур зависимость $\ln \sigma'$ от $\ln \varepsilon$ всегда подчиняется классическим флуктуационным теориям АЛ [20] и МТ [30].

Исходя из этих соображений, мы считаем, что и в случае $Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4$ этот минимум также отвечает температуре $T_{01}\approx 9,4$ К, которая обозначена на рис. 3(а) как $\ln \epsilon_{01}$. Соответственно в $Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4$ интервал СП флуктуаций $\Delta T_{\rm fl}=T_{01}-T_G=(9,4-6,67)$ К $\approx 2,8$ К, т.е. весьма мал. Это заметно меньше, чем $\Delta T_{\rm fl}=10,4$ К, полученное для образца ${\rm FeSe}_{0,94}$ с $T_c=9$ К и без дефектов [21], но, что любопытно, больше, чем $\Delta T_{\rm fl}=1,45$ К, измеренное для оптимально допированного (ОД) монокристалла ${\rm YBa}_2{\rm Cu}_3{\rm O}_{7-\delta}$ (YBCO) с $T_c\sim 91,1$ К [46]. Этот результат указывает на то, что изучаемый образец может содержать некоторое количество дефектов, вероятно, в виде границ зерен, образующих поликристалл.

В модели локальных пар предполагается, что в ВТСП $\xi_{\mathcal{C}}(T)=\xi_{\mathcal{C}}(0){(T/T_{\mathcal{C}}^{mf}-1)}^{-1/2}=\xi_{\mathcal{C}}(0)\epsilon^{-1/2}$ [47], возрастая по мере уменьшения температуры, при $T = T_{01}$ становится равной расстоянию между проводящими слоями d_{01} (в YBCO это плоскости CuO₂) и связывает их джозефсоновским взаимодействием [31], что и является причиной возникновения 2D ФЛП ниже T_{01} [17,26]. Соответственно, $\xi_c(T) = d$ при $T = T_0$, и ниже T_0 в ВТСП реализуется 3D ФЛП, как отмечено выше. Поскольку $\xi_c(0) = (2,67 \pm 0,02)$ Å уже определена выше согласно (4), простое соотношение $\xi_c(0) = d\varepsilon_0^{1/2} = d_{01}\varepsilon_{01}^{1/2}$ позволяет найти $d_{01} = d(\varepsilon_0/\varepsilon_{01})^{1/2} \approx 4,08$ Å, учитывая, что в данном случае d = 15 Å. Фактически это есть расстояние между атомами Dy/Y и тетраэдрами Rh/Ru/B, а следовательно, и соответствующими проводящими плоскостями в Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B₄ вдоль оси c (рис. 1). Действительно, $4d_{01} \approx 16,3 \text{ Å в хорошем}$ согласии с размером элементарной ячейки вдоль оси с.

Выше T_{01} (ln $\varepsilon_{01} \approx -0.85$) ФЛП быстро нарастает, демонстрируя максимум при температуре Кюри, $T_{FM} \sim 19$ K, определенной для этого образца из магнитных измерений. Соответственно, при этой температуре первая производная равна нулю (рис. 3(б)). Между T_{FM} и T_{01} есть еще одна особая точка — точка перегиба на зависимости $\ln \sigma'$ от $\ln \varepsilon$ при $T = T_{Rh-Rh}$, которая практически не видна в используемом масштабе, но наблюдается в виде максимума на первой производной при $\ln \epsilon_{Rh-Rh} \approx -0.12$ (рис. 3(б)). Представляется весьма интересным оценить, каким характеристическим расстояниям в структуре Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B₄ отвечает эта температура. При $T_{\mathrm{Rh-Rh}}$ получаем $d_{\mathrm{Rh-Rh}}$ = $=d(\epsilon_0/\epsilon_{\rm Rh-Rh})^{1/2}\approx 2.85\,{\rm \AA},\,{\rm что,}\,{\rm возможно}\,{\rm случайно},\,{\rm яв-1}$ ляется расстоянием между атомами Rh (или, соответственно, атомами Ru) в тетраэдрах Rh/Ru-B4, обозначенных соответственно кубиками желтого и зеленого цвета на рис. 1. Параметры образца приведены в табл. 1.

Можно предположить, что при $T < T_{FM}$ упорядоченные магнитные моменты начинают более интенсивно препятствовать формированию ФЛП. Этот процесс существенно замедляется при $T \le T_{01}$, указывая на возрастающую роль СП флуктуаций в формировании ФЛП. Любопытно отметить, что, согласно нашим оценкам, $d_{01} \approx 4{,}08~\text{Å} = d/4$. Этот результат позволяет предположить, что формирующиеся квазикогерентные ФКП восстанавливают эффективное расстояние между проводящими слоями до его геометрического значения. Ниже T_{2D} ($\ln \epsilon_{2D} = -2{,}6$ на рис. 3(a)) начинается быстрый рост ФЛП, который становится очень интенсивным в области 3D-флуктуаций при $T < T_0$ ($\ln \epsilon_0 = -3{,}45$

Таблица 1. Значения параметров, описывающих особенности $\sigma'(T)$ в $Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B_4$

ρ(10 K), мкОм·см	<i>Т_с</i> , К	$T_c^{mf}, ext{K}$	<i>Т_G</i> , К	<i>T</i> 0, К	<i>T</i> ₀₁ , К	$\Delta T_{ m fl},$ K	<i>d</i> ₀₁ , Å	$\xi_{\mathcal{C}}(0),$ Å	C_{3D}
99,8	6,4	6,62	6,67	6,8	9,4	2,8	4,08	$2,67 \pm 0,02$	0,38

на рис. 3(a)). Наиболее вероятно, что это происходит не только за счет быстрого роста числа ФКП, но и за счет резкого увеличения сверхтекучей плотности ρ_s в области 3D-флуктуаций [44,48–50], поскольку вблизи T_c ФКП охвачены джозефсоновским взаимодействием уже во всем объеме сверхпроводника [17,26].

Таким образом, можно предположить, что именно сосуществование (interplay) магнетизма и сверхпроводимости ответственно за обнаруженную необычную зависимость $\ln \sigma'$ от $\ln \varepsilon$ в $\mathrm{Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4}$. Можно было ожидать, что необычной должна оказаться и зависимость $\Delta^*(T)$, анализ которой приведен в следующем разделе.

2.2. Анализ зависимости $\Delta^*(T)$

В резистивных измерениях ВТСП купратов псевдощель проявляется как отклонение продольного удельного сопротивления $\rho(T)$ при $T < T^*$ от его линейной зависимости в нормальном состоянии выше T^* [23]. Это приводит к возникновению избыточной проводимости $\sigma'(T)$ (1). Предполагается, что если бы в ВТСП не было процессов, приводящих к открытию ПЩ при T^* , то $\rho(T)$ оставалось бы линейным вплоть до $\sim T_c$. Таким образом, очевидно, что избыточная проводимость $\sigma'(T)$ возникает в результате открытия ПЩ и, следовательно, должна содержать информацию о ее величине и температурной зависимости.

Мы также разделяем точку зрения, что ПЩ в купратах возникает за счет формирования локальных пар (ЛП) при $T < T^*$ [17,41–44]. При этом классические флуктуационные теории как АЛ, так и МТ, которая модифицирована для ВТСП Хиками и Ларкиным (ХЛ) [30], отлично описывают экспериментальную $\sigma'(T)$ в купратах, но лишь до T_{01} , т.е. обычно в интервале ~ 15 К выше T_c [5,17]. Понятно, что для получения информации о $\Delta^*(T)$ необходимо уравнение, которое описывало бы всю экспериментальную кривую от T^* до T_c и содержало $\Delta^*(T)$ в явном виде. Ввиду отсутствия строгой теории такое уравнение было предложено в работах [17,41]:

$$\sigma'(\varepsilon) = \frac{e^2 A_4 \left(1 - T/T^*\right) \left(\exp\left(-\Delta^*/T\right)\right)}{16\hbar \xi_c(0) \sqrt{2\varepsilon_{c0}^* \sinh\left(2\varepsilon/\varepsilon_{c0}^*\right)}},\tag{9}$$

где $(1-T/T^*)$ и ехр $(-\Delta^*/T)$ учитывают соответственно динамику образования ЛП при $T \le T^*$ и их разрушения вблизи T_c ; A_4 — численный коэффициент, имеющий смысл C-фактора в теории ФЛП [17,26,32]. Параметры T^* , ϵ и $\xi_C(0)$ определяются из анализа удельного сопротивления и ФЛП. Важно, что остальные параметры, такие как теоретический параметр ϵ_{c0}^* [51], коэффициент A_4 и $\Delta^*(T_G)$, также могут быть определены из эксперимента в рамках модели ЛП.

Необходимо подчеркнуть, что в ВТСП купратах при $T \le T^*$ не только изменяются все параметры образцов,

но и начинает уменьшаться плотность электронных состояний (DOS) на уровне Ферми [52,53], что, по определению, и называется псевдощелью [54]. Предполагается, что при этом также происходит перестройка поверхности Ферми [23,55], которая ниже T^* распадается на ферми-арки [50,53]. Считается, что правильное понимание физики ПЩ должно ответить и на вопрос о механизме СП спаривания в ВТСП, который попрежнему остается дискуссионным [17,22]. Однако нам неизвестно, чтобы проводились измерения DOS $Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4$. Поэтому вопрос о возникновении ПЩ в такой системе остается открытым. Проведем анализ $\sigma'(T)$ в $Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4$ в рамках нашей модели ЛП, используя уравнения (9) и (10), но не будем называть параметр $\Delta^*(T)$ псевдощелью.

Анализ зависимости $\ln \sigma'$ от $\ln \varepsilon$ (рис. 4) показывает, что в области температур 41 К < T < 71 К, обозначенной на рисунке стрелками при $\ln \varepsilon_{c01} = 1,64$ и In ε_{c02} = 2,27, σ'^{-1} ~ expε [51]. Эта особенность оказывается одним из основных свойств большей части ВТСП [5,17]. В результате в интервале $\epsilon_{c01} < \epsilon < \epsilon_{c02}$ (вставка на рис. 4) $\ln (\sigma'^{-1})$ является линейной функцией ϵ с наклоном $\alpha^* = 0.14$, который определяет параметр $\varepsilon_{c0}^* = 1/\alpha^* \approx 7,14$ [51]. Это позволяет получать достоверные значения ε_{c0}^* , которые, как установлено [5,17,41], заметно влияют на вид теоретических кривых, показанных на рис. 4 при $T >> T_{01}$. Соответственно, для нахождения коэффициента A_4 рассчитаем $\sigma'(\varepsilon)$ согласно (9) и совместим с экспериментом в области 3D AL флуктуаций вблизи T_c , где $\ln \sigma'(\ln \varepsilon)$ является линейной функцией приведенной температуры є с наклоном $\lambda = -1/2$ [17,41] (рис. 4). Как видно на рис. 4, уравнение (9) с $A_4 = 11$, $\varepsilon_{c0}^* = 7,14$ и $\Delta^*(T_G) = 3,5k_BT_c$ (красная кривая на рис. 4), как и ожидалось, хорошо

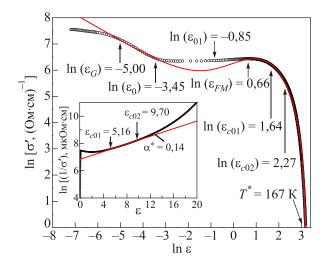


Рис. 4. (Онлайн в цвете) Зависимость $\ln \sigma'$ от $\ln \epsilon$ поликристалла $Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4$ в сравнении с уравнением (9) (сплошная красная кривая). Вставка: определение параметра теории [51] $\epsilon_{C0}^* = 1/\alpha = 7,14$ (см. текст).

описывает эксперимент в интервале температур от T^* до T_G . Исключение составляет интервал температур от T_{FM} до T_0 , где, как отмечено выше, предполагается сильное влияние магнетизма. Любопытно, что в этом интервале температур с ростом T выше $\ln \varepsilon \approx -1,4$ теоретическая кривая (9) быстро возрастает и, начиная с $\ln (\varepsilon_{FM}) = 0,66$, идеально описывает эксперимент.

Правильное значение $\Delta^*(T_G)$, используемое в уравнении (9), находится путем совмещения теории с экспериментальными точками, построенными как $\ln \sigma'$ от 1/T, как, например, в работах [5,41,46]. Кроме того, предполагается, что $\Delta^*(T_G) = \Delta(0)$, где Δ — СП щель [48,56]. Подчеркием, что именно величина $\Delta^*(T_G)$ определяет истинное значение ПЩ и используется для оценки соотношения БКШ $2\Delta(0)/k_BT_c = 2\Delta^*(T_G)/k_BT_c$ в конкретном образце [5,41,46]. Лучшая аппроксимация зависимости $\ln \sigma'$ от 1/T уравнением (9) для $Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B_4$ достигается при $2\Delta^*(T_c)/k_BT_c =$ $=7,0\pm0,1$. Такое значение $2\Delta^{*}(T_{c})/k_{B}T_{c}$ типично для ВТСП купратов $Bi_{1,6}Pb_{0,4}Sr_{1,8}Ca_{2,2}Cu_3O_x$ (Bi2223) $(T_c \approx 110 \text{ K})$ [57] и Bi2212 с различными T_c [58], но несколько неожиданно для $Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4$ с $T_c =$ = 6,4 К. Однако, что существенно, такое же значение $2\Delta(T_c)/k_BT_c \sim 7.2$ получается из анализа андреевских спектров контактов Au-Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B₄ в нулевом магнитном поле при T = 1,6 К (см. рис. 2 в [14]). Отметим, что большие значения $2\Delta_1(T_c)/k_BT_c\sim 9$ ($\Delta_1\approx$ pprox 3,5 мэВ) и $2\Delta_2(T_c)/k_BT_c \sim 6,5 \; (\Delta_2 \approx 2,5 \; {
m мэВ})$ для монокристаллов FeSe с T_c = 8,5 K, по мнению авторов, указывают на реализацию весьма необычного механизма СП спаривания в FeSe за счет особенностей зонной структуры [59]. Таким образом, большое значение соотношения $2\Delta(T_c)/k_BT_c\sim 7$ в сочетании с относительно малым значением T_c и большим собственным магнитным моментом Dy указывает на реализацию в исследуемом соединении Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B₄ нетрадиционного (возможно, триплетного [10–15]) механизма СП спаривания, отличного от механизма БКШ [3-6]. Полученный результат позволяет объяснить и относительно малое значение $\xi_c(0) = (2.67 \pm 0.02)$ Å, обнаруженное в эксперименте, что типично для ВТСП с сильной связью [5,17,32,51,56].

В купратах наблюдается аномально большая величина энергетической щели $\Delta(0) = \Delta_0$, поэтому отношение $2\Delta/k_BT_c \sim 7$ заметно превышает предел теории БКШ для d-волновых сверхпроводников $(2\Delta/k_BT_c \approx 4,28)$ [60,61]. Большое отклонение отношения $2\Delta/k_BT_c$ от теории БКШ можно объяснить в теории сильной связи [62–64], если решающий вклад в механизм спаривания вносят запаздывающие взаимодействия с бозонами с малой энергией Ω_0 , сравнимой с параметром Δ_0 [57]. Среди таких теорий наиболее популярна модель, в которой куперовское спаривание в ВТСП реализуется в результате взаимодействия электронов со спиновыми флуктуациями [65–67]. Предполагается, что значитель-

ный вклад вносит так называемая резонансная спиновая мода [68], что придает куперовскому спариванию запаздывающий сильносвязанный характер [67,69,70] и позволяет объяснить наблюдаемое большое отношение $2\Delta/k_BT_c$ [57,58]. Спин-флуктуационное взаимодействие приводит к отталкиванию электронов. Однако если в обмене спиновыми флуктуациями преобладают процессы с большой передачей импульса, то результатом может быть образование куперовских пар с d-волновой симметрией параметра порядка [65,67]. В таком случае параметр Δ_0 соответствует максимальной величине энергетической щели.

Экспериментальное доказательство реализации *d*-волновой симметрии энергетической щели в купратах (см., например, [57] и ссылки в ней) послужило веским аргументом в пользу спин-флуктуационной модели ВТСП. Однако недавние результаты, полученные методами фотоэмиссионной спектроскопии с высоким угловым разрешением (ARPES) [71], а также сканирующей туннельной спектроскопии [72-74], показали, что механизм спаривания в ВТСП может иметь слабосвязанный характер, поскольку критическая температура T_c определяется параметром Δ_{SC} , существенно меньшим Δ_0 . В результате отношение $2\Delta_{SC}/k_BT_C \sim 4.3$, что соответствует теории БКШ для d-волнового сверхпроводника [60]. В таком случае низкочастотные спиновые возбуждения, положенные в основу спин-флуктуационной модели [62-64,68], решающей роли не играют. Поэтому, несмотря на достигнутые успехи в спектроскопии бозонных возбуждений в купратах [61–64], к настоящему времени не удалось получить доказательство эффективности взаимодействия электронов с низкочастотными бозонными модами, что могло бы объяснить наблюдаемое большое отношение $2\Delta_0/k_BT_c$ [58,60,75]. Однако этот вывод противоречит результатам, полученным с помощью микроконтактной спектроскопии (МКС) [58,75], а также выводам теории [76,77], из которых следует, что $2\Delta/k_BT_c \sim 5$ для YBCO и $2\Delta/k_BT_c \sim 7$ для BiSCCO. Аналогичные результаты получаются и из анализа ПЩ в купратах [5,17,41,46]. Таким образом, вопрос остается открытым.

сожалению, подобные исследования $Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B_4$ не проводились. Поэтому механизм реализации СП состояния в таких соединениях, по-видимому, еще более сложный, особенно если принять во внимание большой собственный магнитный момент ионов Dy. В пользу такого заключения говорит и полученное нами большое значение $2\Delta^* / k_B T_c \sim 7$, не типичное для таких значений T_c . Можно также предположить, что за образование избыточной проводимости в ВТСП, в том числе и в Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B₄, отвечает именно Δ_0 , что объясняет большие значения $2\Delta/k_BT_c$, наблюдаемые в этих соединениях. Мы предполагали, что температурная зависимость ПЩ может дать ответ на часть поставленных вопросов.

Решая уравнение (9) относительно $\Delta^*(T)$, получаем

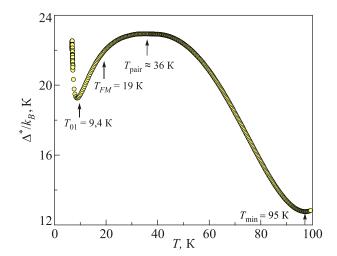
$$\Delta^*(T) = T \ln \frac{e^2 A_4 (1 - T / T^*)}{\sigma'(T) 16 \hbar \xi_c(0) \sqrt{2\epsilon_{c0}^* \sinh(2\epsilon / \epsilon_{c0}^*)}}, \quad (10)$$

где $\sigma'(T)$ — экспериментально измеренная избыточная проводимость во всем температурном интервале от T^* до T_c^{mf} . Тот факт, что $\sigma'(T)$ хорошо описывается уравнением (9) (рис. 4), позволяет предположить, что уравнение (10) дает надежные как величину, так и температурную зависимость параметра Δ^* . Рисунок 5 отображает результат анализа $\Delta^*(T)$ согласно (10) с использованием следующих параметров, определенных из эксперимента: $T_c^{mf} = 6,62$ K, $T^* = 167$ K, $\xi_c(0) = 2,67$ Å, $\varepsilon_{c0}^* =$ = 7,14, A_4 = 11 и $\Delta^*(T_G)/k_B$ = 22 К. Полученная зависимость типичная для магнитных ВТСП, таких как EuFeAsO_{0.85}F_{0.15} [18], FeSe_{0.94} [21], и, как видно, существенно отличается от аналогичной зависимости для немагнитных купратов [17,26]. На кривой $\Delta^*(T)$ (рис. 5) имеется ряд особенностей, которые обнаруживаются при соответствующих характеристических температурах. Так, ниже температуры $T^* = 167 \text{ K}$ наблюдается выраженный максимум при $T_{\rm max} = 154$ K, типичный для магнитных сверхпроводников [5,18]. Затем следует минимум при температуре $T_{\min} \approx 95$ К. В соединениях FeSe [21,59] аналогичный минимум отвечает структурному фазовому переходу из тетра в орто фазу при $T_s \sim 90$ K, указывая на возможность аналогичного структурного перехода и в $Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B_4$. Ниже T_{\min} параметр $\Delta^*(T)$ возрастает, демонстрируя широкий максимум при $T_{\text{pair}} \approx 36 \text{ K}$, за которым следует минимум при $T_{01} = 9,4$ К. Такое поведении напоминает зависимость $\Delta^*(T)$ для купратов и указывает на возможность реализации ПЩ состояния в интервале $T < T_{\min}$, как это предполагается в FeSe при $T < T_s$ [78]. Чтобы подтвердить это предположение, зависимость

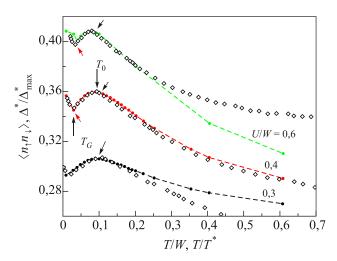
Puc.~5. Температурная зависимость ПЩ параметра $\Delta^*(T)/k_B$ для поликристалла $\mathrm{Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4}$. На вставке $\Delta^*(T)/k_B$ в области сверхпроводящих флуктуаций вблизи T_c . Все характерные температуры отмечены стрелками.

 $\Delta^*(T)$ на рис. 6 построена в интервале температур 0–100 К и 12–24 К по оси Y. Такой вид зависимости $\Delta^*(T)$, с широким максимумом при $T_{\text{pair}} \approx 36 \text{ K}$ и выраженным минимумом при T_{01} = 9,4 K, типичен для хорошо структурированных купратов [17,41], что подтверждает сделанное предположение. Таким образом, можно ожидать, что, как и в купратах, ниже $T_{\rm pair}$ в $Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4$ начинают формироваться флуктуационные куперовские пары (ФКП) [17,27-29,44]. Соответственно, ниже T_{01} система переходит в область СП флуктуаций, в которой, как отмечено выше, ФКП ведут себя почти как СП пары, но без дальнего порядка: так называемые «short-range phase correlations». результате ниже T_{01} зависимость $\Delta^*(T)$ в $Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4$ полностью такая же, как и во всех остальных ВТСП: вблизи T_c , как всегда, наблюдаются максимум при $T \sim T_0$ и минимум при $T = T_G$ (см. вставку на рис. 5). Ниже T_G происходит резкий скачок $\Delta^*(T)$ вверх при $T \to T_c^{mf}$, однако это уже переход в область критических флуктуаций, где ЛП модель не работает. Таким образом, подход в рамках модели ЛП позволяет определить точные значения T_G и, как следствие, получить надежные значения величины $\Delta^*(T_C^{mf}) \approx \Delta^*(T_G) = \Delta(0) \approx 2 \text{ M} \Rightarrow B$ и соотношения $2\Delta^*(T_c)/k_BT_c \approx 7$. Стоит отметить, что на $\Delta^*(T)$ не наблюдается явно выраженная особенность при температуре магнитного перехода $T_{FM} = 19$ К. Разве что $\Delta^*(T)$ начинает уменьшаться чуть более интенсивно при T < 19 K, чем это наблюдается в FeSe [21]. Однако, строго говоря, и магнитный максимум, наблюдаемый на рис. 3 при T_{FM} ($\ln \epsilon_{FM} = 0.66$), на рис. 4 уже не так явно заметен. То есть и на зависимости $\ln \sigma'$ от $\ln \epsilon$ особенность при магнитном переходе выражена весьма слабо.

В то же время форма зависимости $\Delta^*(T)$ в $Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4$ вблизи T_c , с максимумом при $T \sim T_0$ и минимумом при $T = T_G$ (см. вставку на рис. 5), фактически такая же, как и температурная зависимость



Puc.~6. Температурная зависимость ПЩ параметра $\Delta^*(T)/k_B$ поликристалла $\mathrm{Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4}$ вблизи $T_c.$



Puc. 7. (Онлайн в цвете) Сравнение экспериментальных зависимостей Δ^*/Δ^*_{max} от T/T^* (ромбы) поликристалла Dy_{0,6}Y_{0,4}Rh_{3,8}5Ru_{0,1}5B₄ с теоретическими зависимостями $\langle n_{\uparrow}n_{\downarrow}\rangle$ от T/W при трех значениях взаимодействия U/W: 0,3, 0,4, 0,6 [22].

плотности локальных пар в ВТСП, $\langle n_{\uparrow}n_{\perp}\rangle$, рассчитанная в теории Питерса-Бауэра (ПБ) [22] в рамках трехмерной модели Хаббарда с притяжением для различных значений температуры T/W, взаимодействия U/W и фактора заполнения, где W — ширина зоны. Это позволяет нам сравнить экспериментальные значения Δ^*/Δ^*_{\max} с теорией ПБ и оценить величину $\langle n_{\uparrow}n_{\downarrow}\rangle$ в $\mathrm{Dy}_{0,6}\mathrm{Y}_{0,4}\mathrm{Rh}_{3,85}\mathrm{Ru}_{0,15}\mathrm{B}_4$ при T_G . Для этого совместим значения Δ^*/Δ^*_{\max} при T_G с минимумом, а при T_0 с максимумом каждой теоретической кривой, рассчитанной при различных значениях U/W. Результаты подгонки для трех значений U/W показаны на рис. 7. Видно, что лучшее совпадение результатов, причем в широком интервале T/W, от 0 до 0,7, наблюдается при U/W=0,4. Отсюда следует $\langle n_{\uparrow}n_{\downarrow}\rangle(T_G)\approx0,35$, что заметно больше, чем $\langle n_{\uparrow} n_{\perp} \rangle (T_G) \approx 0.3$, полученное нами для оптимально допированных монокристаллов YBaCuO [38]. Этот несколько неожиданный результат можно объяснить двумя факторами. Первый — сильный собственный магнетизм Dy способствует увеличению числа ФКП. При этом предполагается, что роль магнетизма в механизме СП спаривания в $Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4$ весьма велика. Второй — обсуждаемая во Введении возможность нетрадиционного, например триплетного, спаривания в таких сверхпроводниках [8-11], в которых сильный магнетизм сосуществует со сверхпроводимостью, что, по-видимому, также может приводить к увеличению $\langle n_{\uparrow} n_{\perp} \rangle$.

Выводы

Впервые изучены температурные зависимости избыточной проводимости $\sigma'(T)$ и возможной псевдощели (ПЩ), $\Delta^*(T)$, в магнитном сверхпроводнике $Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B_4$. Показано, что $\sigma'(T)$ вблизи T_C

хорошо описывается 3D-уравнением Асламазова—Ларкина, демонстрируя 3D–2D кроссовер при повышении температуры. По температуре кроссовера T_0 определена длина когерентности вдоль оси c, $\xi_c(0)=(2,67\pm0,02)$ Å, что коррелирует с литературными данными для ВТСП с сильной связью [5,17,32,38,78]. Выраженное влияние магнетизма обнаруживается в виде необычной зависимости $\ln \sigma'$ от $\ln \varepsilon$, демонстрирующей максимум при $T_{FM} \sim 19$ K, который связан с переходом системы в ферромагнитное состояние при уменьшении температуры.

На зависимости $\Delta^*(T)$ обнаружен ряд особенностей, типичных для сверхпроводников, в которых возможно сосуществование сверхпроводимости и магнетизма. Это высокий узкий максимум при T = 154 K, типичный для магнитных сверхпроводников, за которым следует минимум при температуре $T_{\min} \approx 95$ К. В соединениях FeSe аналогичный минимум отвечает структурному фазовому переходу из тетра в орто фазу при $T_s \sim 90 \text{ K}$ [21], указывая на возможность аналогичного структурного перехода и в $Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4$. Ниже T_{\min} параметр $\Delta^*(T)$ опять возрастает, демонстрируя широкий максимум при $T_{\text{pair}} \approx 36 \text{ K}$, за которым следует минимум при $T_{01} = 9,4$ К. Такая форма $\Delta^*(T)$ аналогична температурной зависимости псевдощели в купратах [17,26], что указывает на возможность реализации ПЩ состояния в $Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B_4$ в интервале $T < T_{min}$, как это имеет место в FeSe при $T < T_s$ [78]. Показано, что ниже T_{01} зависимость $\Delta^*(T)$ в Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B₄ такая же, как и во всех ВТСП с максимумом при $T \sim T_0$ и минимумом при $T = T_G$ [5,17,26], что указывает на общность поведения как магнитных, так и немагнитных сверхпроводников в области СП флуктуаций вблизи T_c .

 $\Delta^*(T)$ В анализ же время $Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B_4$ обнаруживает ряд особенностей. Первая — неожиданно большое значение $2\Delta^*(T_c)/k_BT_c =$ $=7,0\pm0,1.$ Однако существенно, что такое же значение $2\Delta(T_c)/k_BT_c \sim 7,2$ получается из анализа андреевских спектров контактов Au-Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B₄, измеренных в нулевом магнитном поле при T = 1,6 К [14]. Этот результат указывает на то, что механизм реализации СП состояния в таких сверхпроводниках, по-видимому, более сложный, чем в купратах, особенно если принять во внимание большой собственный магнитный момент ионов Dy. Вторая — большая плотность локальных пар $\langle n_{\uparrow}n_{\downarrow}\rangle$, полученная сравнением экспериментальных значений Δ^*/Δ^*_{max} с теорией Питерса-Бауэра [22]. Измеренная $\langle n_{\uparrow} n_{\perp} \rangle (T_G) \approx 0.35$ в 1,17 раза больше, чем $\langle n_{\uparrow} n_{\downarrow} \rangle (T_G)$, полученное нами для оптимально допированных монокристаллов YBaCuO [38]. Этот результат можно объяснить тем, что сильный собственный магнетизм Dy может способствовать увеличению числа ФКП. При этом предполагается, что роль магнетизма в механизме СП спаривания в $Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4$ весьма велика. Кроме того, обсуждаемая во Введении возможность нетрадиционного, например триплетного, спаривания в таких сверхпроводниках [8–12], в которых сильный магнетизм сосуществует со сверхпроводимостью, также, по-видимому, может приводить к увеличению $\langle n_\uparrow n_\downarrow \rangle$.

- D. Aoki, A.D. Huxley, E. Ressouche, D. Braithwaite, J. Flouquet, J.P. Brison, E. Lhotel, and C. Paulsen, *Nature* (*London*) 413, 613 (2001).
- A. Gasparini, Y.K. Huang, N.T. Huy, J.C.P. Klaasse, T. Naka, E. Slooten, and A. deVisser, *J. Low Temp. Phys.* 161, 134 (2010).
- 3. K.H. Bennemann and J.B. Ketterson, *Superconductivity: Conventional and Unconventional Superconductors*, Springer–Verlag–Berlin–Heidelberg, vol. 1 (2008).
- 4. K. Machida, K. Nokura, and T. Matsubara, *Phys. Rev. B* 22, 2307 (1980).
- A.L. Solovjov, L.V. Omelchenko, V.B. Stepanov, R.V. Vovk, H.-U. Habermeier, H. Lochmajer, P. Przysłupski, and K. Rogacki, *Phys. Rev. B* 94, 224505 (2016).
- M.B. Maple and O. Fischer, Superconductivity in Ternary Compounds II, Superconductivity and Magnetism, Springer– Verlag–Berlin–Heidelberg–New York (1982).
- 7. J.F. Elliott, S. Legvold, and F.H. Spedding, *Phys. Rev.* **94**, 1143 (1954).
- V.M. Dmitriev, A.J. Zaleski, E.P. Khlybov, L.F. Rybaltchenko, E.V. Khristenko, L.A. Ishchenko, and A.V. Terekhov, *Acta Physica Polonica A* 114, 83 (2008)
- 9. В.М. Дмитриев, А. Залеский, Е.П. Хлыбов, Л.Ф. Рыбальченко, Е.В. Христенко, Л.А. Ищенко, А.В. Терехов, И.Е. Костылева, С.А. Лаченков, *ФНТ* **34**, 1152 (2008) [*Low Temp. Phys.* **34**, 909 (2008)].
- А.В. Терехов, И.В. Золочевский, Л.А. Ищенко, А. Залеский, Е.П. Хлыбов, С.А. Лаченков, ФНТ 42, 300 (2016) [Low Temp. Phys. 42, 232 (2016)].
- В.М. Дмитриев, А.В. Терехов, А. Залеский, Е.Н. Хацько, П.С. Калинин, А.И. Рыкова, А.М. Гуревич, С.А. Глаголев, Е.П. Хлыбов, И.Е. Костылева, С.А. Лаченков, ФНТ 38, 191 (2012) [Low Temp. Phys. 38, 154 (2012)].
- 12. A.B. Tepexob, *ΦHT* **39**, 827 (2013) [*Low Temp. Phys.* **39**, 640 (2013)].
- 13. В.М. Дмитриев, А. Залеский, Е.П. Хлыбов, Л.Ф. Рыбальченко, Е.В. Христенко, Л.А. Ищенко, А.В. Терехов, *ФНТ* **35**, 537 (2009) [*Low Temp. Phys.* **35**, 424 (2009)].
- L.F. Rybaltchenko, E.V. Khristenko, L.A. Ishchenko, A.V. Terekhov, I.V. Zolochevskii, T.V. Salenkova, E.P. Khlybov, and A.J. Zaleski, Fiz. Nizk. Temp. 38, 1403 (2012) [Low Temp. Phys. 38, 1106 (2012)].
- А.В. Терехов, И.В. Золочевский, Е.В. Христенко, Л.А. Ищенко, Е.В. Безуглый, А. Залеский, Е.П. Хлыбов, С.А. Лаченков, ФНТ 41, 350 (2015) [Low Temp. Phys. 41, 270 (2015)].
- 16. H.C. Hamaker and M.B. Maple, *Physica B+C* **108**, 757 (1981).

- A.L. Solovjov, Superconductors Materials, Properties and Applications, Ch. 7: Pseudogap and Local Pairs in High-T_c Superconductors, A.M. Gabovich (ed.), InTech, Rijeka (2012), p. 137.
- A.L. Solovjov, L.V. Omelchenko, A.V. Terekhov, K. Rogacki, R.V. Vovk, E.P. Khlybov, and A. Chroneos, *Mater. Res. Express* 3, 076001 (2016).
- 19. E.V.L. de Mello, M.T.D. Orlando, J.L. Gonzalez, E.S. Caixeiro, and E. Baggio-Saitovich, *Phys. Rev. B* **66**, 092504 (2002).
- 20. L.G. Aslamazov and A.I. Larkin, Phys. Lett. A 26, 238 (1968).
- 21. A.L. Solovjov, E.V. Petrenko, V.B. Stepanov, E. Nazarova, K. Buchkov, and K. Rogacki (*unpublished*).
- 22. R. Peters and J. Bauer, *Phys. Rev. B* 92, 014511 (2015).
- 23. B.P. Stojkovic and D. Pines, *Phys. Rev. B* 55, 8576 (1997).
- 24. V.L. Ginzburg and L.D. Landau, JETP 20, 1064 (1950).
- 25. E.M. Lifshitz and L.P. Pitaevski, *Statistical Physics*, vol. 2, Nauka, Moscow (1978).
- 26. А.Л. Соловьев, H.-U. Habermeyer, T. Haage, *ФНТ* **28**, 24 (2002) [*Low Temp. Phys.* **28**, 17 (2002)].
- V.M. Loktev, Fiz. Nizk. Temp. 22, 490 (1996) [Low Temp. Phys. 22, 488 (1996)].
- 28. R. Haussmann, *Phys. Rev. B* 49, 12975 (1994).
- J.R. Engelbrecht, A. Nazarenko, M. Randeria, and E. Dagotto, *Phys. Rev. B* 57, 13406 (1998).
- 30. S. Hikami and A.I. Larkin, Mod. Phys. Lett. B 2, 693 (1988).
- 31. Y.B. Xie, *Phys. Rev. B* **46**, 13997 (1992).
- B. Oh, K. Char, A.D. Kent, M. Naito, M.R. Beasley, T.H. Geballe, R.H. Hammond, A. Kapitulnik, and J.M. Graybeal, *Phys. Rev. B* 37, 7861 (1988).
- 33. A. Kapitulnik, M.R. Beasley, C. Castellani, and C. Di Castro, *Phys. Rev. B* **37**, 537 (1988).
- T. Schneider and J.M. Singer, *Phase Transition Approach to High Temperature Superconductivity: Universal Properties of Cuprate Superconductors*, Imperial College Press, London (2000).
- 35. M.R. Beasley, *Phisica B* **148**, 191 (1987).
- 36. А.Л. Соловьев, H.-U. Habermeier, T. Haage, *ФНТ* **28**, 144 (2002) [*Low Temp. Phys.* **28**, 99 (2002)].
- 37. А.Л. Соловьев, М.А. Ткаченко, *Металлофизика и новейшие технологии* **35**, 19 (2013).
- 38. A.L. Solovjov, E.V. Petrenko, L.V. Omelchenko, R.V. Vovk, I.L. Goulatis, and A. Chroneos, *Sci. Rep.* **9**, 9274 (2019).
- 39. K. Maki, Prog. Theor. Phys. 39, 897 (1968).
- 40. R.S. Thompson, *Phys. Rev. B* 1, 327 (1970).
- 41. А.Л. Соловьев, В.М. Дмитриев, *ФНТ* **32**, 139 (2006) [*Low Temp. Phys.* **32**, 99 (2006)].
- 42. V.J. Emery and S.A. Kivelson, *Nature* (*London*) **374**, 434 (1995).
- 43. M. Randeria, *Nature Phys.* 6, 561 (2010).
- 44. V. Mishra, U. Chatterjee, J.C. Campuzano, and M.R. Norman, *Nature Phys.* **10**, 357 (2014).
- 45. L. Taillefer, Annu. Rev. Condens. Matter Phys. 1, 51 (2010).
- 46. A.L. Solovjov, L.V. Omelchenko, R.V. Vovk, O.V. Dobrovolskiy, S.N. Kamchatnaya, and D.M. Sergeev, *Current Apll. Phys.* **16**, 931 (2016).
- 47. P.G. De Gennes, *Superconductivity of Metals and Alloys*, W.A. Benjamin (ed.), Inc., New York, Amsterdam (1966), p. 280.

- 48. J. Stajic, A. Iyengar, K. Levin, B.R. Boyce, and T.R. Lemberger, *Phys. Rev. B* **68**, 024520 (2003).
- 49. J. Corson, R. Mallozzi, J. Orenstein, J.N. Eckstein, and I. Bozovic, *Nature (London)* **398**, 221 (1999).
- Y.Y. Peng, R. Fumagalli, Y. Ding, M. Minola, S. Caprara,
 D. Betto, M. Bluschke, G.M. De Luca, K. Kummer,
 E. Lefrançois, M. Salluzzo, H. Suzuki, M. Le Tacon, X.J.
 Zhou, N.B. Brookes, B. Keimer, L. Braicovich, M. Grilli,
 and G. Ghiringhelli, *Nature Mater.* 17, 697 (2018).
- B. Leridon, A. Defossez, J. Dumont, J. Lesueur, and J.P. Contour, *Phys. Rev. Lett.* 87, 197007 (2001).
- 52. H. Alloul, T. Ohno, and P. Mendels, *Phys. Rev. Lett.* **63**, 1700 (1989).
- T. Kondo, A.D. Palczewski, Y. Hamaya, T. Takeuchi, J.S. Wen,
 Z.J. Xu, G. Gu, and A. Kaminski, *Phys. Rev. Lett.* 111, 157003 (2013).
- A.A. Kordyuk, Fiz. Nizk. Temp. 41, 417 (2015) [Low Temp. Phys. 41, 319 (2015)].
- S. Badoux, W. Tabis, F. Laliberte, G. Grissonnanche,
 B. Vignolle, D. Vignolles, J. Beard, D.A. Bonn, W.N. Hardy,
 R. Liang, N. Doiron-Leyraud, L. Taillefer, and C. Proust,
 Nature (London) 531, 210 (2016).
- Y. Yamada, K. Anagawa, T. Shibauchi, T. Fujii, T. Watanabe,
 A. Matsuda, and M. Suzuki, *Phys. Rev. B* 68, 054533 (2003).
- 57. A.I. D'yachenko and V.Yu. Tarenkov, *Phys. Technnol. High Press.* **24**, 24 (2014).
- 58. Ya. Ponomarev, M. Mikheev, M. Sudakova, S. Tchesnokov, and S. Kuzmichev, *Phys. Status Solidi C* **6**, 2072 (2009).
- S. Kasahara, T. Yamashita, A. Shi, R. Kobayashi,
 Y. Shimoyama, T. Watashige, K. Ishida, T. Terashima, T. Wolf,
 F. Hardy, C. Meingast, H. v. Löhneysen, A. Levchenko,
 T. Shibauchi, and Y. Matsuda, *Nature Commun.* 7, 12843 (2016).
- D.S. Inosov, J.T. Park, A. Charnukha, Yu. Li, A.V. Boris,
 B. Keimer, and V. Hinkov, *Phys. Rev. B* 83, 214520 (2011).
- 61. Ø. Fischer, M. Kugler, I. Maggio-Aprile, and Ch. Berthod, *Rev. Mod. Phys.* **79**, 353 (2007).
- 62. J.P. Carbotte, T. Timusk, and J. Hwang, *Rep. Prog. Phys.* **74**, 066501 (2011).
- 63. E.G. Maksimov, M.L. Kulić, O.V. Dolgov, *Adv. Condens. Matter Phys.* **2010**, Article ID 423725 (2010).
- 64. Guo-meng Zhao, *Physica Scripta* **83**, 038302 (2011).
- 65. M.R. Norman, in: *Novel Superfluids*, K.H. Bennemann and J.B. Ketterson (eds.), Oxford University Press (2013), vol. 2.
- 66. D.J. Scalapino, Rev. Mod. Phys. 84, 1383 (2012).
- C. Berthod, Y. Fasano, I. Maggio-Aprile, A. Piriou, E. Giannini,
 G. Levy de Castro, and Ø. Fischer, *Phys. Rev. B* 88, 014528 (2013).
- 68. M. Eschrig, Adv. Phys. 55, 47 (2006).
- T. Dahm, V. Hinkov, S.V. Borisenko, A.A. Kordyuk, V.B. Zabolotnyy, J. Fink, B. Büchner, D.J. Scalapino, W. Hanke, and B. Keimer, *Nature Phys.* 5, 217 (2009).
- P. Hlobil, B. Narozhny, and J. Schmalian, *Phys. Rev. B* 88, 205104 (2013).

- S. Ideta, T. Yoshida, A. Fujimori, H. Anzai, T. Fujita, A. Ino, M. Arita, H. Namatame, M. Taniguchi, Z.-X. Shen, K. Takashima, K. Kojima, and S. Uchida, *Phys. Rev. B* 85, 104515 (2012).
- J.W. Alldredge, K. Fujita, H. Eisaki, S. Uchida, K. McElroy, *Phys. Rev. B* 87, 104520 (2013).
- T. Kurosawa, T. Yoneyama, Y. Takano, M. Hagiwara, R. Inoue, N. Hagiwara, K. Kurusu, K. Takeyama, N. Momono, M. Oda, and M. Ido, *Phys. Rev. B* 81, 094519 (2010).
- A. Pushp, C.V. Parker, A.N. Pasupathy, K.K. Gomes, S. Ono,
 J. Wen, Z. Xu, G. Gu, and A. Yazdani, *Science* 324, 1689 (2009).
- 75. V.M. Dmitriev and A.L. Solovjov, *Fiz. Nizk. Temp.* **16**, 650 (1990) [*Sov. J. Low Temp. Phys.* **16**, 382 (1990)].
- 76. K.W. Wang and W.Y. Ching, *Physica C* **416**, 47 (2004).
- 77. Р.О. Зайцев, ЖЭТФ 125, 891 (2004).
- 78. Yue Sun, S. Pyon, and T. Tamegai, *Phys. Rev. B* **93**, 104502 (2016).

Особливості поведінки надлишкової провідності у магнітному надпровіднику Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B₄

А.Л. Соловйов, А.В. Терехов, Є.В. Петренко, Л.В. Омельченко, Zhang Cuiping

Вперше досліджено температурні залежності надлишкової провідності $\sigma'(T)$ та можливої псевдощілини (ПЩ) $\Delta^{\tilde{r}}(T)$ в полікристалі $Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B_4$. Показано, що $\sigma'(T)$ поблизу T_c добре описується флуктуаційною теорією Асламазова-Ларкина (АЛ), демонструючи 3D-2D кросовер при підвищенні температури. За температурою кросовера T_0 визначено довжину когерентності $\xi_c(0)$ вздовж осі c. При $T_{2D} > T_0$ виявлено незвичайну залежність $\sigma'(T)$, яка не описується флуктуаційними теоріями в інтервалі T_0 – T_{FM} , де відбувається феромагнітний перехід. Інтервал, в якому існують надпровідні флуктуації, виявляється досить вузьким та становить $\Delta T_{\rm fl} \approx 2.8$ К. Отримана температурна залежність ПЩ параметра $\Delta^{\hat{}}(T)$ має вигляд, типовий для магнітних надпровідників з особливостями при $T_{\rm max} \approx 154~{\rm K}$ та температурі можливого структурного переходу при $T_s \sim 95$ К. Нижче T_s параметр Δ (T) має форму, типову для ПЩ у купратах, що дозволяє говорити про можливість реалізації ПЩ стану у $Dy_{0,6}Y_{0,4}Rh_{3,85}Ru_{0,15}B_4$ в цьому інтервалі температур. Порівняння Δ (T) з теорією Пітерса-Бауера дозволило визначити густину локальних пар поблизу T_c , $\langle n_\uparrow n_\downarrow \rangle (T_G) \approx 0.35$, що в 1,17 раза більше, ніж в оптимально допованих монокристалах YBa₂Cu₃O_{7-δ}.

Ключові слова: надпровідність, магнетизм, надлишкова провідність, псевдощілинний стан, намагніченість, локальні пари.

Features of the excess conductivity behavior in a magnetic superconductor $Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B_4$

A.L. Solovjov, A.V. Terekhov, E.V. Petrenko, L.V. Omelchenko, and Zhang Cuiping

The temperature dependences of the excess conductivity $\sigma'(T)$ and the possible pseudogap (PG), $\Delta^*(T)$, in the Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B₄ polycrystal have been studied for the first time. It was shown that $\sigma'(T)$ near T_c is well described by the Aslamazov–Larkin (AL) fluctuation theory, demonstrating a 3D–2D crossover with increasing temperature. From the crossover temperature T_0 , the coherence length along the c axis, $\xi_c(0)$, was determined. Above $T_{2D} > T_0$, an unusual dependence $\sigma'(T)$ was found, which is not described by the fluctuation theories in

the interval from T_0 to T_{FM} , at which a ferromagnetic transition occurs. The interval in which superconducting fluctuations exist is rather narrow and amounts to $\Delta T_{\rm fl} \approx 2.8$ K. The resulting temperature dependence of the PG parameter $\Delta^*(T)$ has the form typical of magnetic superconductors with features at $T_{\rm max} \approx 154$ K and the temperature of a possible structural transition at $T_s \sim 95$ K. Below T_s , $\Delta^*(T)$ has a shape typical for PG in cuprates, which suggests that the PG state can be realized in ${\rm Dy_{0.6}Y_{0.4}Rh_{3.85}Ru_{0.15}B_4}$ in this temperature range. Comparison of $\Delta^*(T)$ with the Peters—Bauer theory made it possible to determine the density of local pairs near T_c , $\langle n_\uparrow n_\downarrow \rangle \langle T_G \rangle \approx 0.35$, which is 1.17 times more than in optimally doped YBa₂Cu₃O_{7- δ} single crystals.

Keywords: superconductivity, magnetism, excess conductivity, pseudogap state, magnetization, local pairs.