Экспериментальное наблюдение аномалий электрических, магнитных и гальваномагнитных свойств сплавов Гейслера на основе кобальта при изменении содержания переходных элементов

Ю.А. Перевозчикова¹, А.А. Семянникова¹, А.Н. Доможирова¹, П.Б. Терентьев^{1,3}, Е.Б. Марченкова¹, Е.И. Патраков¹, М. Eisterer², П.С. Коренистов^{1,3}, В.В. Марченков^{1,3}

> ¹Институт физики металлов им. М.Н. Михеева УрО РАН ул. С. Ковалевской, 18, г. Екатеринбург, 620108, Россия

²Vienna University of Technology, Institute of Atomic and Subatomic Physics, 2 Stadionallee, Vienna 1020, Austria

³Уральский федеральный университет, ул. Мира, 19, г. Екатеринбург, 620002, Россия E-mail: yu.perevozchikova@imp.uran.ru march@imp.uran.ru

Статья поступила в редакцию 18 марта 2019 г., опубликована онлайн 28 мая 2019 г.

При T = 4,2 К и в полях до 100 кЭ исследованы остаточное сопротивление, эффект Холла и намагниченность сплавов Гейслера Co₂YSi (Y = Ti, V, Cr, Mn, Fe, Co, Ni). Показано, что с изменением числа валентных электронов z в пределах от 26 до 32 при переходе от Co₂TiSi к Co₂NiSi наблюдаются существенные изменения остаточного сопротивления ρ_0 , намагниченности M_s , знака и величины коэффициентов нормального R_0 и аномального R_S эффекта Холла. Установлено, что между величинами ρ_0 , R_0 , R_5 и M_s в зависимости от числа z наблюдается четкая корреляция, которая может быть связана с возникновением состояния полуметаллического ферромагнетика и/или спинового бесщелевого полупроводника. При изменении z наблюдается степенная зависимость коэффициента аномального эффекта Холла от остаточного электросопротивления с показателем степени k = 3,1, что расходится с существующими теориями, но хорошо согласуется с полученными ранее экспериментальными данными в подобных полуметаллических ферромагнитных сплавах Гейслера.

Ключевые слова: полуметаллические ферромагнетики, спиновые бесщелевые полупроводники, остаточное электросопротивление, намагниченность, нормальный и аномальный эффект Холла.

Введение

Интерметаллические соединения Гейслера с общей формулой X_2YZ (X и Y — 3d металлы, Z — s-, p-элементы периодической таблицы Менделеева), которые были открыты Ф. Гейслером (F. Heusler) в 1903 году [1], обладают множеством полезных функциональных свойств [2], таких как эффект памяти формы [3], магнитокалорический эффект [4–6], необычные тепловые [7,8], термоэлектрические [9] и полупроводниковые [10–12] свойства и т.п. Особое внимание уделяется изучению сплавов Гейслера, являющихся полуметаллическими ферромагнетиками (ПМФ) [13,14] и спиновыми бесщелевыми полупроводниками (СБП) [15–17], поскольку в них может быть реализована близкая к 100% спиновая поляризация носителей заряда и, следовательно, такие материалы являются перспективными для практического применения в устройствах и приборах спинтроники.

Основной особенностью ПМФ является наличие щели на уровне Ферми для электронных состояний со спином «вниз» и ее отсутствие для носителей заряда со спином «вверх». СБП также обладают рядом уникальных свойств, связанных с их необычной зонной структурой, то есть с наличием широкой щели ($\Delta E \sim 1$ эВ) на уровне Ферми для носителей заряда со спином «вниз» и нулевой энергетической щелью для носителей тока с противоположным направлением спина. На практике строго реализовать условия ПМФ и/или СБП состояния

© Ю.А. Перевозчикова, А.А. Семянникова, А.Н. Доможирова, П.Б. Терентьев, Е.Б. Марченкова, Е.И. Патраков, М. Eisterer, П.С. Коренистов, В.В. Марченков, 2019

не очень просто, а резкое отличие между ними в реальных сплавах Гейслера практически отсутствует.

Известно, что многие сплавы Гейслера относятся к классу ПМФ и СБП [2,17,22], а в соединениях Co_2MeSi (Me — Fe, Mn) наблюдалась высокая спиновая поляризация носителей заряда (см., например, [18,19]). В работах [20-22] показано, что при изменении числа валентных электронов, которое происходит при варьировании У- и/или Z-компоненты в сплавах Co₂YAl и Co₂FeZ (Y = Ti, V, Cr, Mn, Fe, Co, Ni; Z = Al, Si, Ga, Ge, In, Sn,Sb), Fe_2MeAl (Me = Ti, V, Cr, Mn, Fe, Ni), Fe_2YZ (Y = Ti, V, Cr, Mn, Fe, Ni; Z = Al, Si), происходят существенные изменения в электронной зонной структуре этих соединений вблизи уровня Ферми. Это, в свою очередь, находит отражение в изменении их магнитных характеристик И электронного транспорта. По-видимому, подобное должно наблюдаться и при варьировании Усоставляющей в сплавах системы Со2YSi. Поэтому представляет интерес проследить за изменением электронных транспортных и магнитных свойств, установить их взаимосвязь и основные закономерности поведения в сплавах системы Co₂YSi при варьировании У-компоненты, к которой относятся 3*d*-элементы периодической таблицы Менделеева, а именно, Y = Ti, V, Cr, Mn, Fe, Co, Ni. Это и легло в основу настоящей работы, цель которой — поиск и обнаружение корреляции между электронными и магнитными характеристиками сплавов Гейслера Со₂ УSi при низких температурах.

Эксперимент

Поликристаллические сплавы были приготовлены в индукционной печи в атмосфере очищенного аргона. Затем полученные слитки Co₂VSi, Co₂CrSi, Co₂FeSi и Co₂CoSi отжигали при 1100 °C в течение 3 дней и подвергали закалке, а сплавы Co₂TiSi, Co₂MnSi и Co₂NiSi охлаждением до комнатной температуры, по аналогии с работами [23-25]. Элементный анализ проводили с использованием сканирующего электронного микроскопа, оснащенного приставкой рентгеновского микроанализа EDAX. Выявлено, что отклонение от стехиометрического состава во всех образцах незначительно. Структурный анализ проводился в Центре коллективного пользования ИФМ УрО РАН. Измерения эффекта Холла были выполнены по стандартной методике, которая подробно описана в работах [26,27]. Полевые зависимости намагниченности и сопротивления Холла р_H(H) измерены при T = 4,2 К в магнитных полях до 100 кЭ. Исследованные образцы имели форму пластин с размерами ~0,5×1,5×4,5 мм. При этом вектор магнитного поля был направлен строго перпендикулярно плоскости пластин с точностью ±2 градуса (или ±2,5%), а электрический ток протекал вдоль наибольшей грани образца. Для контроля асимметрии холловских контактов были проведены измерения по 5-точечной схеме [28,29], чтобы скомпенсировать вклад от поперечного сопротивления. Было обнаружено, что данные, полученные с помощью 5- и 4-контактного методов, хорошо совпадают. Поэтому в дальнейшем использовалась 4-контактная методика. Для определения коэффициентов нормального и аномального эффектов Холла в такой же поперечной геометрии осуществляли измерения полевых зависимостей намагниченности М(H).

отжигали при 800 °С в течение 9 дней с последующим

Результаты и обсуждение

В таблице 1 приведены значения остаточного сопротивления ρ_0 исследованных сплавов Гейслера, видно, что значения ρ_0 сплавов существенно различаются. Согласно [30,31], ПМФ и СБП материалы можно рассматривать как систему с двумя каналами проводимости.

Таблица 1. Остаточное сопротивление ρ_0 , намагниченность насыщения M_s , коэффициенты нормального R_0 и аномального R_S эффектов Холла, тип носителей заряда, их концентрация *n* и подвижность μ и температуры Кюри T_c сплавов Co₂*Y*Si (*Y* = Ti, V, Cr, Mn, Fe, Co, Ni)

Сплав	Число валентных электро- нов, <i>z</i>	р ₀ , мОм∙см (<i>T</i> = 4,2 K)	<i>М_s</i> , эме/г	<i>R</i> ₀ ·10 ⁻⁴ , см ³ /Кл	<i>R_S</i> ·10 ⁻² , см ³ /Кл	Основной тип носителей заряда	Концентрация носителей заряда, <i>n</i> , см ⁻³	Подвижность носителей заряда µ, см ² /(В·с)	<i>Т_с</i> , К
Co ₂ TiSi	26	0,155	48,8	7,23	4	дырки	9.10^{21}	4,7	385 [<mark>36</mark>]
Co ₂ VSi	27	0,294	5,9	-1,21	29	электроны	$5 \cdot 10^{22}$	0,4	566 [<mark>36</mark>]
Co ₂ CrSi	28	0,318	1,0	-5,01	46	электроны	$1 \cdot 10^{22}$	1,6	747 [<mark>36</mark>]
Co ₂ MnSi	29	0,016	114,2	-1,50	0,04	электроны	$4 \cdot 10^{22}$	9,7	985 [<mark>36</mark>]
Co ₂ FeSi	30	0,027	96,7	1,83	0,05	дырки	$3 \cdot 10^{22}$	6,7	1100 [36]
Co ₃ Si	31	0,069	67,9	1,26	2	дырки	5.10^{22}	1,8	622 [37]
Co ₂ NiSi	32	0,131	45,9	-0,77	2	электроны	8·10 ²²	0,6	589 [37]

Puc. 1. Полевые зависимости холловского сопротивления (a) и намагниченности (б) $Co_2 YSi$ (Y = Ti, V, Cr, Mn, Fe, Co, Ni) при T = 4,2 К.

Первый из них обусловлен носителями заряда со спином «вверх», а второй — носителями тока со спином «вниз». Как и в случае многослойных структур с гигантским магнитосопротивлением [32-35], общая проводимость таких систем может быть представлена в виде двух параллельно соединенных проводников, каждый из которых связан с первым или вторым типом носителей тока. Эти каналы дают разные вклады в общую проводимость. Если вклад носителей со спином «вниз» во многом определяется их концентрацией и практически не зависит от механизмов рассеяния, поскольку обусловлен особенностями электронной структуры вблизи уровня Ферми (величина и размер щели), то вклад носителей со спином «вверх», напротив, в основном определяется процессами рассеяния. Соответственно, вклад в общую проводимость от каждого из каналов принципиально различается. Проводимость (электросопротивление) первого из них растет (уменьшается) с температурой, а проводимость (сопротивление) второго падает (возрастает) с ростом *T*. Величины проводимостей каждого из каналов, а соответственно, и общая проводимость системы будут различными для разных сплавов. Поэтому при варьировании *Y*-компоненты в соединениях системы $Co_2 YSi$ (*Y* = Ti, V, Cr, Mn, Fe, Co, Ni) наряду с различием в величинах остаточного сопротивления будут изменяться и другие электронные характеристики, в частности, концентрация носителей тока, что должно проявиться в эффекте Холла.

Поскольку при низких температурах все сплавы этой системы находятся в ферромагнитном состоянии, то в них должен наблюдаться и аномальный эффект Холла, для корректного определения которого необходимо иметь данные о магнитных характеристиках системы. Поэтому наряду с измерением эффекта Холла была измерена и намагниченность. На рис. 1 представлены полевые зависимости холловского сопротивления $\rho_H(H)$ и

намагниченности M(H) исследованных сплавов. Видно, что зависимости $\rho_H(H)$ и M(H) большинства сплавов выходят на насыщение в полях выше 10 кЭ. В ферромагнетиках коэффициент Холла R_H содержит как нормальную R_0 , так и аномальную R_S компоненты. Для разделения нормальной и аномальной составляющих коэффициента Холла была использована следующая формула [21]:

$$\rho_H / H = R_0 + 4\pi R'_S \cdot M / H, \tag{1}$$

где $R'_S = R_S + (1-N)R_0$, а N — размагничивающий фактор. Поперечные размеры и форма образцов для измерений эффекта Холла были выбраны таким образом, что для всех из них размагничивающий фактор был около $N \approx 1$. Тогда с учетом этого и согласно выражению (1) должна наблюдаться зависимость $\rho_H / H = f(M / H)$, из которой можно определить значения нормальной R_0 и аномальной R_S компоненты.

На рис. 2 видно, что в магнитных полях выше 10 кЭ такая зависимость действительно наблюдается. При этом мы получаем значения коэффициентов нормального R_0 и аномального R_S эффекта Холла. Обычно, как и в рассматриваемом случае, коэффициент R_S по величине превосходит R_0 на два–три порядка.

Коэффициент нормального эффекта Холла R₀ в однозонной модели определяется как

$$R_0 = \frac{1}{nec},\tag{2}$$

где n — число носителей тока, c — скорость света, e — заряд электрона. При учете двух типов носителей заряда, т.е. электронов (e) и дырок (h), он определяется не только типом и числом (n_e и n_h) носителей, но и их подвижностью (μ_e и μ_h). Соответственно,

$$R_0 = 1/ec \left(n_h \mu_h^2 - n_e \mu_e^2 \right) / \left(n_h \mu_h + n_e \mu_e \right)^2.$$
(3)

Нормальный коэффициент R₀ зависит в основном от параметров электронной зонной структуры сплавов на уровне Ферми E_{F} . Поскольку в настоящее время отсутствуют надежные данные о поверхностях Ферми (ПФ) исследуемых в настоящей работе соединений, а также данные о концентрациях и подвижностях носителей заряда, принадлежащих различным листам их ПФ, то в дальнейшем была использована однозонная модель. Были определены тип носителей тока, преобладающих в том или ином соединении, оценены их концентрация и подвижность. Необходимо отметить, что все измерения в настоящей работе были выполнены на поликристаллических образцах. Поэтому полученные оценки концентраций носителей заряда и их подвижностей являются качественными, позволяющими, однако, судить о порядке величин *n* и µ, а следовательно, проследить качественное изменение этих параметров при переходе от одного соединения к другому. Результаты представлены в табл. 1.

Рис. 2. Зависимость *р_H/H* от *M/H*.

Видно, что между величинами ρ_0 , R_0 , R_5 и M_s , представленными на рис. 3, в зависимости от числа *z* валентных электронов в ряду от Ті до Ni наблюдается четкая корреляция. Так, аномальный коэффициент Холла R_5 и остаточное сопротивление ρ_0 возрастают вблизи *z* = 28, в то время как для нормального коэффициента Холла R_0 и намагниченности M_s наблюдается минимум в этой точке. Поскольку в исследуемой системе сплавов могут возникать ПМФ и СБП состояния (см., например, [17–19,22]), то, по-видимому, с этим и связаны представленные на рис. 3 корреляции между ρ_0 , R_0 , R_5 и M_s . В частности, в работах [18,19] было показано, что сплавы Гейслера Co₂MnSi и Co₂FeSi являются ПМФ соеди-

Рис. 3. Зависимость остаточного сопротивления ρ_0 , коэффициента нормального R_0 и аномального R_S эффектов Холла, намагниченности насыщения M_s от числа валентных электронов *z*.

нениями, в которых может быть реализована высокая степень поляризации носителей заряда. Как видно на рис. 3, именно для этих сплавов наблюдаются максимальные значения намагниченности и минимальные величины остаточного сопротивления. Это может быть связано с тем, что в этих условиях в данных соединениях преимущественно имеются «металлические» носители тока со спином «вверх», обеспечивающие «металлический» тип проводимости и большой магнитный момент, что в конечном итоге и должно приводить к высокой поляризации по спину носителей заряда. Представляется весьма интересным экспериментальное

Рис. 4. Зависимость коэффициента аномального эффекта Холла от остаточного сопротивления.

определение коэффициента спиновой поляризации в этих сплавах, анализ его поведения при изменении числа валентных электронов и сравнение с данными рис. 3.

Согласно [38], коэффициент аномального эффекта Холла R_S связан с электросопротивлением ρ следующим соотношением:

$$R_S \sim \lambda_{\rm eff} \rho^k / M_s,$$
 (4)

где λ_{eff} — константа спин-орбитального взаимодействия, M_s — спонтанная намагниченность, k — показатель степени, в основном определяемый механизмами рассеяния носителей заряда, значение которого обычно находится в интервале $1 \le k \le 2$ [38].

На рис. 4 представлена зависимость коэффициента аномального эффекта Холла R_S от остаточного сопротивления ρ_0 . Видно, что для системы сплавов Co₂YSi наблюдается зависимость (4) с коэффициентом k = 3,1, значение которого совпадает с k в системе сплавов Fe₂YAI [21]. Учитывая результаты [21], можно также высказать предположение, что, по-видимому, природа аномального эффекта Холла в рассматриваемых сплавах в значительной степени определяется не только механизмами рассеяния носителей тока, но и процессами перестройки электронной зонной структуры вблизи уровня Ферми E_F .

Стоит особо подчеркнуть, что число валентных электронов z является достаточно «общей» характеристикой, которая не дает представления о конкретном соединении с точки зрения особенностей его электронной зонной структуры. В качестве такого параметра могло бы быть значение плотности электронных состояний N на уровне Ферми E_F . По-видимому, представленные на рис. 3 зависимости электронных и магнитных характеристик было бы корректнее представить в зависимости от N, что в перспективе могло бы позволить количественно описать взаимосвязь между электронными и магнитными характеристиками.

Заключение

В результате исследований электрических и магнитных свойств сплавов Гейслера $Co_2 YSi$ (Y = Ti, V, Cr, Mn, Fe, Co, Ni) показано, что при переходе от Co₂TiSi к Co2NiSi, т.е. с вариацией числа валентных электронов z в пределах $26 \le z \le 32$ наблюдаются существенные изменения знака и величины коэффициентов норэффекта мального И аномального Холла, намагниченности, остаточного сопротивления, типа и концентрации носителей тока и их подвижности. Наблюдается коррелированное изменение указанных электрических и магнитных характеристик в зависимости от z. Установлено, что при вариации z степенная зависимость коэффициента аномального эффекта Холла от остаточного электросопротивления сплавов имеет показатель степени k = 3,1, что не описывается существующими теоретическими представлениями, но согласуется с экспериментальными данными, полученными для подобных сплавов Гейслера.

Авторы благодарят профессора В.И. Окулова за внимательное прочтение рукописи и ценные замечания. Работа выполнена в рамках государственного задания МИНОБРНАУКИ России (тема «Спин», № АА-АА-А18-118020290104-2 и «Магнит», № АААА-А18-118020290129-5) при частичной поддержке Комплексной программы УрО РАН (проект № 18-10-2-37), РФФИ (проекты №№ 18-32-00686 и 18-02-00739) и Правительства Российской Федерации (постановление № 211, контракт № 02.А03.21.0006).

- 1. F. Heusler, Verhandlungen der Deutschen Physikalischen Gesellschaft 5, 219 (1903).
- Tanja Graf, Claudia Felser, and Stuart S.P. Parkin, *Progr. Solid State Chem.* 39, 1 (2011).
- А.Н. Васильев, В.Д. Бучельников, Т. Такаги, В.В. Ховайло, Э.И. Эстрин, УФН **173**, 577 (2003).
- J. Liu, T. Gottschall, K.P. Skokov, J.D. Moore, and O. Gutfleisch, *Nature Mater.* 11, 620 (2012).
- E. Zubov, N. Nedelko, A. Sivachenko, K. Dyakonov, Yu. Tyvanchuk, M. Marzec, V. Valkov, W. Bażela, A. Ślawska-Waniewska, V. Dyakonov, A. Szytuła, and H. Szymczak, *Fiz. Nizk. Temp.* 44, 989 (2018) [Low Temp. Phys. 44, 775 (2018)].
- R.L. Wang, J.B. Yan, L.S. Xu, V.V. Marchenkov, S.S. Chen, S.L. Tang, and C.P. Yang, *Solid State Commun.* 151, 1196 (2011).
- С.М. Подгорных, А.Д. Свяжин, Е.И. Шредер, В.В. Марченков, В.П. Дякина, ЖЭТФ 132, 52 (2007).
- А.Т. Лончаков, В.В. Марченков, В.И. Окулов, К.А. Окулова, Т.Е. Говоркова, С.М. Подгорных, *ФНТ* 41, 196 (2015) [*Low Temp. Phys.* 41, 150 (2015)].
- А.Т. Лончаков, В.В. Марченков, В.И. Окулов, К.А. Окулова, ФНТ 39, 109 (2013) [Low Temp. Phys. 39, 84 (2013)].

- Y. Nishino, M. Kato, S. Asano, K. Soda, M. Hayasaki, and U. Mizutani, *Phys. Rev. Lett.* **79**, 1909 (1997).
- В.И. Окулов, В.Е. Архипов, Т.Е. Говоркова, А.В. Королев, В.В. Марченков, К.А. Окулова, Е.И. Шредер, Х.В. Вебер, ФНТ 33, 907 (2007) [Low Temp. Phys. 33, 692 (2007)].
- V.I. Okulov, A.T. Lonchakov, and V.V. Marchenkov, *Phys. Met. Metallog.* 119, 1325 (2018).
- M.I. Katsnelson, V.Yu. Irkhin, L. Chioncel, A.I. Lichtenstein, and R.A. de Groot, *Rev. Modern Phys.* 80, 315 (2008).
- 14. В.Ю. Ирхин, М.И. Кацнельсон, *УФН* **164**, 705 (1994).
- 15. X.L. Wang, *Phys. Rev. Lett.* **100**, 156404 (2008).
- S. Ouardi, G.H Fecher, C. Felser, and J. Kuebler, *Phys. Rev. Lett.* **110**, 100401 (2013).
- V.V. Marchenkov, N.I. Kourov, and V.Yu. Irkhin, *Phys. Met. Metallog.* **119**, 64 (2018).
- L. Makinistian, M.M. Faiz, R.P. Panguluri, B. Balke, S. Wurmehl, C. Felser, E.A. Albanesi, A.G. Petukhov, and B. Nadgorny, *Phys. Rev. B* 87, 220402 (2013).
- M. Jourdan, J. Minar, J. Braun, A. Kronenberg, S. Chadov, B. Balke, A. Gloskovskii, M. Kolbe, H.J. Elmers, G. Schoenhense, H. Ebert, C. Felser, and M. Klaeui, *Nature Commun.* 5, 3974 (2014).
- Н.И. Коуров, В.В. Марченков, К.А. Белозерова, Н.W. Weber, *ЖЭТФ* 145, 491 (2014).
- Н.И. Коуров, В.В. Марченков, К.А. Белозерова, Н.W. Weber, ЖЭТФ 148, 966 (2015).
- V.V. Marchenkov, Yu.A. Perevozchikova, N.I. Kourov, V.Yu. Irkhin, M. Eisterer, and T. Gao, *J. Magn. Magn. Mater.* 459, 211 (2018).
- R.Y. Umetsu, A. Okubo, X. Xu, and R. Kainuma, J. Alloys Comp. 588, 153 (2014).
- H. Nishihara, N. Okui, A. Okubo, T. Kanomata, R.Y. Umetsu, R. Kainuma, and T. Sakon, *J. Alloys Comp.* 551, 208 (2013).
- P. Klaer, M. Kallmayer, C.G.F. Blum, T. Graf, J. Barth, B. Balke, G.H. Fecher, C. Felser, and H.J. Elmers, *Phys. Rev. B* 80, 144405 (2009).
- V.V. Marchenkov, A.N. Cherepanov, V.E. Startsev, C. Czurda, and H.W. Weber, *J. Low Temp. Phys.* 98, 425 (1995).
- 27. V.V. Marchenkov, H.W. Weber, A.N. Cherepanov, and V.E. Startsev, *J. Low Temp. Phys.* **102**, 133 (1996).
- 28. Н.В. Волкенштейн, В.В. Марченков, В.Е. Старцев, А.Н. Черепанов, М. Глиньски, *Письма в ЖЭТФ* **41**, 376 (1985).
- Н.В. Волкенштейн, М. Глиньски, В.В. Марченков, В.Е. Старцев, А.Н. Черепанов, ЖЭТФ 95, 2103 (1989).
- N.I. Kourov, V.V. Marchenkov, A.V. Korolev, K.A. Belozerova, and H.W. Weber, *Current Appl. Phys.* 15, 839 (2015).
- Н.И. Коуров, В.В. Марченков, В.Г. Пушин, К.А. Белозерова, ЖЭТФ 144, 141 (2013).
- M.N. Baibich, J.M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, *Phys. Rev. Lett.* **61**, 2472 (1988).
- P. Grünberg, R. Schreiber, Y. Pang, M. B. Brodsky, and H. Sowers, *Phys. Rev. Lett.* 57, 2442 (1986).
- 34. А. Ферт, *УФН* **178**, 1336 (2008).
- A. Vedyayev, M. Chshiev, N. Ryzhanova, B. Dieny, C. Cowache, and F. Brouers, *J. Magn. Magn. Mater.* 172, 53 (1997).

Low Temperature Physics/Фізика низьких температур, 2019, т. 45, № 7

- Xing-Qiu Chen, R. Podloucky, and P. Rogl, *J. Appl. Phys.* 100, 113901 (2006).
- S.V. Faleev, Y. Ferrante, J. Jeong, M.G. Samant, B. Jones, and S.S.P. Parkin, *Phys. Rev. Mater.* 1, 024402 (2017).
- 38. В.Ю. Ирхин, Ю.П. Ирхин. Электронная структура, физические свойства и корреляционные эффекты в d- и f-металлах и их соединениях, Екатеринбург, УрО РАН (2004), V.Yu. Irkhin and Yu.P. Irkhin, Electronic Structure, Correlation Effects and Properties of d- and f-metals and their Compounds, Cambridge International Science Publishing, Cambridge (2007).

Експериментальне спостереження аномалій електричних, магнітних та гальваномагнітних властивостей сплавів Гейслера на основі кобальту при зміні вмісту перехідних елементів

Ю.О. Перевозчикова, О.О. Семянникова, О.М. Доможирова, П.Б. Терент'єв, Є.Б. Марченкова, Є.І. Патраков, М. Eisterer, П.С. Коренистов, В.В. Марченков

При T = 4,2 К і в полях до 100 кЕ досліджено залишковий опір, ефект Холла і намагніченість сплавів Гейслера Co₂YSi (Y = Ti, V, Cr, Mn, Fe, Co, Ni). Показано, що зі зміною числа валентних електронів z в межах від 26 до 32 при переході від Co₂TiSi до Co₂NiSi, спостерігаються суттєві зміни залишкового опору ρ_0 , намагніченості M_s , знака та величини коефіцієнтів нормального R_0 і аномального R_S ефекту Холла. Продемонстровано, що між величинами ρ_0 , R_0 , R_S і M_s в залежності від числа z спостерігається чітка кореляція, яка може бути пов'язана з виникненням стану напівметалевого феромагнетика і/або спінового безщілинного напівпровідника. Встановлено, що при зміні z спостерігається степенева залежність коефіцієнта аномального ефекту Холла від залишкового електроопору з показником степеня k = 3,1, що розходиться з наявними теоріями, але добре узгоджується з отриманими раніше експериментальними даними в подібних напівметалевих феромагнітних сплавах Гейслера.

Ключові слова: напівметалеві феромагнетики, спінові безщілинні напівпровідники, залишковий електроопір, намагніченість, нормальний і аномальний ефект Холла.

Experimental observation of anomalies in the electrical, magnetic, and galvanomagnetic properties of cobalt-based Heusler alloys with variation of transition elements

Yu.A. Perevozchikova, A.A. Semiannikova, A.N. Domozhirova, P.B. Terentyev, E.B. Marchenkova, E.I. Patrakov, M. Eisterer, P.S. Korenistov, and V.V. Marchenkov

A residual resistivity, a Hall effect and magnetization of $Co_2 YSi$ Heusler alloys (Y = Ti, V, Cr, Mn, Fe, Co, Ni) were investigated at T = 4.2 K and in fields up to 100 kOe. Significant changes in the residual resistance ρ_0 , magnetization M_s , sign and magnitude of the normal R_0 and anomalous R_S coefficients of the Hall effect are shown to be observed with a change of the valence electron numbers z in the range from 26 to 32 corresponding the order from Co2TiSi to Co2NiSi. A clear correlation is observed between ρ_0 , R_0 , R_S and M_s values, depending on the number z, which may be associated with the appearance of a state of a halfmetallic ferromagnet and/or spin gapless semiconductor. When z is changed, a power-law dependence of the anomalous Hall effect coefficient on the residual electrical resistivity is found to be observed with the exponent k = 3.1, which disagrees with the existing theories, but agrees well with previously obtained experimental data in similar half-metallic ferromagnetic Heusler alloys.

Keywords: half-metallic ferromagnets, spin gapless semiconductors, residual resistivity, magnetization, normal and anomalous Hall effect.