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In the framework of the discrete self-trapped model and its generalizations, the dynamics of two nonlinear 
elements of different physical origin is considered. The influence on the dynamics of their own nonlinearity, 
various types of interaction nonlinearity and nonequivalence of subsystems is investigated. Exact solutions of 
dynamic equations are found and investigated. Particular attention is paid to the study of essentially nonlinear 
inhomogeneous states with different levels of excitation for identical subsystems as a discrete analogue for 
different solitons. 
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1. Introduction

In solving numerous problems of nonlinear physics, a 
small set of well-studied models and the corresponding 
equations are often used such as: the sin-Gordon equation, 
the Korteweg–de Vries, Boussinesq, Landau–Lifshitz equa-
tions, the nonlinear Schrödinger equation [1, 2]. These par-
tial differential evolution equations are completely 
integrable and widely used for the analysis of nonlinear ex-
citations in various media (optics [3], hydrodynamics [4], 
electrodynamics [5] and crystal lattice theory [6]), in par-
ticular, for the study of soliton excitations. In integrable sys-
tems (usually one-dimensional), soliton solutions have a 
simple form and solitons have no internal dynamics. In con-
trast, in non-integrable systems (mainly multidimensional 
and discrete), exact soliton solutions are absent, and approx-
imate and obtained numerical solutions demonstrate internal 
dynamics. But usually, due to the complexity of the prob-
lem, the simplest “stationary” one-frequency states are in-
vestigated. On the other hand, as was first shown in Ref. 7, 
inhomogeneous, localized excitations are also possible in the 
systems with a finite number of the degrees of freedom. 
These “quasi-soliton” excitations have many properties of 
solitons in the systems with distributed parameters.  

Their study makes it possible to better understand the 
dynamics of soliton excitations in non-integrable distributed 

systems (in particular, the internal dynamics of solitons). 
In this context, it is especially important to study the finite-
dimensional exactly integrable systems and the entire set of 
their exact solutions. That is why, recently, much attention, 
has been paid to the study of discrete systems and systems 
with the finite number of degrees of freedom and finite-
dimensional analogues of these models [8, 9]. First, we are 
talking about discrete media (for example, molecular crys-
tals) under conditions of strong localization of excitations on 
several particles or elements of the system [7]. Secondly, the 
case of the interaction of several nanoelements, for example, 
a pair of qubits [10] or coupled magnetic bilayers, can be 
attributed to such systems. Finally, the interaction of several 
nonlinear wave modes in the same object is possible (the 
interaction of waves of different polarization in optical 
waveguides [11, 12]). Just as in systems with distributed 
parameters the problem often reduces to the popular nonlin-
ear Schrödinger equation, in discrete nonlinear systems the 
so-called DSTM (discrete self-trapped model) and DNSE 
(discrete nonlinear Schrodinger equation) [13] and their 
modifications are often used. In the traditional form [8], this 
model is described by the equation 

( )2
0n n n n n miψ = ω ψ −α ψ ψ + ε ψ −ψ . (1)
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It is used to describe nonlinear (in particular, soliton) 
dynamics in layered media, quasi-two-dimensional mag-
nets, and the propagation of coherent optical pulses 
(solitons) in waveguide systems and photonic crystals [3]. 
Modifications of this equation of the form 

 ( )2
0 ,n n n n n n mi Fψ = ω ψ −α ψ ψ + ψ ψ   

studied below for some specific types of the function F  are 
used for description of the coupled qubits [10], spatially 
homogeneous interacting Bose–Einstein condensates [14], 
and the interaction of optical pulses with different polariza-
tions [12]. Usually, within the framework of these models, 
the soliton dynamics of systems is studied. However, as 
was previously shown [7], in the systems with a small 
number of degrees of freedom, it appears some properties 
of nonlinear dynamics which are characteristic for systems 
with a large number of degrees of freedom and systems 
with distributed parameters. Moreover, in systems with 
two degrees of freedom the possibility of states similar to 
soliton states in systems with distributed parameters ap-
pears. This was demonstrated in [15] for coupled magnetic 
systems as an example. In this paper, the nonlinear dynam-
ics of DSTM for two degrees of freedom is investigated 
and exact solutions of the corresponding equations are 
found. Also the dynamics was analyzed in the model, gen-
eralizing DSTM.  

2. DSTM for two coupled elements with nonlinear on-
site potentials 

We begin the consideration of the problem with the 
standard DSTM in the framework of the NLSE for two 
particles, the dynamics of which are described by the 
system of equations (1). This system of equations de-
scribes, for example, a magnetic double layers used in 
magnetic valves, a pair of optical fibers at the point of 
contact in the optical switches, a pair of magnetic 
nanodots. At low excitation levels, the Landau–Lifshitz 
equations considered in [15] approximate to the system of 
equations (1). But at high excitation levels, the dynamics 
of equations (1) has a number of properties that are ab-
sent in magnetic systems. It is convenient to describe the 
dynamics of a linear oscillator in terms of complex quanti-
ty ( )0 0/ / 2x ip mψ = ω + ω , which plays the role of a 
classic analogue of the annihilation operator for the quan-
tum of the excitation for the oscillator with frequency 0ω . 
By taking into account the weak (linear) interaction be-
tween oscillators and the simplest form of self non-
linearity (of on-site potential), we get for the two oscilla-
tors in a resonant approximation the system of two equa-
tions (1), with , 1, 2n m = . This is a special case of the well-
known discrete self-trapped model for two particles. The 
system of equations (1) is fully integrable, with two inte-
grals of motion: total energy 

 ( )2 4 2
0 1 2/ 2n nE = ω ψ −α ψ + ε ψ −ψ∑  (2) 

and additional integral 

 2
nN = ψ∑ , (3) 

corresponding to adiabatic invariant and represented the num-
ber of excitations under the quasi-classical interpretation of 
the dynamics of the coupled oscillators. Since constN = , it is 
convenient to introduce the following new variables: 

 ( )1 1cos expN iψ = ϑ ϕ ,  ( )2 2sin expN iψ = ϑ ϕ , (4)  

in terms of which equations (1) will be rewritten as 

 2 sinu = ε ψ , (5) 

 2 ctg cos cos ,u N uψ = ε ψ −α  (6) 

where 2u = ϑ and 2 1ψ = ϕ −ϕ . This closed system for the 
variables u  and ψ  is supplemented by the equation for the 
variable 2 1ϕ = ϕ + ϕ : 

 ( )02 / 2 2 cos / sinN uϕ = ω + ε −α + ε ψ . (7) 

In new variables the energy is written as 

( )( ) ( )2 2
0 1 sin cos 1 cos / 4E u N u N= ω + ε − ψ −α + . (8) 

Equations (1) allow single-frequency solutions corre-
sponding to stationary states with the following relation 
between the amplitudes of oscillators: 

 ( )( )( )1 2 1 2 1 2 / 0a a a a a a− + − ε α = . (9) 

Thus the in-phase (s), anti-phase (a) and nonuniform (n) 
stationary states with the following dependences of fre-
quency oscillations on the solution norm are possible 

 0 / 2s Nω = ω −α , (10) 

 0 2 / 2a Nω = ω + ε −α ,     2 1a a= − , (11) 

 0n Nω = ω + ε −α ,     2 1 /a a= ε α. (12) 

These dependences demonstrate two important properties 
of nonlinear oscillations: the dependence of the frequency of 
oscillations on their energy (or, which is the same — on 
their norm), and the emergence of additional to the “main 
nonlinear” oscillations the dynamic state of motion at the 
critical level of the excitation 2 /bN N> = ε α in bifurca-
tion way: the motion with different amplitudes of oscilla-
tions for the different elements of the system 1 2a a≠ , i. e., 
the localization of energy on one of the two identical os-
cillators. These features of the dynamics are illustrated in 
Fig. 1(a). Unfortunately, only the single-frequency solu-
tions can be depicted on the plane ( , )Nω , while the vibra-
tions of the general type are two-frequency with incom-
mensurate frequencies. Their properties are convenient to 
discuss on the plane of the integrals of motion ( , )E N .  

The dependences of the energy of single-frequency os-
cillations on their norms (adiabatic invariants) are deter-
mined by the usual mechanical ratio /dE dNω = . There-
fore, it is easy to get the relation between the motion 
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integrals for single-frequency vibrations, corresponding to 
dependences (10)–(12): 

 2
0 / 4sE N N= ω −α , (13) 

 ( ) 2
0 2 / 4aE N N= ω + ε −α , (14) 

 ( ) 2 2
0 / 2 /nE N N= ω + ε −α − ε α, (15) 

 ( ) 2
0 / 2E N N∗ = ω + ε −α , (16) 

 ( ) 2 2
0 / 4 2 /E N N= ω + ε −α − ε α . (17) 

Here the important (as it will be seen later) dependences 
(16), (17) are given, in which there appear the important 
changes in the dynamics of the system. The dependences 
(13)–(17) are depicted in Fig. 1(b).  

In Fig. 1(b), the line a corresponds to anti-phase oscilla-
tions (phases of which differ by π), line s — 0 sbb sE′  — to 
the in-phase oscillations, line n — nbnE  — to localized 
states with different levels of excitation of the oscillators 
(localization of energy on one element of the system), and 
the line *0b E′  corresponds to the dependencе from Eq. (15). 
Equations (5), (6) correspond to the effective system with 
one degree of freedom and the integral of motion (8), 
which can be integrated in quadratures, and its dynamics is 
depicted on the «phase plane» ( , )u ψ  — Fig. 2.  

In Fig. 2(a), the special points such as «centers» s and a 
correspond to single-frequency in-phase and anti-phase 
oscillations and to the lines 0b and 0a in Fig. 1(b), while 
the detached separatrix (C) separates the oscillations close 
to the in-phase one from those close to the anti-phase oscil-

Fig. 1. Dependences of the stationary state frequencies on the norms of the solutions (a) and (b): the area of existence for solutions with 
different dynamics on the plane (E, N) of integrals of motion (shaded in figure).  

Fig. 2. Phase portraits of the system (5), (6) on the plane of variables ( , )u ψ  for different values of the complete norm of the solution: 

bN N<  (a), 2b bN N N< <  (b), 2 bN N=  (c) and 2 bN N>  (d).  
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lations. It corresponds to the dependence (15) and to the 
line 0b′  in Fig. 1(b). Special points of the type of 
«centеrеs» are stable, which indicates the stability of in-
phase and anti-phase excitations in this range of norm val-
ues. At the point of bifurcation b there appear two new 
states with different values of oscillators excitations: two 
new centers in Fig. 2(b). They correspond to the line n in 
Fig. 1a and the line nbnE  in Fig. 1(b). The saddle point 
( 0)u = ψ =  is now associated with in-phase oscillations. 
This denotes that the in-phase oscillations become unstable 
for bN N> . They correspond to the dashed line s in Fig. 
1(a) and the line ( )sbb sE′  in Fig. 1(b). The last line simul-
taneously corresponds to the separate loops S in Fig. 2(b). 
The areas inside the separatrix S , between the separatrices 
S  and C  and outside of them, correspond, respectively, to 
the domains B , S  and A  in Fig. 1(b). The second bifurca-
tion takes place at 2 bN N= , i. e., in the point of merging of 
separatices S  and C on the phase portrait [triangles in 
Fig. 2(c)]. Finally, at 2 bN N>  the two separatrices are sep-
arated again [Fig. 2(d)], but the separatrix which going out 
of the saddle point of the in-phase oscillations does not 
have a form of closed separation loop.  

The states investigated by qualitative methods in the 
phase plane allow exact analytical solutions. From Eq. (7) 
it results the relation ( , , )u E Nψ = ψ : 

 
( ) ( )

( )

2 2/ 4 sin
cos

sin

E E N u

N u
∗ − + α

ψ =
ε

, (18) 

and for the new function ( / 2)cos ( )f N u= α  Eq. (5) can 
be reduced to a closed equation for the function f : 

 ( ) ( )( )2 2 2
1 2/ /df dt A f f Aα = − − , (19) 

with 

 ( )( )1,2 2 /nA E E E E= − ± ε − α . (20) 

2.1. Low-amplitude excitations  

In the domain with low-amplitude excitation for 
bN N< , in which n s aE E E E E< < < <  [Fig. 2(a)], 

 ( ) 2 2
1 2 /nA E E E E a b= − − + ε − α = < , (21) 

 ( ) 2
2 2 /nA E E E E b= − − − ε − α = −  (22) 

and the solution to the Еq. (19) reads  

 ( )2 2cn ,f a a b t k= + α ,  2 2/k a a b= + , (23) 

where cn( , )z k  denotes Jacobi's elliptical cosine. So 0a = , 
( )2 2 bb N N= ε +  for aE E=  and 0a = , 2 2 ( )bb N N= ε −  

for sE E= . The frequency of the oscillation for the relative 
amplitude of subsystems is equal to 

 ( ) ( )
,

2
E N a

kK k
π α

Ω = , (24) 

where ( )K k  is the complete elliptical integral of the first kind. 
On the boundaries for the area of the solution existing (a and s 
in Fig. 1(b)) 0k → , 0a →  and ( ),s a b bb N N N→ α  . 
That is, the frequency of periodic energy transfer between the 
oscillators is equal to 

 ( ), 2 1 /s a b b bN N N N NΩ = α = ε  . (25) 

In the linear limit it turns out the well-known result 2Ω = ε . 
The elliptical integral module reaches the maximum value 

/ 2m bk N N=  on the line ( )E E N∗=  (16) on which 
2 2 / 4ma N= α . This line corresponds to the separatrix C  in 

the phase portrait in Fig. 2(a).  
The formula (25) describes the relative oscillations of 

the amplitudes of the two oscillators and they are deter-
mined by the interaction of subsystems. In addition, the 
system demonstrates a joint «rotation» (similar to the joint 
rotation of two related magnetic moments in [15]) with 
frequencies close to the oscillators' own frequency 0ω . 
This movement resembles the oscillations of two bound 
linear oscillators, which vibrate with the frequencies of 
their own modes (in-phase and anti-phase) and simultane-
ously demonstrate the wobbling with the frequency of the 
order of the magnitude of the interaction between them. In 
this case, there is also the transfer of energy between oscil-
lators with frequency (25), but now the principle of super-
position and normal nodes do not exist. The complete dy-
namics of the system is described by the following 
formulas: 

 2
1,2 1 cos exp

2 2 2
N i iu dt dt ψ = ± ϕ ψ 

 ∫ ∫ 
 , (26) 

in which the values ψ  and ϕ  are defined by Eqs. (6), (7). 
The azimuthal rotation of oscillators is determined by the ex-
ponential expression and is expressed through the elliptical 
integrals of the third kind. This movement consists of av-
erage rotation with frequency / 2ν = ϕ ψ 

 , where angu-
lar brackets mean the averaging over the period of motion, 
and additional azimuthal oscillation with frequency Ω .  

Integral in expression (26) also gives an additional line-
ar in time contribution, and the total formula in the limits 

sE E→  and aE E→  leads to synchronous in-phase and 
anti-phase rotations with frequencies (10), (11). The ampli-
tude of modulation for the excitations of individual oscilla-
tors is equal to 24 /N a Nδ = α , and on the line ( )E E N∗=  
we have maxN Nδ = , i. e., the periodic complete transfer of 
energy between oscillators is observed.  

Thus, in the system of coupled anharmonic oscillators, 
the dynamics of the system is two-frequency, but it does not 
represent the superposition of normal modes: the frequency 
of energy exchanging between the oscillators (radial move-
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ment) does not represent a difference between the frequen-
cies of azimuth rotations (main nonlinear oscillations).  

2.2. Large-amplitude excitations 

In the domain of large excitations with 2b bN N N< < , 
where n s aE E E E< < <  [Fig. 2(b)], we have 

( ) 2
1 2 /nA E E E E a= − − + ε − α = ,  n aE E E< < , (27) 

( ) 2
2 2 /nA E E E E b= − − − ε − α = − ,  s aE E E< < , (28) 

( ) 2 2
2 2 /nA E E E E c a= − − − ε − α = < ,  n sE E E< < .  

  (29) 

Thus, the area for the valid parameters N  and E  values is 
divided into two parts with sE E>  and sE E< . [The domain 
(28) corresponds to A in Fig. 1(b)]. From the same picture 
one can see that now the dependence ( )E N  is inside the 
domain A, and while passing through over the parameters 
( , )E N  the solution slightly changes: at aE E E< <  as in the 
previous case 2 2a b< , and for sE E E< <   we have 

2 2a b> . For 2 2a b>  in this area at the border sE E=  pa-
rameters 0b =  and 2 2 ( )ba N N= ε − . Thus, on the border 

sE E= , corresponding to the separatrix S  in Fig. 2(b), the 
module 1k =  and the solution is aperiodic: 

( ) ( )cos 2 / 1 / cosech / 12b b bu N N N N N N t= − − α .  

  (30) 

[The line E E=   still corresponds to the separatrix C  in 
Fig. 1(b)]. In the region n sE E E< <  the solution is being 
radically transformed: 

 ( )dn ,f a a t k= α ,    2 21 /k c a= − . (31) 

At the border sE E=  the parameters of the solution are 
equal to 2 2 ( )ba N N= ε − , 0c =  and 1k = . On the other 
border nE E=  they take the values 2 2a c= =  

2 2( ) / 4bN N= α −  and 0k = . Modulation of the levels of 
excitations of two oscillators is determined by the expression 

 ( )1,2 / 2 dn , /N N a a t k= ± α α . (32) 

It is important that although in this area of the system 
parameters bN N>  and n sE E E< < , as above, there is 
the periodic exchange of energy between oscillators with 
the frequency 

 ( ) ( ), /a E N K kΩ = π α . (33) 

But now the average levels of the excitations of individual 
subsystems are not equal: 

 ( )1,2 1 / / 2N N a NK= ± π α . (34) 

At the border of the area of the existence of solutions 
with the maximum difference of the excitations of oscilla-

tors we have 2 2
1,2 (1 1 / ) / 2bN N N N= ± − . In the limit 

N →∞  the total energy is concentrated on one of the os-
cillators: 1N N→ , 2 0N → . Such the spatial localiza-
tion of energy in the system of identical oscillators is the 
nature of the solitary localization in nonlinear systems with 
distributed parameters.  

From Fig. 2 it is clear that the purely in-phase oscilla-
tions correspond to a special point of the «saddle» point. 
Therefore the in-phase oscillations become unstable [see 
dotted line in Fig. 1(a)]. From this point separatrix loops 
«come out», which correspond to the aperiodic evolution 
for the amplitudes of oscillators. (But they are accompa-
nied by periodic in-phase rotation of oscillators with a 
large frequency of order of 0ω .) The specific type of 
separatrices depends on the norm of the solution N . While 

2b bN N N< <  two separatrices S  and C  in Fig. 2(b) [E∗  
and sE  in Fig. 1(b)] separate quasi-in-phase and quasi-anti-
phase oscillations and quasi-in-phase and heterogeneous 
oscillations, respectively. For 2 bN N=  [Fig. 2(c)] these 
separatrices merge and the aperiodic component of the 
movement looks particularly simple: / 2u = π ±ψ  and 

2
1 / 2ch (2 )N N t= ε . Oscillators rotate with frequency 

0Ω = ω − ε  and with the total phase shift equal to π. This 
phase shift is also preserved at 2 bN N>  for one of the 
separatrices [E∗  on Fig. 1(b)].  

3. DSTM for two coupled elements with nonlinear 
interaction 

So far, we have considered a pair of coupled nonlinear dy-
namical systems with linear interaction between the elements. 
At the same time, the situations often arise in physical appli-
cations in which the interaction between two fields is substan-
tially nonlinear. The two degrees of freedom of a dynamic 
system in these cases are, for example, the amplitudes of two 
modes in one optical waveguide [3, 16, 17] or the supercon-
ducting phases of two modes of superconducting resonators 
in contact with Josephson junctions [10].  

1. In the simple case of a waveguide with two modes 
propagating with different carrier frequencies but with spa-
tially uniform amplitudes of two modes slowly varying 
with time, the equations have the form [3, 16] 

 2 2
1 0 1 1 1 2 1iψ = ω ψ −α ψ ψ −β ψ ψ , (35) 

 2 2
2 0 2 2 2 1 2iψ = ω ψ −α ψ ψ −β ψ ψ , (36) 

where the interaction between nonlinear elements is essen-
tially nonlinear, but has a specific character. (The linear 
interaction is absent.) With positive values of the parame-
ters of anharmonism , 0α β > , elementary excitations in 
each subsystem are attracted. Excitations from different 
subsystems are also attracted.  

2. More complicated is the interaction in the system of 
interacting superconducting phases of superconducting 
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resonators connected to SQUID. It contains both nonlinear 
and linear (asymmetric) in field variables terms [10]:  

 2 2
1 1 2 1 1 2 1iψ = µψ − εψ −α ψ ψ −β ψ ψ , (37) 

 2 2
2 2 1 2 2 1 2iψ = −µψ − εψ −α ψ ψ −β ψ ψ . (38) 

3. A similar dynamic system arises for the description of 
the propagation of two optical modes with orthogonal polar-
ization in an optical waveguide with weak optical anisotro-
py. In this case, the dynamics of spatially homogeneous 
modes is described by the system of equations [10, 16] 

 2 2 2
1 1 1 1 2 1 1 2iψ = µψ −α ψ ψ −β ψ ψ −δψ ψ , (39) 

 2 2 2
2 2 2 2 1 2 2 1iψ = −µψ −α ψ ψ −β ψ ψ −δψ ψ . (40) 

We begin by studying the system (35), (36), which can 
be considered as a simple finite-dimensional analogue of 
the Manakov system.  

3.1. Systems with only nonlinear interaction 

The dynamics of the systems described by equations 
(35), (36) are quite simple. The nonlinear interaction ap-
pearing in it does not lead to the transfer of energy between 
the two subsystems. It is seen from (35), (36) that the 
norms of each of the two effective oscillators are con-
served: 2

1 1N = ψ  and 2
2 2N = ψ  are two independent 

integrals of motion and the conserved total energy is not an 
independent integral and is expressed in terms of iN : 

 ( )2
1 2/ 2E N N N N= µ −α + α −β , (41) 

where 1 2N N N= +  is the total “power” of excitation. 
From (41) the influence of nonlinear interaction between 
oscillators on their dynamics is seen. With weak nonlinear 
interaction β < α  at a fixed level of total excitation, the ener-

gy is minimal when only one oscillator is excited [Fig. 3(a)]. 
With a strong nonlinear interaction β > α , the energy is 
minimal when the excitations are equally distributed be-
tween two degrees of freedom. Nonlinear interaction be-
tween oscillators manifests itself in the fact that the fre-
quencies of each of them depend on the level of excitation 
of the other: 

 1 0 1 2N Nω = ω −α −β ,  2 0 2 1N Nω = ω −α −β . (42) 

(Naturally, mechanical requirements are fulfilled 
/ i idE dN = ω .) The regions of existence of solutions for 

different interactions of oscillators on the plane of the 
integrals of motion ,E N  are shown in Figs. 3(a), (b). 
Here, the insets show the change in the total energy dur-
ing the redistribution of the total number of elementary 
excitations between oscillators while conservation of 
their total number.  

3.2. Interacting nonequivalent systems 

The systems described by equations (37), (38) are more 
complicated. Equations (37), (38) include both linear and 
nonlinear interactions between the two subsystems. In ad-
dition, the difference in the first terms in the right-hand 
sides leads to the fact that the subsystems become none-
quivalent and the degeneracy that was present in the sys-
tems described by Eqs. (1) is removed. Due to the linear 
part of the interaction, the norms of individual effective 
oscillators are not preserved, but the total norm 

 2 2
1 2N = ψ + ψ  (43) 

remains an integral of motion. The total energy is also con-
served. It becomes an independent integral of motion:  

( ) 2
1 2 / 2E N N N= µ − −α +  

 ( ) ( )1 2 1 2 1 2N N+ α −β − ε ψ ψ +ψ ψ . (44) 

Fig. 3. The domains of an existence for the solutions on the plane of the integrals of motion with (a) small interparticle interaction and 
(b) in the case when the interparticle interaction exceeds the “internal” interactions of elementary excitations. The insets show the ener-
gy dependence on the distribution of excitations between subsystems for a fixed total number N.  
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As above, it is convenient to represent the solution in the 
form (4) in spherical coordinates by introducing the varia-
bles 2u = ϑ and 2 1ψ = ϕ −ϕ . In this case, Eq. (5) will retain 
its form, and Eq. (6) will slightly change: 

 ( )2 2 ctg cos cosu N uψ = µ + ε ψ − α −β . (45) 

Expression (8) for energy also changes and transforms to 
the form 

( )cos sin cosE u u N= µ − ε ψ −  

 ( )2 2 2sin cos / 4u u N− β +α . (46) 

It differs from (8) in the form of the first term. As in the first 
section, expressing the variable ψ  with the help of (46) as a 
dependence ( , , )u E Nψ = ψ  and substituting it into Eq. (5), 
we obtain a closed equation for ( )u u t= , which in terms of 
the variable ( / 2)cosf N u=  has the form 

 ( )22 2 3 4
0 1 2 3f a a f a f a f f= + + + − α −β , (47) 

 ( )22 2 2
0 / 4a N E N= ε − +β ,  

 ( ) ( )( )2 2 2
2 4 2 / 4a E N= − µ + ε − α −β +β , (48) 

 ( )2
1 4 / 4a E N= µ +β ,  ( )3 4a = µ α −β . (49) 

For 0 0ω →  and 0β→ , Eq. (47) transforms into Eq. (19) 
considered earlier, but also for nonzero µ and β is solved 
in terms of Jacobi elliptic functions. However, the dynam-
ics of a system is easily analyzed by the methods of the 
qualitative theory of dynamical systems. As in the previous 
case, we consider the single-frequency solutions of the 
form exp( )i ia i tψ = − ω  for which the dependence of the 

frequencies of such stationary states on the norm of solu-
tions ( )Nω = ω  follows from (37), (38), (43). Implicitly, it 
has the form 

( )( )( ) ( )( )22 2 / 2a s n a sω−ω ω−ω ω−ω =µ ω− ω +ω , (50) 

where ( ) / 2a Nω = ε − α +β , ( ) / 2s Nω = −ε − α +β  and 
n Nω = − α are the dependences of anti-phase, in-phase, 

and inhomogeneous single-frequency oscillations on the 
total excitation norm in the limit 0µ → . They are similar 
to the dependences (10)–(12) from the first part of the pa-
per and are shown by dashed lines a, s and n in Fig. 4. For 
small values of the parameter µ (for example, for the weak 
anisotropy of the refractive index in optical waveguides), 
the dependence (50) is easily analyzed. The obtained de-
pendences are shown in bold lines in Fig. 4 with the same 
indices (capital letters).  

The Fig. 4 shows that taking into account the linear in-
teraction of the subsystems with a difference in their char-
acteristics leads to the removal of the degeneracy of the 
frequency dependence for inhomogeneous states. Typical-
ly, the frequency dependences for inhomogeneous states 
are split off from the dependence for in-phase oscillations 
in the case of “soft” nonlinearity, when the frequencies 
decrease with increasing energy, and the dependence for 
antiphase oscillations in the case of “hard” nonlinearity, 
when the frequencies increase with increasing excitation 
level of the system.  

In this example, both nonlinearities (in the interaction of 
elementary excitations in each subsystem and between 
them) are soft, but the dependences for the inhomogeneous 
states can also be split off from the line of antiphase vibra-
tions at β > α . In the limit 0µ =  (identical subsystems), the 
bifurcation value of the norm is equal to 2 /bN = ε α −β . 
When 0µ ≠ , in the limit of weak excitation of the system, the 
frequencies of the main nonlinear oscillations are “repelled” 

Fig. 4. Dependences of the frequencies of stationary states on the norm of a solution for different ratios of nonlinearity parameters: 
(a) β < α  and (b) β > α . 
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by an amount 22 /δω ≈ µ ε , and at high levels of excitation 
bN N>> , the removal of the degeneracy of the frequency 

dependences of two inhomogeneous states is 2∆ω ≈ µ . 
Figure 4(a) is similar to Fig. 1(a) for the standard DSTM 
discussed above. We also give an image of the region for the 
existence of various solutions on the plane ( , )E N  for the 
integrals of motion, similar to that shown in Fig. 1(b) for 
DSTM. It is shown in Fig. 5 for the case α > β .  

To get an idea of the nature of the dynamics for differ-
ent ratios of the integrals of motion, we consider this dy-

namics on the “phase plane” in the framework of Eqs. (5), 
(45). Figure 6 shows the phase portraits of the system for 
the different values of the norm corresponding to lines 1, 2, 
3, and 4 in Fig. 5.  

Figure 6(a) corresponds to section 1 in Fig. 5. The cen-
ters s and a describe in-phase and antiphase oscillations. 
Those the phases of the two oscillators coincide or differ by 
π, but in contrast to the case of the usual DSTM, the ampli-
tudes ia  now do not coincide and the special points are shift-
ed from the value / 2u = π . In addition, the separatrix C  in 
Fig. 2(a) “splits”, forming a region of the phase plane 
[hatched in Fig. 6a], in which the phase between the oscilla-
tions of individual oscillators monotonically increases. This 
is due to the nonidentity of the subsystems. With an increase 
of the norm N  at a critical value N  corresponding to Section 
2 in Fig. 5, a saddle-focus pair appears on the phase plane in 
a bifurcation manner. For large N  (section 3 in Fig. 5), three 
special points in Fig. 6(b) (S, N, S) correspond to in-phase 
oscillations, but in the solution S  the amplitudes of the two 
oscillators practically coincide, and this is an analog of unsta-
ble in-phase oscillations after bifurcation in the previous mod-
el. Two stable solutions N  correspond to inhomogeneous in-
phase oscillations with a large difference in amplitudes (an 
analog of inhomogeneous states). In this case, they are differ-
ent due to the inequality of the subsystems. The next bifurca-
tion occurs at a value N  at which the energies of the two sad-
dle points S  and σ  in the phase portrait of Fig. 6(b) coincide, 
which corresponds to the portrait in Fig. 6(c). Finally, at even 
higher levels of the norm [Fig. 6(d)], there exist regions with 
the monotonous relative rotation of the oscillators in opposite 

Fig. 5. The region of existence for two-frequency excitations of a 
general form on the plane of the integrals of motion (E, N) is between 
the lines of antiphase oscillations a and the line n of inhomogeneous 
single-frequency oscillations with a minimum energy. 

Fig. 6. Phase portraits of the system at different levels of excitation (different values of the norm N).  
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directions. The regions of the monotonous relative rotation of 
the oscillators, marked by shading on the phase portraits, are 
marked by shading on the plane of the integrals of motion in 
Fig. 5 as well.  

Thus, the main point in the dynamics of two nonlinear 
systems within the framework of the model (37), (38) is 
the localization of excitations in one of the coupled subsys-
tems, starting from a certain level of the excitation. In this 
case, in contrast to the standard DSTM, due to the none-
quivalence of the subsystems, the excitation is localized in 
one quite certain subsystem. This suppresses uncertainty in 
symmetric systems and can be useful in technical applica-
tions of this problem.  

3.3. Systems with parametrical nonlinear interaction 

In conclusion, we consider the systems described by 
Eqs. (39), (40). As in the systems considered above, two 
integrals of motion are conserved in it: the total norm (43) 
and the total energy 

( ) ( )2
1 2 1 2/ 2E N N N N N= µ − −α + α −β −  

 ( )2 2 2 2
1 2 1 2 / 2−δ ψ ψ +ψ ψ . (51) 

Introducing the new variables 1 1cos exp ( )N iψ = ϑ ϕ , 

2 2sin exp ( )N iψ = ϑ ϕ , 2u = ϑ, and 2 1ψ = ϕ −ϕ , we ob-
tain equations for them that replace (5) and (45): 

 sin sin 2u N u= δ ψ , (52) 

 ( )( )2 cos 2 cosN uψ = µ − α −β − δ ψ , (53) 

and the expression for energy 

( )
2 2

2cos sin
2 4

N NE N u u= µ −α + α −β −  

 
2

2sin cos 2
4

N u−δ ψ . (54) 

As in the previous case, the dynamics of the system de-
pends on the ratio of the constants of the model. For defi-
niteness and for comparison with the previous results, we 
will consider the case α < β+ δ, i. e., the opposite sign of 
the inequality.  

Let us consider the single-frequency stationary states of 
the type exp( ) exp( )i i i ia i t N i t iψ = − ω = − ω + Φ  with 

i i iN a a= . For them, from (39), (40) it follows the relations: 

( )( ) ( )( )2 2
1 2 2 1 1 2 2 2 1 12 / / 0a a N N a a a a a aµ + α −β − + δ − = , 

  (55) 

 ( ) ( )2 2
1 2 2 2 1 1/ 2 / 2 / /N a a a a a aω = − α +β − δ ⋅ + . (56) 

Thus, the system allows four different stationary states: 
two obvious states with the complete localization of excitation 

in one of the subsystems. These are the states with 1 0a =  and 
2N N=  ( 2)n , and with 2 0a =  and 1N N=  ( 1)n . For the oth-

er two solutions, from the reality of (55), (56) it follows that in 
them 1 2Φ = Φ  ( )s  and 1 2 / 2Φ = Φ + π  ( )a . (In the last solu-
tion, the doubled phase shifts by π, as in the problem of 
parametric resonance [2].) From (55) for these solutions it 
follows the relation 2 12 ( )( ) 0N Nµ + α −β δ − = . Taking 
into account that 1 2N N N+ = , we finally obtain for four 
stationary states: 

( )1n :  2 0N = ,  1N N= ,  Nω = µ −α ,  2 / 2E N N= −µ −α , 

  (57) 

( )2n :  2N N= ,  1 0N = ,  Nω = −µ −α ,  2 / 2E N N= µ −α , 

  (58) 

( )s :  1,2 / 2N N µ
= ±

α −β− δ
,  

( )
2

N α +β+ δ
ω = − , 

( )
2 2

4
NE µ

= − α +β+ δ
α −β− δ

, (59)  

( )a :  1,2 / 2N N µ
= ±

α −β+ δ
,   

( )
2

N α +β− δ
ω = − , 

 ( )
2 2

4
NE µ

= − α +β− δ
α −β+ δ

. (60)  

Figure 7(a) shows the frequency dependences on the to-
tal excitation norm for these stationary states, and Fig. 7b 
demonstrates the dependences for the total energy of the 
system.  

Two bifurcation points, which correspond to 
( )1 2 /bN = µ β−α + δ  and ( )2 2 /bN = µ β−α − δ , are ob-

served on the dependences of the frequency and energy on 
the norm of the stationary state ( )1n , in which the excita-
tion is completely localized in the first subsystem. At these 
points the states in which energy is distributed between the 
subsystems are split off. For a qualitative understanding of 
the dynamics of the system, let us consider the transfor-
mation of its phase portrait of it on the phase plane ( , )u ψ .  

The phase portrait has a simple structure without spe-
cial points for 1bN N<  [Fig. 8(a)].  

For small N  we have 2 tψ ≈ µ , which corresponds to 

2 2 exp ( )N i tψ = µ  and 1 1 exp ( )N i tψ = − µ . Those two 
moments rotate in the opposite direction with frequen-
cies ±µ. The minimum energy corresponds to a straight 
line u = π for the state 2n  with the first element in rest. 
The maximum energy corresponds to a straight line 

0,2u = π on which only the first oscillator is excited 1n . 
At intermediate energies, a periodic transfer of energy occurs 
between two subsystems: 0 0( / 2 )sin cos 2u u N u≈ + δ µ ψ  
as shown in Fig. 8(a). This scenario corresponds to Section 1 
in Fig. 7(b).  
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The first bifurcation occurs at 1 2 / ( )bN = µ β−α + δ  and 
the special point ( , 0)u = π ψ =  forms in the phase portrait 
[in section 2 in Fig. 7(b)]. When the norm N  exceeds the 
value 1bN , it splits into four special points: two centers and 
two saddles: the stable centers s at points 0ψ = , 

1 12( ) /b bu N N N= π± − , and unstable saddles z at points 

u = π, 1 1 14 ( ) /b b bN N NNψ = ± µ − δ  [see section 3 in 
Figs. 7(b) and 8(b)]. A stable center corresponds to a state 
s in which a nonzero excitation of the first subsystem ap-

pears. In this case, both «oscillators» rotate synchronously 
in the same phase with a frequency close to the value µ.  

With growth of N , the saddle points z  move along 
the line u = π to the points / 2ψ = ±π . The second bifur-
cation takes place at 2 2 / ( )bN = µ β−α − δ  [Section 4 in 
Fig. 7(b)] when in the phase portrait a “reconnection” of 
the saddle points occurs: two saddle points z  transform 
into two other saddles c with coordinates / 2ψ = π , 

2 22( ) /b bu N N N= π± −  [see Fig. 8(d)]. These solutions 
correspond to the dependence a in Fig. 7(b) for an unstable 

Fig. 7. The dependences of the frequencies (a) and energies (b) on the norm for the stationary states. 

Fig. 8. The phase portrait of the system for different values of the excitation norm. 
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stationary state. The state s with in-phase rotation of two 
effective oscillators becomes the ground state with mini-
mum energy. Moreover, in the limit of large excitations 
with bN N>> , the energy is practically equally distributed 
between the subsystems: 1 2N N≈ .  

Thus, in this system the dynamics is fundamentally dif-
ferent from those considered in the previous model.  

4. Conclusions  

It is well known that in nonlinear systems with a finite 
number of degrees of freedom the principle of superposi-
tion is absent. But some spatial single-frequency stationary 
states corresponding to the so-called “main nonlinear oscil-
lations” and specific states with unequal energy distribu-
tion between the separate subsystems are easily found. The 
latter are the finite-dimensional analogues of the soliton 
excitations in systems with distributed parameters. But in 
some cases related to real physical objects (coupled optical 
fibers, interacting optical modes, magnetic dots, and quan-
tum resonators), corresponding systems with two degrees 
of freedom allow exact solutions. They include, as special 
cases, the generally discussed main nonlinear oscillations 
and localized states. But general solutions describe in addi-
tion such important manifestations of nonlinear dynamics 
as the changing in time of the energy distribution between 
individual objects of the system. This phenomenon can be 
associated, for example, with the appearance of internal 
soliton excitations in non-integrable physical systems.  

We investigated the nonlinear dynamics for some 
integrable systems of two identical and nonidentical coupled 
nonlinear elements with linear and nonlinear interparticle 
interaction of different types and pay attention to some 
common features of this dynamics. (i) Although the princi-
ple of the superposition is absent in nonlinear systems, nev-
ertheless the spectrum for the integrable one contains the 
frequencies of two definite quasilinear modes with the peri-
odical transfer of the energy between them. (ii) The most 
interesting facts consists in the appearance of the additional 
states with the average nonuniform distribution of the ener-
gy between the degrees of freedom. This nonuniform non-
linear mode appears in the bifurcation way at the critical 
value of the total energy. (iii) These states can be treated as 
the soliton analogous in the system with the finite numbers 
of the degrees of freedom. But from the exact solutions, it 
can be seen that in the general case there is a partial ex-
change of energy between the subsystems and between the 
four main single-frequency states. Some solutions can be 
interpreted as the internal dynamics of localized states.  

This work was supported by the scientific project of the 
National Academy of Sciences of Ukraine No. 4. 17-N and 
the Scientific program 1.4.10. 26/F-26-4.  
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Динаміка пари зв’язаних нелінійних систем.  
II. Дискретна модель самозахвату 

О. С. Ковальов, Я. Є. Прилепський 

В межах дискретної моделі самозахвату (DSTM) та ії уза-
гальнень розглянуто нелінійну динаміку двох зв’язаних 
елементів у різних фізичних додатках, стосовно до магнітних, 
оптичних та надпровідних систем. Знайдено та досліджено 
точні розв’язки відповідних рівнянь. Особливу увагу приділе-
но дослідженню суттєво нелінійних неоднорідних станів з 
різним рівнем збудження ідентичних підсистем, які можна 
розглядати в якості дискретних аналогів солітонних збуджень 
в системах з розподіленими параметрами.  

Ключові слова: стаціонарні стани, головні нелінійні коливання, 
неоднорідні стани, інтеграли руху, фазовий 
портрет, біфуркації.
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