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The dependence for the frequencies of the internal modes on the external field in spiral structures in easy-
plane antiferromagnets with a small in-plane anisotropy are studied theoretically in a wide region of the fields 
including the spin-flop transition field. The theoretical results are compared with the known experimental data 
for the antiferromagnetic resonance  in NdFe3(BO3)4. This comparison enabled to reconstruct the dependence for 
the spiral period of the magnetic structure on the external field. 
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1. Introduction

The complicated magnetic structures with a spiral (heli-
cal) or transverse-spiral (cycloidal) modulation of magnet-
ization along a specific crystallographic direction have 
been actively studied in recent years, both theoretically and 
experimentally. Such helimagnets are ubiquitous in the 
field of magnetism. The reason for an existence of the heli-
cal structures may be connected with either Dzyalo-
shinskii–Moriya or competing exchange interactions. They 
appear either in the most multiferroics [1], or as a result of 
a competition of different physical field (with a several 
order parameters), for example, between magnetization 
and polarization. Spirals in multiferroics have attracted a 
great attention for applications based on their control with 
electric and magnetic fields [2]. Particularly the properties 
of multiferroics of the RFe3(BO3)4 family of ferroborates 
with different rare-earth ions 3R +  have recently been under 
active study due to large magnetoelectric effect [3]. In this 
paper, the author reports some theoretical results about the 
general features concerning to the resonant properties of 
the spiral structures with an application to the particular 
case of NdFe3(BO3)4. This compound was actively studied 
experimentally [4,5]. It has a number of interesting physi-
cal properties, including magnetic ordering of different 
magnetic sublattices, incommensurability of the magnetic 
structure and spontaneous polarization P.  

The compound NdFe3(BO3)4 has a crystal structure 
with trigonal space group 32R . The main feature of the 
crystal structure is that distorted FeO6 octahedral form 
spiral chains with threefold screw-axis symmetry along the 
crystallographyc c axes. The lattice parameter in c direction 

(Z axis) 7.603c =  Å corresponds to the minimal distance 
between the neighboring 3+Fe  ions /2 3.8FFR a c= = =  Å,
and the parameter in a direction (X axis in Fig. 1a) is 

9.594δ =  Å [6,7]. The crystallographic spiral (see Fig. 1b) 
is short-periodic with 3c FFL R≈ . The structure of the 
compound is represented in Fig. 1. Equal-size dark (red) 
circles in Fig. 1a corresponds to the 3+Fe  ions and clear 
(green) circles to 3+Nd  ions in the same XY plane perpen-
dicular to Z axis.  

Magnetic properties of the NdFe3(BO3)4 are formed by 
two magnetic sublattices of 3+Fe  with spin 5/2S =  and 

3+Nd  with spin 3/2S =  at low temperatures [8]. The main 
superexchange (through the oxygen ions) antiferromagnet-
ic interaction between 3+Fe  along the chains (between the 
nearest planes in Fig. 1) is equal to 277 kOeJ ≈ −  for the 
magnetic Hamiltonian of the system [9]: 

2
2

, , ,
/2 ,n m n FN n s n

n m n n s n
E J S S J S S J S J D Jµ

µ
= − − − +∑ ∑ ∑ ∑  

(1) 

where nS  is the momentum of 3+Fe  and nJ  for 3+Nd .
The 2nd nearest-neighbor interaction between 3+Fe  in 

Fe-subsystem (in the same plane in Fig. 1) is much small-
er: 2 31 kOeJ ≈ −  [9]. Interionic Fe–Nd interaction is much 
smaller and ferromagnetic one: 4.5 kOeFNJ ≈ + . But this 
interaction is very important by the following reason: 
magnetic anisotropy of 3+Fe  ions is absent and only easy-
plane anisotropy with additional in-plane anisotropy of 

3+Nd  moment which is related to the crystal field of 3+Nd  
ion with a six-fold symmetry exists and has the value 
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13.43 kOeD ≈  [9]. Owing to the Fe–Nd exchange interac-
tion this anisotropy reduces to the effective magnetic ani-
sotropy in the main magnetic chain of 3+Fe . As a result of 
these magnetic interactions, below the Néel temperature 

30.6 KNT ≈  an antiferromagnetic ordering of the iron mag-
netic subsystem develops in the easy XY plane. The neody-
mium subsystem has no its own phase transition but orders 
by the Fe–Nd exchange interaction. The different types of 
magnetic ordering obtained from the neutron experiments 
are proposed in [7–10] and the most probable one is repre-
sented in Fig. 2a. In each atomic layer in XY plane, all the 
ion moments are ferromagnetic ordered, but moments of 
the neighboring layers are antiferromagnetic-aligned. By 
reason of the threefold screw-axis symmetry, the ground 
state represents the domain structure with three types of 

domains with different orientations. But in a small magnet-
ic field of the order of 2 kOe, the crystal becomes 
monodomain one. This collinear structure exists in temper-
ature interval 13.5 K 30.5 KT< < . At 13.5 KcT ≈  another 
phase transition takes place in which an incommensurate 
helical magnetic structure develops in the direction of the c 
axis [7]. This structure is represented qualitatively in Fig. 2(b). 
In reality, the spiral has a long-periodic form and the peri-
od of spin helix decreases from 3900L ≈ Å at 14 K to 

1123L ≈  Å at 2 K, i.e. L c>>  [10]. The Fourier analysis of 
the spiral structure demonstrates small but visible third-
order harmonics [7]. So the helix has a nonlinear structure, 
but it is not “a magnetic soliton lattice”: magnetic length 

1/c JΛ = β  (where 1β  is the small anisotropy in the easy 
plane) is of the order of 85 ~ 150c L cΛ ≈ ≈ .  

Fig. 2. (Color online) Magnetic structure of NdFe3(BO3)4 in collinear phase at c NT T T< <  (a) and in incommensurate helical struc-
ture at cT T<  (b). 

Fig. 1. (Color online) Crystallographyc structure of NdFe3(BO3)4 in XY plane (a) and along Z direction (b). 
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Below Néel temperature an antiferromagnetic ordering 
induces magnetostriction and appearance of a weak spon-
taneous polarization in the XY plane (red arrow P in Fig. 2a) 
which increases linearly as the temperature is lowered to 

~ 19 KT  [11]. Below 19 KT =  in the temperature region 
of spiral phase existence the dependence ( )P P T=  changes 
essentially [11] and this fact demonstrates the fundamental 
connection between the polarization and chiral properties of 
the NdFe3(BO3)4. In the external magnetic field at low tem-
peratures ( 4.5 KT = ) polarization is oriented along the field 
and rapidly increases from 210 C/mµ  to 2400 μC/m  at 

10 kOeH ≈  (the field of the spin-flop phase transition) [12].  

2. Experimental results 

Investigation of resonance properties of a family of 
ferroborates gives additional information about magnetic 
structure, magnetic constants and behavior in magnetic 
field for these compounds. Theoretically antiferromagnetic 
resonance (AFMR) was studied in the framework of clas-
sical Landau–Lifshitz equations for two-sublattice anti-
ferromagnets (AFM) [13,14]. In the simplest model of 
two-sublattice AFM in homogeneous magnetic field we 
consider the following classical energy of elementary 
magnetic cell in a spatial uniform state:  

 ( ) ( )( )2 2
1 2 1 2 /2z zE J= +β + −M M M n M n   

 ( ) ( )( ) ( )2 2
1 1 2 1 2/2x x−β + − +M n M n M M H, (2) 

where J  is the exchange interaction between nearest-neigh-
bor magnetic moments of the Fe layers, iM  are the magneti-
zation per one magnetic chain, β is a constant of the main 
magnetic easy-plain anisotropy, 1β << β is the constant of 
the additional small anisotropy in this easy-plain (X is the 
easy direction in XY plane), 0M=H h  is the external mag-
netic field in easy plane ( 0M  is the nominal magnetization 

of the sublattice), zn  and xn  are the units vectors along the 
corresponding axes. In the framework of Landau–Lifshitz 
equations this Hamiltonian results in the resonance de-
pendences of the eigenmodes of the system, which are de-
picted in Fig. 3a. Thick lines in Fig. 3a are for the field 
directed along the easiest direction (X in Fig. 1a), thin lines 
are for the perpendicular field in Y direction. Spin-flop tran-
sition takes place in the field 1 1(2 )sfh J= +β β . The char-
acteristic resonance frequencies at zero field are given by 
expressions 

1 0 1 1(2 ) ,gM JΩ = +β+β β    

2 0 1 1(2 )( ),gM JΩ = +β β+β  

where g  is the gyromagnetic ratio. In strong fields .gHω ≈  
The magnetic parameters of NdFe3(BO3)4 were measured by 
AFMR method [4] and, as a result, the following resonance 
frequencies were obtained: the high-frequency AFMR branch 
was observed at frequency 2 101.9 GHzΩ =  and low-
frequency branch at 1 23.8 GHzΩ = . With 580 kOeJ =  [15] 
( 574 kOeJ =  in [6]) it follows from above mentioned formu-
las the value of spin-flop field 8.84 kOesfH ≈  (in the expe-

riment [16] 10 kOesfH ≈ ) and the anisotropy values: 

1.14 kOeβ =  and 1 0.06 kOeβ =  [4]. (The last constant is 
higher than calculated in [15] 1 0.012 kOeβ =  for the three-
fold screw-axis symmetry case.)  

It seems that for the fixed direction of the external mag-
netic field in the easy plane the spiral structure can be ex-
plained by the fact that in spiral phase the magnetic structure 
consists of alternating segments with the antiferromagnetic 
vector oriented parallel and perpendicular to the external 
field; in each of these, the field dependence of the frequen-
cy is described by curves in Fig. 3a (thin lines in Fig. 3b). 
Then the complete collection of resonance dependences for 
the eigenmodes must include both the sets of frequencies for 

||H  and ⊥H  in Fig. 3a. But the experiments [4,5] demon-

Fig. 3. Theoretical frequency-field dependences of AFMR spectrum for the external magnetic fields in the collinear phase (a), experi-
mental data for these dependences in the field parallel to the easy axis in the spiral phase (b).  
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strate quite different structure of AFMR frequencies pat-
tern. In Fig. 3b this pattern is represented for the case of the 
external field directed in the easy axis. Some dependences (A 
and B) are situated between the lines for the collinear struc-
ture, but two unusual resonance curves appear (C and D in 
Fig. 3b). An additional absorption line (C) is observed within 
a narrow frequency interval 27 GHz 30 GHz< ω <  [5]. 
This resonance absorption is observed only when the sta-
tionary external field is raised and the additional absorp-
tion peak does not show up when the field is lowered. An-
other absorption peak (D) is observed in field interval 
15 kOe 25 kOeh< <  with the essential shift from the de-
pendence for the collinear phase (triangles in Fig. 3b).  

3. Theoretical model 

We examine the resonance properties of the spiral sys-
tem in the incommensurate phase in the simplest case of 
zero temperature and without damping in the simplest 
model with the energy of the unit cell (2). The total energy 
of spatial inhomogeneous states can be written as 

( ) ( ) ( ) ( ) ( ) ( )( )1 1
1 2 1 2 2 1/2 /4n n n n n n

n
E J + − = + + + 

 ∑ M M M M M M  

( ) ( )( ) ( )( ) ( )( )2 2

1 2 1 2 /2n n n n
z z

n n

 
+ + + β + −  

 
∑ ∑M H M H M n M n  

 ( )( ) ( )( )2 2
1 1 2 /2n n

x x
n

 
− β +  

 
∑ M n M n . (3) 

After a symmetrization of this expression, introducing 
the dimensionless vector of one-cell magnetization 

( )1 2 0/2M= +m M M  and antiferromagnetism vector 
( )1 2 0/2M= −l M M , assuming the condition m l<<  in 

long-wave approximation we obtain the density of follow-
ing energy: 

( ) ( )2 22 2 2 2 2
0 0 02 / 2W JM m JM a d dz M≈ + − +l hm  

 ( ) ( )22 2
0 1 0z xM M+β −βl n l n . (4) 

We are interested in AFMR with low frequencies which 
are much smaller than the frequency of exchange mode 

~ Jω . In this limit the magnetic energy density of the sys-
tem (4) results in dynamical equations [17]: 

[ ] ( ) [ ] ( ) ( ) [ ]( )2 2 2
0 0/ 2 2 /tt zz tgM J a gM− + + +ll ll l lh lh lh  

 [ ]( ) [ ]( )12 2 0.z z x xJ J+ β − β =l n l n l n l n  (5) 

These approximate equations give the values of charac-
teristic frequencies in the collinear phase 1 0 12gM JΩ ≈ β  

and ( )2 0 12gM JΩ = β+β  which are close to the exact 
above-mentioned frequencies. In this approximation, the 
frequencies of AFMR in collinear phase satisfy the equation 

( )( )( )2 2 2 2 2 2
1 12 2 4 0J h J h hω − β+β + ω − β + − ω = , (6) 

where 0/ .gMω = Ω  In small fields sfh h<  two branches 
of AFMR have the field dependences: 

 2
1 12J hω ≈ β − , ( ) 2

2 12 3J hω ≈ β+β + , (7) 

which are depicted in Fig. 3b by thin lines. 
In the incommensurate spiral phase for static case, vec-

tor l lies in the easy plane and rotates in that plane; its 
components are cosxl l= ϕ  and sinyl l= ϕ  with the polar 
angle (see Fig. 2b) is counted from the direction of the a 
axis and obeys the equation 

 ( )2 2 2
12 2 sin cos 0zzJ a J hϕ − β − ϕ ϕ = . (8) 

Although there are no longer any pure collinear and spin-
flop structures in the helical phase, when the field passes 
through 12sfh J≈ β  the solutions of Eq. (8) change con-
siderably: 

 2
1 /2 am 1 ( / ) / ,sfh h z k k ϕ = π + − Λ 

 
, sfh h< , (9) 

 2
2 am ( / ) 1 / , ,sfh h z k k ϕ = − Λ 

 
  sfh h> , (10) 

where am( , )pz k  with 21 ( / ) /sfp h h k= − Λ  is the Jacobi 

elliptic amplitude, and 0 1k≤ ≤  is its modulus. The period 
of the incommensurate structure (of the function 2 ( )xl z ) is  

 22 ( )/ 1 ( / )sfL kK k h h= Λ − , (11) 

where ( )K k  is the complete elliptic integral of the first 
kind. In zero field, substituting the experimental data for 

1, ,a J β  and L  in this expression yields 0.812k ≈ . Thus, 
no distinct soliton structure is observed. Nevertheless, qua-
litatively we can interpret the solution (9), (10) as alter-
nating regions of a collinear phase with || xl n  and length L  
separated by kinks (domain walls) in a spin-flop phase 
with || .yl l  The solution for 2ϕ  describes alternating do-
mains of a spin-flop phase with || yl n  separated by kinks in 
a collinear phase with || xl n .  

Unfortunately, there are no experimental data about 
changing of the spiral structure in the external field. But 
magnetization measurement at low values of the magnetic 
field show some features at ~ 10 kOeH , i.e., at the spin-
flop field [10]. Some information about the helix structure 
can be obtained from the results of AFMR experiments 
from [4,5]. They show the existence of two AFMR branch-
es in the frequency interval 23.8–30 kOe and the absence 
of any branches in frequency interval 19–23.8 kOe in small 
fields 16 kOeH <  (see Fig. 3b). We will study below the 
possible scenarios of the helix transformation with the field 
taking in mind these facts. 
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4. Resonant properties of spiral structure in the field 
sfh h<  

Let us examine the spiral structure in the fields sfh h< . 
Linearizing Eq. (5) with respect to the static helicoid struc-
ture Eq. (9), i.e., taking 1( , ) ( ) ( , )z t z z tϕ = ϕ + φ , with 1,φ <<  
and 1ϑ << , where ϑ is the angle of the deviation for vector l 
out of the easy plane, for small oscillations we obtain the 
equations 

 ( )2 2 2 2 2 2
0/ 2 2 2tt zz zgM J a J J aϑ − ϑ + β− ϕ +   

 ( )2 2
1 0cos (2 ) 2 / cos 0tJ h h gM+ ϕ β − ϑ− ϕφ = , (12) 

 2 2 2 2
0 1/( ) 2 (2 )tt zzgM J a J hφ − φ + − β − +   

 2 2
1 02(2 )cos 2 /( ) cos 0tJ h h gM+ β − ϕ φ+ ϕϑ = . (13) 

We will be interested in low-frequencies branches of the 
AFMR spectrum ( )Jω <<  for which Eqs. (12), (13) can be 

simplified. For these branches 0 1/ ~t gM J∂ ∂ β  and 

2
1/ ~ /z Ja∂ ∂ β , and in the main approximation, it follows 

from Eq. (12) 

 ( )0cos /th J gMϑ ≈ ϕφ β , (14) 

and Eq. (13) modifies 

( )2 2 2 2
0 1/ 2 (2 )tt zzgM J a J hφ − φ + − β − +  

` 2 2
12(2 )cos 0J h + β − ϕ φ = . (15) 

For the small oscillations of the form ( )sinu z tφ = Ω  in 
the case of incommensurate structure (9), (10) we get the 
equation 

2 22 zzJ a u +  

2 2 2 2
1 1( (2 )) 2(2 )sn ( , ) 0J h J h pz k u + ω + β − − β − =  . (16) 

In experiments with the spatially uniform magnetic field 
only the homogeneous excitations with the frequencies, 
which correspond to the bounds of spin waves bands (bounds 
of the spectrum gap), are excited. The periodic solutions of 
Eq. (16), which correspond to these excitations, are well 
known [18]: 

 cn ( , )u pz k− = , 2
0 1 ( / ) /sfh h k k− ′ω = ω − , (17) 

 sn ( , )u pz k+ = , 2
0 1 ( / ) /sfh h k+ω = ω − , (18) 

where the additional modulus 21k k′ = − , cn ( , )pz k , and 
sn ( , )pz k  are the Jacobi elliptic cosine and sine, 

0 12Jω = β  is the frequency at sfh h=  (in the triple point 

ABC in Fig. 3b with experimental value 0 27.6 GHzω ≈ ). 
For the fixed period of the spiral constL =  (and so for 

constk = ) in the limit sfh h→  both the frequencies ±ω  
from Eqs. (17), (18) tend to zero. But the experiments [4,5] 
demonstrate the absence of any AFMR absorption for 

23.8 GHzω <  in this area of the field. So the period of the 
structure depends on the value of the external field: 

( )L L h=  and ( )k k h= . As the frequencies  tends to the 

finite value at sfh h→ , it follows that 2~ 1 ( / )sfk h h− . At 

zero field the ratio 0(0)/ (0) (0)k k− + ′ ′ω ω = = . The lower 
frequency equal to (0) 23.8 GHz−ω ≈  (line A in Fig. 4) 
and weakly depends on temperature [4]. The upper fre-
quency (line C in Fig. 4) strongly depends on the temper-
ature (see Fig. 6 in [5] and an extension of this depend-
ence to 0T →  (line C′ in Fig. 4) gives the value 

(0) 34 GHz+ω ≈ . (In Fig. 3b the results are given for 
4.2 KT =  with (0) 27.58 GHz+ω ≈ .) From the foregoing 

formulae, it follows that 0 0.7k ′ ≈  and 0 0.714k ≈ . The rela-

tion 1 0 0 0 0(0) 23.8 GHz 2 / /sfJ k k h k k− ′ ′ω ≈ = β =  leads to 

the values 8.67 kOesfh ≈  and 1 0.065 kOeβ ≈  close to the 
experimental data from [4]. The resonant frequency in the 
critical field sfh h=  is equal to 0 27.6 GHzω ≈ .  

To obtain the helix period dependence on the external 
field ( )L L h=  it is necessary to find the dependence 

( )k k h= . Using obtained from the experiment the approx-
imation 2( ) (0) (1 0.16( / ) )sfh h h− −ω ≈ ω +  for the frequency 
of the lower branch and the formula (17) it is easy to get 
the necessary relation 

 ( ) ( )2 2
0 1 ( / ) / 1 0.35( / )sf sfk k h h h h≈ − − . (19) 

Fig. 4. Theoretical (thin lines b, с, d) and experimental (thick 
lines) field dependences for the resonance frequencies of helix 
structure. 
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Then the theoretical field dependence of the upper 
branch of AFMR frequency will be (line c in Fig. 4) 

 ( ) ( )( )/h h k+ − ′ω ≈ ω =   

 ( ) ( ) ( )
1/22 22

01 1 / 1 0.35 /sf sfh k h h h h
−

−
    =ω − − −        

.  

  (20) 

The obtained theoretical results for these AFMR fre-
quency dependences ( )h+ω  and ( )h−ω  are in good agree-
ment with the experimental data (see the lines A, C′ and a, 
c in Fig. 4). Some discrepancy consists in monotonic de-
creasing of the frequency with the field in theoretical for-
mula (20). The knowledge of the dependence (19) for 

( )k k h=  gives the final changing of the spiral period: 

 ( ) ( ) ( ) ( ) ( )20 0/ 0 / 1 / sfL h L kK k k K k h h
 

= − ≈ 
 

  

 ( ) ( )20.75 / 1 / sfkK k h h≈ − . (21) 

It is the function slightly growing with ( )/ (0) 1.045sfL h L ≈ . 
In the limit sfh h→  the incommensurate structure trans-
forms into linear helix 1.13 /zϕ ≈ Λ  (see the left segment 
in Fig. 5). 

5. Resonant properties of spiral structure in the field 
sfh h>  

In fields larger than the field of the spin-flop transition 
sfh h> , the resonance dependences also differ essentially in 

the case of the collinear phase at high temperatures 
( 14.6 KT =  is the line of triangles in Fig. 3b) and at low 
temperatures ( 4.2 KT =  is the line D in Fig. 3b). There-
fore, it is natural to assume that even at sfh h>  the system 
exists in the incommensurate phase. In this case, the Eq. (16) 
is modernized in this way: 

 2 22 zzJ a u +   

 ( )( ) ( ) ( )2 2 2 2
1 12 2 2 cn , 0h J h J qz k u + ω − − β + − β =  

,  

  (22) 

where cn ( , )qz k  is the elliptic Jacobi cosine with modulus 

k  and 2( / ) 1/sfq h h k= − Λ . Periodic solutions of this 

equation and the corresponding frequencies are 

 ( )cn ,u qz k− = ,   ( )20 / 1 /sfh h k k− ′ω = ω − , (23) 

( )sn ,u qz k+ = ,     ( )20 / 1 /sfh h k+ω = ω − . (24) 

To compare these theoretical formulas with experi-
mental data, we, unfortunately, do not have complete in-
formation about the low-frequency behavior of the fre-
quency dependences at frequencies lower 20 GHz. In 
addition, it can be seen from formulas (23), (24) that, in the 
limit sfh h→  in which 0k →  and 1k ′ → , the frequencies 
of the two branches +ω  and −ω  must coincide. But in the 
experiment, the lower resonance branch near the point of 
the spin-flop transition was not observed. Moreover, at 

2 sfh h≈  (left end of the line D) the peak of absorption dis-
appears in the experiment.  

This indicates more complicated behavior of the incom-
mensurate structure in the region near the point of the spin-
flop transition. (Note that the term “spin-flop transition” is 
conditional in the case of an incommensurate structure — 
the antiferromagnetism vector does not jump abruptly in 
the corresponding field, but there is a continuous change in 
the magnetization rotation in the spiral. However, the char-
acteristics of the spiral in this field change significantly.) 
Nevertheless, we compare the theoretical dependences 
(23), (24) with the experimental dependences (lines B and 
D in Figs. 3b and 4). 

Fig. 5. Field dependences of the modulus of elliptic functions (a) and of the period of the spiral structure (b). The dashed curve in (b) 
corresponds to a smoothed dependence. 
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First of all, from (23), (24) it follows the dependence  

 ( ) ( )/k h h− +′ = ω ω  (25) 

for the parameter of the spiral structure on the experi-
mental dependences of the resonant frequencies on the 
external field. We use the asymptotic behavior of these 
linear dependences in the fields sfh h>>  from [4]: 

24.36( / ) GHzsfh h+ω ≈  and (15.52( / ) 10) GHzsfh h−ω ≈ − . 
From these formulas we obtain the following asymptotic 
dependences of the modulus of the elliptic function: 

0.64–0.41( / )sfk h h′ ≈  and 0.77–0.34( / )sfk h h′ ≈  in large 
fields sfh h>> . In fields larger than the spin-flop field, the 
expression for the period of an incommensurate structure is 
modified as follows:  

 ( ) ( )22 / / 1sfL kK k h h= ∆ − . (26) 

For the indicated relation between the parameter k  and the 
magnetic field, the helix period rapidly decreases (~ 1/h) with 
the increasing field at large fields (asymptotic behavior 
in Fig. 5b. 

From relations (23), (24) it also follows such a relation-
ship of the resonant frequencies of the two branches of the 
spectrum  

 ( ) ( ) ( )2 2 2
0 0/ / 1 /sfh h h h+ −ω ω = − +ω ω . (27) 

Taking into account the experimental result for the asy-
mptotic behavior of the ratio lim ( / ) 1.57+ −ω ω ≈  in large 
fields and relation (27), we obtain the asymptotic field de-
pendences of the two branches 0/ 1.3 / sfh h+ω ω ≈  and 

0/ 0.83 / sfh h−ω ω ≈ , which are close to the above experi-
mental dependences. Using these asymptotics, the condi-
tion 0 0( )/ ( )/ 1sf sfh h+ −ω ω = ω ω = , the simplest polyno-
mial approximation for the field dependence and the 
condition for the proximity of theoretical and experimental 
dependences (using only one fitting parameter), we obtain 
the following theoretical formulae for the field dependenc-
es of two branches of the absorption spectrum: 

 ( ) ( ) ( )22
0/ 0.69 / 2.48 / 2.8sf sfh h h h−ω ω ≈ − + , (28) 

 ( ) ( ) ( )22
0/ 1.69 / 2.48 / 1.8sf sfh h h h+ω ω ≈ − + . (29) 

They are shown in Fig. 4 in the form of lines b and d. One 
can see the good qualitative and quantitative agreement with 
the corresponding experimental dependences B and D. Note 
that the theoretical dependence (line b) formally corresponds 
to zero temperature. At the same time, the experimental 
curve B was obtained at 4.2 KT = . As noted above, with 
decreasing temperature, the frequencies of the upper branch 
increase, and with decreasing temperature, agreement with 
theory should improve. We also note a certain discrepancy 
between the theoretical and experimental dependences in 

the used approximation in a narrow region near the spin-
flop field. The module of elliptic functions describing the 
spiral structure is related to the field dependence of the 
resonance frequencies by the relation 

 ( ) ( )( )2 22
0/ 1 /sfk h h h+

 = − ω ω 
 

  

and its field dependence, which follows from (28), is ap-
proximated by the function  

 
( )

( ) ( )

2
2

2

/ 1

1.69 / 2.48 / 1.8

sf

sf sf

h h
k

h h h h

−
≈

− +
. (30) 

The full dependence of the modulus of elliptic functions 
on the amplitude of the field (including the above depend-
ence in the fields sfh h< ) is shown in Fig. 5a. 

The dependence ( )k k h=  has the root singularities at 
the spin-flop point, reaches the value (0) 0.714k ≈  in zero 
field, has a maximum with 0.92k =  in the field / 2.4sfh h = , 
and decreases in large fields to its asymptotic value 

( ) 0.77sfk h h>> → . A knowledge of the full dependence 

( )k k h=  allows us to use the formula (26) to restore the 
field dependence of the periods of the spiral structure in 
the whole interval of the field magnitude. It is shown in 
Fig. 5b. The discrepancy at the point sfh h=  is related to 
the approximation of the approximating function for fields 
close to the spin-flop field. This weak discrepancy between 
the lines b and B is visible in Fig. 4. The dashed curve in 
Fig. 5b corresponds to a smoothed dependence. 

6. Conclusion 

The eigenmodes of vibration of spiral structures in 
magnetic systems, which manifest themselves in their res-
onance properties, are considered in the work. The external 
field significantly affects on the structure of such incom-
mensurate systems and their properties. The nature of this 
influence can be judged by the experimental data obtained 
by the AFMR method when studying the resonance prop-
erties of complex multiferroics. The use of the experimen-
tally obtained field dependences of the resonant frequen-
cies on the magnetic field in combination with a theoretical 
study of the problem within the framework of a simple 
model made it possible to obtain information about the 
changing in the period of the magnetic helicoidal structure 
with the magnitude of the external field. So far, such de-
pendences have not been obtained using other methods. It 
is shown that although the classical spin-flop transition in 
the magnetic field does not occur in the spiral structure, a 
strong rearrangement of the spiral structure and its proper-
ties is observed at a certain critical field associated with the 
magnetic anisotropy of the crystal. However, some reso-
nant properties of spiral structures observed experimental-
ly, such as the different nature of the absorption for the rf 
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field with a direct and reverse change in its frequency in 
the upper branch of the absorption line at sfh h<  and the 
disappearance of absorption on the lower branch near sfh  
when sfh h> , have no theoretical explanation. It is possi-
ble that some features of the AFMR for magnetic spirals 
are associated with the modulation instability of their non-
linear internal modes.  
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Резонансні властивості магнітних гелікоїдальних 
структур  

О.С. Ковальов 

Теоретично досліджено залежність від зовнішнього маг-
нітного поля частот внутрішніх мод спіральних структур лег-
коплощинних антиферомагнетиків зі слабкою внутрішньо-
площинною анізотропією в широкому інтервалі полів, що 
включає поле спін-флоп переходу. Порівняння теоретичних 
результатів з відомими експериментальними даними по ан-
тиферомагнітному резонансу в NdFe3(BO3)4 дало можливість 
встановити залежність кроку спіральної структури від вели-
чини зовнішнього магнітного поля.  

Ключові слова: антиферомагнетик, антиферомагнітний  
резонанс, спіраль, моди збуджень..
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