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Noncollinear discrete domain walls in the Heisenberg anisotropic ferromagnetic chain under applied magnetic
field and their small excitation spectra are studied analytically and numerically in the framework of the Takeno—
Homma equation. The intersecting frequency dependences of localized excitations and continuous spectrum os-
cillations and the removal of the degeneracy by the magnetic field are revealed. The variational approach is pro-
posed to describe the domain walls and to investigate their stability. It is shown that the obtained analytical ex-
pressions fit very well the numerical solutions. The total energy of static discrete domain walls and the Peierls
energy barrier between them are found explicitly. The stability diagram for noncollinear domain walls on the plane
of parameters of the exchange and the magnetic field is calculated, and it looks like the alternating stripes struc-
ture of stability regions of the bond-centered and site-centered discrete domain walls. This diagram feature
is explained by the oscillating dependence of the Peierls energy barrier on the exchange and the magnetic

field parameters.
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1. Introduction

Spin nanoclusters in the quasi-one-dimensional Ising fer-
romagnets and resonant phenomena caused by their pre-
sence are the subject of experimental studies for a long
time beginning for Ref. 1. Such a nanodomain consists of
a few spins oriented oppositely to all others and separated
from them by two Ising domain walls. The interaction of
the cluster spins with the microwave field leads to the spin-
cluster resonance, which has become a powerful research
tool of magnetic properties of low-dimensional crystals [2].
It has also been shown theoretically [3—5] that the Ising
domain walls can be stable in the quasi-one-dimensional
Heisenberg ferromagnets with the single-ion easy-axis an-
isotropy of the order of the exchange. In this case the de-
scription of domain walls and their small excitations as
well as stability properties has been performed in the frame-
work of the Landau-Lifshitz equation [6]. The Ising do-
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main wall stability makes it possible the existence of spin
nanoclusters in the strongly anisotropic Heisenberg ferro-
magnetic chains, as predicted in [7-9].

Typical examples of quasi-one-dimensional Heisenberg
ferromagnets are CsNiF; [10], possessing the excharge in-
teraction that is significantly larger than the easy-plane an-
isotropy, the organometallic compounds TMNC and TMNB
with the high easy-plane anisotropy that is twice more than
the exchange [11, 12], and biaxial TMANC [13] and
FeTAC [14] with the predominant easy-axis anisotropy. In
magnetic crystals of the first type with the very weak addi-
tional easy-axis anisotropy in the easy plane the spin
nanoclusters are unstable, and under applying the magnetic
field they are transformed in the 360° domain walls. These
spin structures can be described as solitons of the sine-
Gordon (SG) equation [15], to which the Landau-Lifshitz
equation is reduced in the long-wavelength limit [16]. In-
stead the second type and especially the third type of
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ferromagnets with the biaxial anisotropy can be described
by the discrete Takeno—Homma (TH) equation [17-21].
The Takeno—Homma model is formulated in terms of the
azimuthal angles of spins under assumption of their small
deviations from the anisotropic easy plane, and in the gen-
eral case it fully takes into account the exchange interac-
tion between neighboring spins, the in-plane anisotropy
and the applied magnetic field [9, 21].

In the framework of their equation and its simpler re-
ductions, Takeno and Homma studied numerically dynam-
ical properties of discrete solitons and breathers, and the
proximity of these nonlinear excitations to solitons of the
integrable sine-Gordon equation. As a rule, in numerical
simulations the exchange parameter of the Takeno-Homma
reduced equations [18-20] has been chosen as the largest
in comparison with the anisotropy constant and the mag-
netic field to make the equations close to the SG equation.
In Ref. 22 the TH equation was studied numerically for
one fixed value of the ratio of comparable exchange and
anisotropy constants, and the noncollinear 360° domain wall
and its linear oscillation modes for several values of the
magnetic field parameter were found.

First, the TH equation was deduced to describe the
DNA nonlinear dynamics [17, 18]. Then the model was
applied to magnetic systems, crystalline polyethylene, and
other plane-rotator models [19, 23]. Later, on the base of
the model, Homma undertook the construction of DNA
thermodynamics [24]. The majority of recent applications
of the TH equation is related again to low-dimensional
magnets. This is due to the appearance of new spin nano-
objects, such as molecular magnetic clusters or “magnetic
molecules” [25-27]. Typically, these objects are the closed
ferrimagnetic and antiferromagnetic spin “wheels”, which
weakly interact with each other in molecular crystals. In a
strong magnetic field, spins of the magnetic molecule tend
to be oriented along with the magnetic field. It means that
in the case of closed chains the magnetic field can change
stepwise the total moment of magnetic molecules. The pro-
spects of using these nano-objects to develop magneto-
optical devices and quantum computers are associated with
this property [25]. Progress in the synthesis of these mag-
netic molecules has led to their great diversity in size and
shape: from large closed to small open chains. All this
makes relevant the application of the concept of spin na-
noclusters to the disordered state of the finite-size magnetic
molecules and further study of their behavior in a magnetic
field.

In Refs. 8, 9, authors investigated the stability and linear
excitation spectra of spin nanoclusters with the Ising do-
main walls and found their stability boundaries as func-
tions of a cluster size, the exchange constant and the mag-
netic field, as well as the explicit form of the internal
oscillation modes and their local frequencies. In the present
study, we concentrate on noncollinear spin structures,
namely 360° discrete domain walls, in which nanoclusters
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are transformed after loss of stability. We have found
numerically and analytically discrete soliton solutions of
the TH equation, corresponding to the equilibrium domain
walls with a mass center on a site and between sites, re-
spectively, and their small excitations spectra, in particular,
frequencies of internal oscillation modes. In result, we cons-
truct the stability diagram on the plane of parameters of the
exchange and the magnetic field for 360° discrete domain
walls and reveal its stripe structure. We find the Peierls
barrier for discrete domain walls, and from it, we explain
this specific feature of the stability diagram.

2. Domain walls and spin nanoclusters
in the Takeno—Homma model

The Hamiltonian of the Heisenberg ferromagnetic chain
with the biaxial single-ion anisotropy and the magnetic
field directed along the easy-axis has the form

He-tY 8,8, +5 2 (DS A )-gng Y. S;.
M)

Here S, = S, (sin®, cos¢,,,sin0, sing,,cos0,, ) is the clas-
sical spin with the value S, at the nth site, ¢, and 6, are
the azimuthal and polar angles of the spin vector, respec-
tively, J is the exchange interaction constant, 4 and D are
the easy-axis and easy-plane anisotropy constants, respec-
tively, H is the constant magnetic field, g is the gyromag-
netic ratio, and p is the Bohr magneton.

In the case of the strong easy-plane anisotropy
D >>J, A, and small enough magnetic field with the as-
sumption that only a weak deviation of the spin vector
from the easy plane is allowed [9, 28], we reduce approxi-
mately the Hamiltonian (1) to the Hamiltonian of the
Takeno—Homma model [18]:

hZ N 5 N
H= ZDSg ; ¢y _J; COS((Pn _(Pn—])
1 < H
_EAZ cos? ((pn)—%z cos(¢p,). )
n=1 0 n=l

The model is formulated in terms of only one scalar va-
riable ¢, and the point in the expression (2) means the dif-
ferentiation with respect to time, and o is the total number
of spins in the chain. The dynamics of the infinite model
with the Hamiltonian (2) is described by the Takeno—Homma
equation:

d*o, . .
" +k(s1n((pn -0, )—Sln((Pn+1 — Py ))

+cos@, sin@, +hsing, =0. 3)

The equation is presented in dimensionless form by intro-
ducing dimensionless parameters of the exchange A =.J/ 4
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and magnetic field 4 = guyHS,/ A, as well as a unit of
measurement of time #, = 71/(S, v/DA). In the limit, when
J >> A, the Hamiltonian (2) is transformed into the Hamilto-
nian of the discrete double sine-Gordon (DDSG) model [29].
The corresponding dimensionless DDSG equation looks like

d? A ,
d—(g”+X(2(pn -0, —(p,1+1)+costp,, sing, +Asing, =0.
t
“)
In the long-wavelength continuum limit, when

MO, +9,.—20,) = 82([)/6x2 =@, and x = n/~/\, from
Eq. (4) the dimensionless double sine-Gordon equation fol-
lows [30]

QO — ¢, +sin@cose+hsing =0. &)

In the case of the absence of magnetic field, # =0, Eq. (5)
is reduced to the integrable SG equation for the variable
u=20:

u, —u, +sinu =0. 6)

Therefore, in terms of the azimuthal angle ¢ there are the
n-kink and m-antikink solutions of the SG equation, which
correspond to 180° domain walls of opposite signs:

¢, (x) = 2arctan exp(+(x—x, ), @)

where x, is a coordinate of the mass center of the domain
wall.

In the nonzero magnetic field %, two identical domain
walls form the static bound state, the wobbler [30], which
is exact solution of Eq. (5):

o (x) = 2arctan exp(KW (x—xo)_RW )
+2arctanexp(KW (x—xo)"'RW)' ®)

Parameters of the wobbler are the following functions
of the magnetic field parameter:

Ky () =141, RW(h):ln((M—l)/ﬁ), )

where «, is the reverse effective length of the 180° do-
main wall and Ry /«y is a half of the wobbler width.
The wobbler configuration (8) corresponds to the equilib-
rium 360° domain wall, which width is determined by the
balance between mutual repulsion of the identical 180°
domain walls and the compression effect of the magnetic
field.

Noncollinear domain walls (7) and (8) arise as a conse-
quence of the large exchange interaction. In contrast to con-
tinuous Egs. (4)—(6), the TH equation possesses the Ising
domain walls and nanocluster solutions. The spin distribu-
tion in the Ising domain wall is trivial:

(pS:O,n<l;(p2:n,n21, (10)
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where / denotes an arbitrary site. This solution is natural in
the case of the absence of magnetic field, when the TH equa-
tion is reduced to the nt-lattice sine-Gordon equation [20]:

d? . . .
T?H‘(Sln(% — @, )—sin(@,,, —(pn))+cosq>n sing, =0,
(11)

when both spin directions along the easy axis correspond
to the ground state of the ferromagnet. The stability prob-
lem of the domain wall (10) and the spectral problem for
its linear excitations were solved in Ref. 7. Moreover, the
problem of transformation of the Ising domain wall into a
noncollinear structure with increasing the exchange para-
meter A was solved completely for the chain consisting of
four spins. In the case of large parameter A, the internal
mode frequency, which is close to the lowest edge of the
continuous wave spectrum, was calculated in [31]. The prob-
lem of transformation of the complete linear excitation
spectrum during the transition from collinear to noncolli-
near domain walls with increasing the exchange for an ar-
bitrary chain dimension has stayed open.

In Refs. 8, 9, authors considered the collinear structure
with the spin nanocluster as the following solution of the
TH equation:

00 =0, n<ly; 2=m, -, <n<ly; ¢ =2n, n>1.(12)

Spins in the nanocluster are oriented oppositely to the
magnetic field direction. Evidently, the cluster width is
equal to m =1, — I, +1, where integers /, > /;.

The stability and spectral problems for the spin nano-
cluster were solved analytically and numerically, and, finally,
the stability diagram for spin clusters of an arbitrary size
on the plane of parameters of the exchange and the mag-
netic field was found [9]. It is presented in Fig. 1.

As seen from Fig. 1, in the zero field (£ =0), when the
ratio of the exchange constant to the easy-axis anisotropy A
reaches a critical value A, = 3/4, the Ising domain boundary
and in general the spin nanocluster lose stability, which

0.8
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Fig. 1. (Color online) A stability diagram of nanoclusters with the
number of spins between 1 and 8.

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 12



Structural transformation of spin nanoclusters in low-dimensional anisotropic ferromagnets

signifies the transition to the noncollinear phase. The spin
nanocluster formed by two such boundaries, depending on
its size and the magnetic parameters of the chain, can ei-
ther transform into a 360° domain boundary, or completely
fall apart into nonlinear excitations such as discrete breath-
ers and spin waves. With increasing the parameter / the
critical value of A decreases, and for the magnetic field
close to unity the spin cluster abruptly decays.

In general, in order to solve the stability problem for
any static solution @0 of the TH equation, it is necessary to
find a spectrum of its small excitations, i.e., to solve the
linearized equation for the small addition Ag, (t) to the
solution:

A, () =9, (t)-05 <<1, Ag,(t)=y,exp(iot), (13)

which is reduced to the eigenvalue problem with the
squared frequency spectral parameter m:

MW =)0 (95 =051 )= (Wt =, )c0s (05 —0)))

+(0052(p9, +hcoscp2)\|/n =y, . (14)

In the next sections, we presented numerical and analy-
tical results of the calculation of noncollinear spin struc-
tures, which described by the TH equation, and their oscil-
latory and stability properties.

3. Small oscillations of noncollinear domain walls
in weak magnetic fields

We start from the above-mentioned spectral problem
for the 180° domain wall in the case of the absence of
a magnetic field, which is described by the w-lattice sine-
Gordon equation (10). The critical value of the exchange
parameter A, of the transition from collinear to noncol-
linear domain wall in the infinite chain coincides for both
the Landau—Lifshitz and TH equations. For the 4-spins
chain, such a value is smaller: A. = 1/ V2 20.707 [7], but
for the number of spins N more than 7, it already reaches
practically the limit value A,. Therefore, we consider the
finite-size chain of 8 spins with open edges and, after di-
rect substitution of the spin distribution (10) into Eq. (14),
easily find numerically eigenvalues of the spectral problem
for parameter A less than 4. The first six squared frequen-
cies are shown in Fig. 2. The behavior of the internal
modes of the Ising domain wall was analyzed in [7, 8]. The
homogeneous in-phase oscillation determines the lowest
frequency edge o, of continuum spectrum, which number
of modes increases with increasing the number of spins.
The antiphase mode dependence begins from the edge fre-
quency o, and tends to zero at A,,.

In order to obtain a noncollinear domain wall as a static
solution of Eq. (11), we use the usual relaxation method
consisting in solving the modified equation after the formal
change of the second-order temporal derivative in Eq. (11)
by the first-order derivative, which means introducing
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Fig. 2. (Color online) The intersecting frequency dependences of
internal and continuum spectrum modes of the 180° noncollinear
domain wall.

the effective dissipation. We use the Ising domain wall
spin configuration as the initial condition, and after dozen
of iterations, we obtain the equilibrium noncollinear spin
distribution with very high accuracy. This method has been
employed throughout our research. After substitution of
the noncollinear solution into Eq. (14), we calculate the
dependences of the squared frequencies on the parameter A
for values more than A,. They are also shown in Fig. 2.
After transformation of the domain wall into the
noncollinear structure, we reveal that in the finite-size open
chain, the frequencies of pairs of internal modes and con-
tinuum spectrum oscillations have the unified intersection
point. In other words, the “crossing situation” takes place
[32]. This point is equal to A, ~0.95 and practically does
not change with increasing the chain dimension more than
8 spins, while for the 4-spins system it equals 0.838.

The oscillatory properties of the spin nanoclusters at a
small magnetic field we discussed in detail in Ref. 9. Now
we concentrate on changing the small excitations spectrum
after transformation of the cluster into the 360° domain wall.
In order to find the noncollinear structure for the static TH
equation (3), in the relaxation scheme we choose the initial
condition in the form (12) with the cluster size m =8 and
the total number of spins in the open chain N =24. As an
example, the resulting spin configuration is shown in Fig. 3
for the case when the exchange and magnetic field parame-
ters are chosen as A =1 and /4 =0.01, respectively. As seen
in Fig. 3, the spin structure is similar to the wobbler con-
figuration (8) with the well-separated 180° discrete domain
walls. Its center of mass is located between sites, so that
the domain wall is bond-centered.

For this fixed value of the magnetic parameter we calcu-
lated noncollinear spin configurations for a wide range of
the parameter A and then solved the eigenvalue problem (14).
The squared frequency dependences of the internal modes
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Fig. 3. The discrete 360° domain wall with a center of mass be-
tween sites at A =1 and £ =0.01.

and continuum oscillation spectrum of the spin cluster and
the 360° domain wall on the exchange parameter are shown
in Fig. 4. As seen in Fig. 4, the presence of two 180° do-
main walls, composing the nanocluster, leads to splitting
the dependences of the internal mode frequencies. However,
the main effect is the removal of the crossing situation [32],
i.e., the removal of the frequency degeneracy at the point
A by the hybridization of internal oscillations and the
formation of the frequency gap. In the vicinity of the criti-
cal point the character of every mode changes drastically.
In result, with increasing the exchange parameter after the
critical point A four frequency dependences of the inter-
nal modes behave as the following: the lowest tends to
zero and leads to the domain wall instability, the second
and the third exist in the gap, and highest tends to the con-
tinuum spectrum. This result is in agreement with numeri-
cal calculations of the internal mode frequencies of the
wobbler-like structure in the DDSG equation [29] and ex-
plains the origin of localized oscillation modes of the
DDSG wobbler.

For the comparison, we also present analogous figures
for the chain with the odd number of spins, namely N =25,
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Fig. 4. (Color online) The internal modes and continuum oscilla-
tion spectrum of the spin cluster and the bond-centered 360° do-
main wall at #=0.01.
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Fig. 5. The discrete 360° domain wall with center of mass on site
atA=1and 7=0.025.

and for the larger field parameter 4 = 0.025. The localized
excitation spectrum of the nanocluster in this chain has
been discussed in detail in Ref. 9. The spin distribution of
the 360° domain wall with a mass center on the node is
shown in Fig. 5.

The internal modes and continuum oscillation spectrum
are presented in Fig. 6. Comparing Figs. 4 and 6, we see that
the more the magnetic field, the more the gap between inter-
nal mode frequencies after the removal of their degeneracy.

The above results suggest that the wobbler expression (8)
would be a good variational approximation of the discrete
360° domain wall after returning from the continuous co-
ordinate x to discrete node’s numbers. Such a variational
ansatz can be chosen in the form

@y (n)=2arctanexp(k(n—ny)—R)
+2arctanexp(K(n—n0)+R), (15)

where x and R are variational parameters, and n, =0 or
ny =1/2 if a center of mass the 360° domain wall is locat-
ed on site or between sites, respectively. The equivalent
form of the ansatz (15) looks like

2.0

1.5

0.5

0 0.25 0.50 0.75 1.00 1.25 1.50 1.75
A

Fig. 6. (Color online) The internal modes and continuum oscilla-
tion spectrum of the spin cluster and the center-on-site 360° do-
main wall at 2 = 0.025.
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sinh K(n—no)j (16)

n) = w+ 2arctan
oy (1) [ cosh R

The expression (15) or (16) would be an approximate solu-
tion of the TH equation if the parameter values k¥ and R
correspond to the minimum of the potential energy written
in the dimensionless form:

E:kfl@—w%¢w*%1»
L@
2.2

Thus, the proposed variation procedure consists in the sub-
stitution of the ansatz into Eq. (17) and finding the explicit
expression E(i,R) and seeking for local minima of this
function for the static spin configurations with n, =0 or
ny =1/2. Before application of the variation procedure, in
the next section we study analytically and numerically the
case of high magnetic fields.

(1-cos2¢,)+h Y (1-cosq,).

n=—00

)

4. Noncollinear domain walls at high magnetic fields

The TH equation in the case of magnetic fields much
exceeding the anisotropy, i.e., £ >>1, is reduced to the
following equation:

d’e,
dt?

+7\'(Sin((Pn —0,4 )_Sin((Pﬂ'H — 0, ))+hSin(P” =0.
(18)

As easily seen, the static solutions of this equation depend
only on a single parameter @’ =/h/)\. Assuming that
the exchange is much more than a magnetic field, a <<1,
we go to the long-wavelength limit and can substitute in
Eq. (18) instead the exchange terms the following expression:

Sin(q)n —Q, )+ Sin((pn | )
a4 a4 2
E(pxxxx +?(px P

= -a’p,, — (19)
where x =an is the continuous coordinate. In result, we
deduce the ordinary nonlinear differential equation
. 2 2 1

Qe =SIMQ=0a" | 0P, _g(pxxxx : (20)
The approximate solution of Eq. (20) is obtained, using the
smallness of the parameter a” and the perturbation theory
of Ref. 33, in the form of the compressed 4n-kink:

sinh x
5 . (2D
cosh? xj

2
@(x) = 4arctanexp(x )_a_[; co:hx

In Ref. 33, it has been shown that the solution like Eq. (21)
can be considered as the small parameter expansion of
the expression

@ = 2arctan exp (K ox —i8 ) + 2arctanexp («kox +id,) (22)

with the specific values of its parameters: k, = 1-a’ /24
and §,) = J5a1/2. Although x; <1 means that the m-kink
width increases but the larger parameter &, leads to steepen-
ing the 360° domain wall [33]. The expression (22) prompts
the following variational ansatz for the discrete 360° do-
main wall in high magnetic fields:

¢y (n) = 2arctan exp(K(n —no)—iS)

+2arctan exp(K(n—n0)+i6) , (23)
or its equivalent form:
(1 —
@y (n) =+ 2arctan (wj (24)
cosd

Comparing Eq. (24) with Eq. (16), we can joint these two
expression in the unified ansatz:

(25)

sinhx(n—ny)
A

oy (n)= n+2arctan[

with the variational parameter 4, which changes from
small values to unity 4 =cosd<1, describing the com-
pressed discrete 360° domain wall, and from unity to large
values 4 =cosh R > 1, describing the wobbler-like structure
of two discrete 180° domain walls. In the next section we
apply the variational procedure to find approximate noncol-
linear discrete domain wall solutions and to study analyti-
cally their stability properties.

5. The Peierls barrier and stability diagram of domain
walls in the TH equation

First, we show that the variational approach leads to
satisfactory approximate solutions of the TH equation for
the discrete 360° domain walls. Introducing a discrete vari-
able z, = K(n—no) after substitution of the ansatz (25)
into the energy expression (17), we obtain the expression

—sinhz, , )2
Z,+ A)

(sinhz,

£ an: (sinh2 z,+ A)(sinh2

1
z,+4 .

sinh? z
+ T —+h
Zn: (sinh2 zZ, +A)2 Zn: sinh”

(26)

It is appeared that the energy dependence can be calculated
analytically by the use of the Poisson’s formula [32]:

ACEDS I 1 (k

n=—0o0 Mm=—0 _ep

)exp (2mimk) dk.  (27)

All the integrals are found exactly, and the energy can be
presented as the sum of four contributions:

E=E,+EX+E¥ +E}. (28)

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 12 1101



O. V. Charkina, V. I. Belan, and M. M. Bogdan

The term E, is the part that is independent of 7. The re-
sults of the integration are different for the parameters
A=coshR>1 and 4=cos d<1. We obtain the following
expression for the wobbler-like configuration:

2R K

: +—
E, (K,R):E 4), SiIMh2R _sinhk | Hpp o R
K coth? E—tanh2 R

+coth R (coth R- (29)

sinh? RJ ’

and for the compressed 360° domain wall, respectively:

20 LK
Ey(x.8)=2| 4r-sin28_sinhk | 5p50015

K
K coth25+tan28

+cot8( _62 —cotSJ . (30)

S

Now we are able to demonstrate the next step of the
variational approach. Possessing the explicit expression
E, (K,R), it is easy to reveal a local minimum of this func-
tion and to determine corresponding minimum “coordi-
nates” «... and 4. In Fig. 7, we show the surface
E(x,R) and sections near its local minimum. The sought-
for point is contained inside the elliptic contour.

There are a lot of algorithms to find the minimum point.
We use a simple iteration scheme: starting from the initial
Ry, we calculate E(x, R, ), and after finding the derivative
analytically, we solve the equation OF(k,R,)/0k=0 to
obtain «,. Further we calculate E(«,,R), and after finding
the derivative, we solve the equation 0E («,,R)/dR =0 to
obtain R, etc. Thus, due to the rapidly converging scheme,
we find the sought-for values of the minimum “coordi-

L Il L Il L Il L Il L Il
294 296 298 300 302 304 306
n

226

224 _
223
220 &
21.8

Fig. 7. (Color online) The energy dependence EO(K,R) for the
case A=6 and h=1.

nates” K,;, and R_;, for the fixed values of the parameters
A and h. As examples, we present in Fig. 8 the exact nu-
merical domain wall solutions, which have been found by
the relaxation method, starting from the wobbler initial
condition, and the variational expressions with the calcu-
lated parameters. As seen, the numerical and variational so-
lutions are indistinguishable by eye in contrast to the initial
condition profile.

Returning to Egs. (27) and (28), we recall that from a
whole set of harmonics with m # 0 in the Poisson’s formula
the first is much larger than others [32], therefore we write
out only this one in contributions given by the exchange in-
teraction, the anisotropy and the Zeeman energy: E7*, E%'
and E%, respectively. Below these contributions are present-
ed for the case 4 > 1:

ter_

~ 2
[co‘th2 g— tanh? Rj sinh2R sinh *

or (b

L Il L Il L Il L Il L Il
296 298 300 302 304 306

n

Fig. 8. (Color online) The profiles of the initial wobbler configuration (Wob), variational (Var) and numerical (Cal) solutions for 360°

discrete domain walls with a center of mass on site (a) and between sites (b) for the parameters A =4 and 7 =1.
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The small additions (31)—(33) to the energy £ do not prac-
tically influence on the functional form of the solutions,
but they define the stability properties of noncollinear dis-
crete domain walls. As seen from the formulas, two equi-
librium spin configurations with n, =0 or n, =-1/2 are
separated by the Peierls energy barrier:

L 2hcothR + 82. !
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B 2 sinh 2R (c

LT
ksinh —
K

. (2m
2 27 2n - K k
X sin(—R}— coth R| —coth R cos [—Rj—f
K K K sinh“ R

(34

For the wobbler-like solutions of the TH equation, the func-
tion E (k,R) is shown in Fig. 9. We see that for not small
values of the parameter k <1 and R >1 the function oscil-
lates and changes sign.

Fig. 9. (Color online) The dependence of the energy barrier E,
between of two equilibrium wobbler-like configurations with
ny =0 or n, =—1/2 on the parameters « and R.

0.010
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Fig. 10. (Color online) The oscillating energy barrier between
discrete domain walls as the function of the parameter A for the
parameter /= 0.15.

In order to make sure that the Peierls barrier, separating
domain walls, can change sign, we have calculated the
parameters k., and R as a function of the exchange
parameter A for the fixed value of the parameter 2 =0.15.
Then we have found the energy difference AE between the
obtained variational solutions as a function of A. This os-
cillating dependence is shown in Fig. 10. As seen in figure,
the function AE(X) equals zero in a sequence of points:
1.59, 2.36, 3.4, 4.6, etc. These points define the boundaries
of stability and instability of domain walls with different
positions of a center of mass. In the region of parameter A
between 1.59 and 2.36, the domain wall with a center of
mass between sites is stable, and the domain wall with a
center of mass on site is unstable, and in the next interval
vice versa, etc.

These analytical results are confirmed by direct numeri-
cal calculations of solutions of the TH equation within the
relaxation method, starting from the wobbler-like ansatz,
and finding the spectrum of linear excitations of the do-
main walls to establish the instability modes and the pa-
rameter values of their “smoothing”, i.e., the frequency
vanishing. Thus, we have constructed the stability diagram
of the noncollinear discrete domain walls on the plane of
parameters A and /%, which is shown in Fig. 11. The dia-

10
1
8
7
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A5
4
3-
2,
1
0_—'*—7‘\\. L |
0.5 1.0 1.5 2.0

h

Fig. 11. (Color online) The stability diagram of the noncollinear
discrete domain walls on the plane of the parameters A and /4.
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gram has a stripe structure where the yellow regions denote
the stability zones of the center-on-bond domain walls and
the blue regions to the stability zones of the center-on-site
domain walls, respectively. The left edge of the diagram is
chosen to be equal to #=0.15, and we see that boundary
points on the ordinate axis coincide well with the sequence
of zeros of the function AE (1) from Fig. 10. It is interest-
ing to note that the solutions presented in Fig. 9 lie on the
stability boundary on the diagram and their energies are
equal. The region of the stability of spin nanoclusters, pre-
sented in detail in Fig. 1, is denoted in the diagram by white
colour. The green colour denotes the region where no static
domain structures exist. In the relaxation scheme they dis-
appear, i.e., ferromagnet falls down in the ground state, but
in the nondissipative TH equation they decay into discrete
breathers and spin waves. The general form of the limit
boundaries of the instability of spin clusters and noncollinear
domain walls, including small and large magnetic fields,
has already been presented in Fig. 7 of Ref. 9 on a loga-
rithmic scale. The region of the exchange parameter A of
the order of unity above the nanocluster instability boundary
at small fields contains a variety of inhomogeneous solu-
tions including domain walls with different numbers of spins
in their central parts, soliton-antisoliton structures, etc. They
are obtained from different initial conditions and turn out
to be stable, leading to the wedge-shaped stability bounda-
ries like that in Fig. 11 for 360° domain walls. Therefore,
obtainment of the complete pattern of the stability of all
inhomogeneous solutions needs more detailed research.

On the other hand, if the initial spin distributions would
be well and lead to the ansatz-like structures for large A
and /, but they can work worse for small values of the pa-
rameters and differ significantly from the final states. In
this case, the calculated energy and the domain wall con-

tribution to the magnetization M = »_ (1-cos¢,) look

n=—o0

like dependences shown in Fig. 12. While for the relatively

10F
— =100
o —*=125 (a)
B =150

I !
0.4 0.5

large A the energy dependences are smooth and monotonic
and the magnetization curves have only small steps, then
for the smaller exchange all the dependences become
stepwise and reflect the jumping transition between meta-
stable spin configurations.

At last, note that we do not regard in general extremely
small values of the exchange parameter A, when one has to
keep in mind the problem of the anticontinuum limit [34],
i.e., the limit of weakly coupled spins, when the parameter A
vanishes. In the anti-integrable limit, there are chaotic tra-
jectories in the mappings to which the TH equations are
reduced in the static case [18]. The relaxation method al-
lows to get these metastable spin states, corresponding to
the local energy minima, but the final results crucially de-
pend on the initial spin configurations. They correspond to
the spin distributions with the random spatial sequence of
the spin directions along and opposite to the easy axis and
cannot be obtained within the analytical approach.

Conclusion

The static topological spin structures in the quasi-one-
dimensional anisotropic Heisenberg ferromagnets have
been studied analytically and numerically in the framework
of the Taken—Homma equation under applying the magnetic
fields. This model describes well the known easy-plane
and biaxial ferromagnets such as CsNiF; TMNC, FeTAC
and their modifications. The importance of the stable static
spin configurations is defined by their contributions to the
configurational partition function, and hence to thermody-
namic properties, which manifest themselves in the low-tem-
perature experiments with the quasi-one-dimensional magnets
and crystals with magnetic molecular nanoclusters, so-called
magnetic molecules. We have investigated the structural con-
version of the spin nanodomain bounded by the Ising do-
main walls into the noncollinear discrete 360° domain wall
and traced the transformation of spectra of localized and
propagated excitations of these spin configurations under
the action of a magnetic field applied along the easy axis.

— A=125
A=1.50
— A=175
A=2.00

Fig. 12. (Color online) The dependences of the energy (a) and the domain wall contribution to the magnetization (b) on the magnetic

field for different values of the exchange parameter.
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We have found the intersecting frequency dependences of
internal modes and continuum spectrum excitations of
noncollinear 180° and 360° domain walls and established
the removal of the degeneracy by the magnetic field. We
have proposed the variational ansatz for the discrete 360°
domain wall solutions of the Takeno—Homma equation and
used the variation procedure to obtain approximate solu-
tions which are indistinguishable from exact numerical so-
lutions for a wide range of the exchange and magnetic field
parameters. It has allowed to calculate the analytical ex-
pression for the total energy of the domain structure and
found the Peierls energy barrier between discrete 360° do-
main walls with the spin configuration center on site and
between sites. This energy difference turns out to be the os-
cillating and changing sign function of the exchange and the
magnetic field. This property of the Peierls barrier prompts
the alternation of the stability regions of two kinds of the
equilibrium domain walls. We have calculated by the re-
laxation method the exact solutions for the domain walls
and found their instability modes and points of their fre-
quency vanishing. In result, we have built the stability dia-
gram for noncollinear domain walls on the plane of param-
eters of the exchange and the magnetic field and revealed
the predicted alternating stripes structure of the stability
regions of two types of the equilibrium discrete 360° do-
main walls with the configuration center on site and be-
tween sites. The obtained results concerning the behavior
of the internal mode frequencies of the 180° and 360° dis-
crete domain walls of the Takeno-Homma equation explain
the origin and specific features of spectra of internal modes
of discrete solitons in the sine-Gordon equation and the
double sine-Gordon equation, which are regarded as the
limit cases of the Takeno—Homma equation.
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CTpykTypHa TpaHcdopmaList CMiHOBUX
HaHOKNacTepiB Y HU3bKOBUMIPHUX aHi30TPONHUX
depomarHeTukax nig gieto MmarHiTHoro nonsi

O. V. Charkina, V. I. Belan, M. M. Bogdan

AHANITHYHO Ta YMCEIHHO JOCIIKYIOThCSI HEKOJIHeapHi JHc-
KPETHi JOMEHHI CTIHKM Ta CIIEKTPH IX Manux 30yKeHb Y Teii3eH-
OepriBcbKOMY aHI30TPONHOMY ()epOMarHiTHOMY JIAaHIIOXKKY IIiJ
J€I0 MarHiTHOTO MOJisk B paMKax piBHsHHs TakeHo—Xomma. Bu-
SIBJICHO YAaCTOTHI 3aJISKHOCTI JIOKaJIi30BaHNX 30yKEHb Ta KOJH-
BaHb 0E€3MEPEPBHOTO CNEKTPa, L0 NEPETUHAIOTHCS, Ta YCYHEHHS
TAKOr0 BHUPOKEHHS MArHiTHHM MOJIeM. 3alporoHOBaHO Bapia-
LWIAHAH TAXiQ A1 OMKCY JOMEHHHX CTIHOK Ta JOCIHIDKeHHS 1X
criiikocti. [loka3aHo, MO OTpHMaHi aHANITHYHI BHpasW IyKe

OOpe Y3rO/DKYFOTHCS 3 YHCEIFHIMHU PO3B’sI3KaMH. 3HAHICHO sB-
HO MOBHY CHEPril0 CTATUYHUX JUCKPETHUX JTOMEHHHX CTiHOK Ta
eneprernynuit 6ap’ep Ilaiiepnca mixk Humu. Po3paxoBaHo aia-
rpaMy CTIHKOCTI JUIi HEKOJIIHEapHUX JOMEHHHX CTiHOK HA ILIO-
IIMHI TapaMeTpiB 0OMiHy Ta MarHiTHOTO MOJISI, sSIKa BUIIAAE SIK
cMyracTa CTpyKTypa obylacTel CTabiIbHOCTI JUCKPETHUX TOMEH-
HHUX CTIHOK i3 IIGHTPOM Ha BY3Ji Ta LEHTPOM MiX By3namu. L{s
OCOOIMBICTL JiarpaMi MOSICHIOETHCSI OCLIMIIFOIOUOI0 3aJICHKHICTIO
enepreruyHoro 6ap’epa [laiteprca Bin mapameTpiB oOMiHy Ta Mar-
HITHOTO TIOJIA.

Kurouogi crnoa: aHi3oTponHuii GpepoMarHeTHk, 0OMiH, MarHiTHe
ToJie, CHiHOBUI HaHOKJIACTEp, HEKOJIiHeapHa J10-
MEHHa CTiHKa, AiarpamMa cTiikocTi, piBHsiHHS Ta-
KeHO—XOMMa.
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