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A feature of biological systems is their high structural heterogeneity. This is manifested in the fact that the 
processes observed at the nanoscopic level are noticeably multistage in time. The paper expounds an approach 
that allows, basing on the methods of nonequilibrium statistical mechanics, to obtain kinetic equations that ena-
ble describing the evolution of slow processes occurring against the background of faster ones. Vibrational re-
laxation in electronic terms and stochastic deviations of the position of the electronic energy levels of the system 
from their stationary positions are considered the most important fast processes. As an example, it is shown how 
the kinetics of one- and two-electron transfer through protein chains, the oxygen-mediated transfer of a triplet 
excitation in the pigment-protein complex, the kinetics of temperature-independent desensitization of pain recep-
tors, as well as conformational regulation of enzymatic reactions, can be described. 
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1. Introduction 

Biological systems manifest themselves as molecular 
devices that, on a nanometer scale, perform various types 
of physicochemical processes, such as enzymatic reactions, 
conversion of chemical, mechanical, thermal and light en-
ergy into each other, synthesis of substances, etc. The use 
of physical mechanisms that control these (and other) pro-
cesses is one of the most important areas of nanotechnolo-
gy. The main problem is that, although the basic physical 
mechanisms governing transitions in condensed matter and 
small inorganic and organic structures are well understood, 
the same cannot be said for biosystems. The reason lies in 
the significant heterogeneity of these systems, which in the 
same nanoscale volume can contain membranes, globules, 
chains, ligands, and other fragments. Each of the fragments 
or a group of fragments, as a rule, is responsible for the 
performance of its specific functions, including the transfer 
of energy and charges, conformation transformations, redox 
reactions, synthesis, etc. Heterogeneity leads to a direct or 
indirect relationships between the structural and functional 
characteristics of a biosystem. As a result, the characteris-
tic time course of a particular process depends significantly 
on the indicated relationships. Thus, the system has a hier-
archy of characteristic times due to various types of inter-
actions. This hierarchy allows the use of the method of 
coarse-grained description, which makes it possible to re-
duce the number of parameters for describing a specific 

non-equilibrium process. The coarse-grained description 
method corresponds to Bogolyubov’s concept of a hierar-
chy of relaxation times in both classical and quantum 
systems [1, 2]. 

This article shows how the physical processes in 
biosystems can be described using averaged (coarse-
grained) kinetic and dynamic equations. The general ap-
proach is illustrated by examples concerning the transport 
of electrons and excitations, as well as the dynamics of 
transient conformational processes. 

2. Coarse-grained kinetic equations 

In statistical mechanics, the average value of the physi-
cal quantity O  is defined as ˆ( ) = tr ( )O t O tρ , where Ô  is its 
operator, and ( )tρ  is the nonequilibrium density operator 
(matrix) of the system [1–4]. The trace (tr) operation as-
sumes summation over all stationary states | a〉  of the sys-
tem. The time evolution of the density operator obeys the 
equation  

 ( ) = ( ) ( ).t i t t
t

∂ρ
− ρ

∂
  (1) 

Here, ( ) = (1/ )[ ( ),..]t H t  is the Liouville superoperator 
of the system. Note that in Eq. (1) operators are defined by 
their matrix elements, ( ) = | ( ) |a a t a t a′ ′ρ 〈 ρ 〉  and 

( ) = | ( ) |a aH t a H t a′ ′〈 〉 , so ( ) = ( ) | |a aaa
t t a a′′

′ρ ρ 〉〈∑  and 

( ) = ( ) | |a aaa
H t H t a a′′

′〉〈∑ . Summation is carried out over 
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all quantum numbers a corresponding to the degrees of 
freedom of the system under consideration. 

As applied to biosystems, it should be noted that despite 
the complexity of its structural units, the hierarchy of char-
acteristic times of development of each process, as well as 
its localization in a functional structural unit, makes it pos-
sible to physically describe the temporal evolution of the 
process. For this, a model is considered in which a func-
tional unit of the biosystem is considered as a system with 
a finite number of “working” degrees of freedom, and the 
environment is a macroscopic condensed medium with 
many degrees of freedom. As a result, the processes occur-
ring in the system practically do not change the state of the 
environment, while the environment can significantly af-
fect the transitions in the system [5–8]. Thus, the system 
under consideration is an open system in which the tem-
poral behavior of its characteristics is determined by both 
the internal dynamic processes and contact with the envi-
ronment, Fig. 1. This contact leads to an exchange of parti-
cles and energy, as well as to shifts of energy levels of the 
system, including stochastic shifts.  

The basic equation (1) is applied to the whole structure 
“system+environment”, the Hamiltonian of which ( )H t  
depends on what physical models are used for the system 
(functional unit of the biosystem) and the environment 
(surrounding structure or/and solution). 

2.1. Markov approximation 

In non-magnetic structures, an energy exchange between 
the system and the environment in most cases occurs through 
vibration quanta (phonons). This allows us to use the har-
monic approximation and thus simulate the environment as a 
reservoir of phonons with a set of frequencies { }λω . The 
establishment of the equilibrium distribution between the 
vibrational modes occurs in a rather short time 12

vib 10−τ   s. 

Therefore, on the time scale vibt∆ τ , the phonons are in 
thermodynamic equilibrium and, thus, the environment is 
considered as the heat bath (B). As a result, the Hamiltonian 
of the vibrational energy of the environment can be repre-
sented in the standard form  

 = ( 1/ 2)BH b b+λ λ λ
λ

ω +∑ , (2) 

where ( )b b+
λ λ  is the operator of creation (annihilation) of a 

phonon of the λth mode. The interaction of the vibration-
al states of the environment with the vibrational states of 
the electronic terms of the system leads to the fact that 
during the characteristic time vibmτ τ  the population 

( )mvP t  of the vth vibrational level of the mth electronic 
term becomes quasi-equilibrium [9]. This means that the 
ratio between the partial occupancies, ( ) / ( ) =mv mvP t P t′  

exp[ ( ) / ]m Bv v k T′= − ω − , is the time-independent quanti-
ty ( Bk  and T  are Boltzmann’s constant and absolute tem-
perature, respectively). This means that the population of 
the vth level ( ) = ( )mv mv mP t W P t  depends only on the equi-
librium probability 

= exp( / ) / exp( / ),mv m B m Bv
W v k T v k T− ω − ω∑   

and the integral occupancy of the mth term, 
( ) = ( )m mvv

P t P t∑ . The temporal evolution of the latter 

occurs on the time scale trt∆ τ  that strongly exceeds the 

vibτ . Thus, if the condition  

 tr vibτ τ  (3) 

is satisfied, then a coarse-grained description related to the 
time scale trt∆ τ  can be used. This allows us to restrict 
ourselves to analyzing the temporal behavior of integral 
state occupancies ( )mP t  only. In addition, in this case, 
harmonic vibrations of the system (intrasystem phonons) 
are in thermodynamic equilibrium and, therefore, can also 
be attributed to the phonon reservoir. Accordingly, it is 
assumed that the vibrational modes with frequencies mω  
belonging to the mth electronic term can be included in the 
λ-modes of the bath Hamiltonian (4). In other words, the 
number of the vibrational level = 0, 1, 2, ...v  in the electron-
ic term exactly corresponds to the number of phonons nλ  
of the λth mode associated with the term. 

The equilibrium density matrix of the phonon bath has 
the form  
 / /= e / tr e .H k T H k TB B B B

B B
− −ρ  (4) 

The symbol trB  denotes the summation over all vibration 
states = 0, 1, 2, ...nλ , which determine the multimode pho-

non states | nλλ
〉∏  of the heat bath. The average number 

of phonons with energy =Eλ λω  is given by the Bose–
Einstein distribution function  

 / 1= tr ( ) = [e 1] .k TB
B Bn b b ω+ −λ

λ λ λρ −  (5) 

Fig. 1. Scheme shows that the investigated small system is open 
to the influence of various types of fields, including stochastic 
ones. The main dissipative and relaxation processes in the system 
occur due to the exchange of vibrations with the phonon reservoir 
(heat bath). 
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The total Hamiltonian of the “system+environment” 
can be represented in the form  

 0( ) = ( ) SBH t H H t H+ ∆ + , (6) 

where the time-independent part,  
 0 = ,S BH H H+  (7) 

contains the component = | |S mm
H E m m〉〈∑  with mE  

being the energy of the mth electronic term of the system 
in an electron-conformation state | m〉 . The second compo-
nent is the bath Hamiltonian (2), which contains the vibra-
tion modes of the environment and the system. The eigen-
values and eigenstates of the 0H  are, respectively, 

( 1/ 2)mE nλ λλ
+ ω +∑   and | |m nλ〉 〉 , where | =nλ 〉  

1/2( !) ( ) | 0nn b− + λ
λ λ= 〉  is the bath state with = 0, 1, 2, ...nλ , 

the number of phonons (| 0〉  denotes the phononless state, 
that is, the phonon vacuum). The contribution ( )H t∆  is the 
result of the action of regular or stochastic fields, and SBH  is 
the Hamiltonian of the interaction between the electronic 
and nuclear degrees of freedoms. 

Nucleus displacements have two dynamic effects. The 
first of them is the polaron shift, which reduces the electron-
ic energy (0)

mE  of a system (found in the adiabatic approxi-
mation at a certain equilibrium position of the nuclei) to  

 (0) ( ) 2= ( ) .m m mE E g λ
λ

λ

− ω∑   (8) 

Here, ( ) ( )= /m mg λ λ
λχ ω  is the displacement parameter, 

which is proportional to the constant of “transverse” cou-
pling ( )

m
λχ  between the system and the environment (such a 

coupling does not lead to intrasystem transitions but only 
shifts its energy levels). The second dynamic effect is the 
formation of the phonon assisted intrasystem transitions 
accompanied by the creation/annihilation of the phonons. In 
the systems where transitions occur between nonadiabatic 
terms, the transition operator can be represented as [10, 11]  

 tr
, ( )

= = e | |,mm
SB m m

m m m
H H V m mσ ′

′
′ ≠

′〉 〈∑  (9) 

where m mV ′  is the electronic transition matrix element. As a 
rule, the Hamiltonian (9) is used to describe the energy 
and charge transport in structures containing spaced cen-
ters of localization of charges or excitons. The transitions 
between adiabatic terms are associated with the nonadia-
batic operator [12]  

 ( )
nonad

, ( )
= = e ( ) | |,mm

SB m m
m m m

H H b b m mσλ +′
λ λ′

′ ≠ λ

′χ − 〉〈∑ ∑   

  (10) 

where ( )
mm
λ
′χ  is the electronic nonadiabatic parameter. Ham-

iltonian (10) is most often used to describe the intersystem 
crossing. Both Hamiltonians contain the operator 

( )= ( )mm mmg b bλ +
′ λ λ′λ

σ −∑  which depends on the difference 

( ) ( )( )= mmm mg g gλ λλ
′ ′−  in the displacement of nuclei in the elec-

tronic states | m〉  and | m′〉 . 
The most complete information on the behavior of the 

system in time is reflected in the probability of occupation 
of the mth state of the system (state occupancy), 

( ) = | ( ) |m sP t m t m〈 ρ 〉 , where ( ) = tr ( )s Bt tρ ρ  is the density 
matrix of the system, and ( )tρ  is the density matrix of the 
“system+environment”, which evolves in accordance with 
the Liouville equation (1). Assuming SBH  as a perturba-
tion, in accordance with the approach based on the 
nonequilibrium density matrix method [3, 4, 13, 14], we 
obtain the following integro-differential master equation 
for the required state populations:  

 [ ]
0

( ) = ( ) ( ) ( ) ( ) .
t

m mm m m m m
m

P t d G P t G P t′ ′ ′
′

− τ τ − τ − τ − τ∑∫   

  (11) 
A time behavior of the kernel  

 2
2( ) = Re[e ( ) ( )]i mm

mm mm mmG F− Ω τ′
′ ′ ′τ Λ τ τ



 (12) 

is controlled by the stationary transition frequency =mm′Ω  
(1/ )( )m mE E ′= −  as well as the factors ( )mm′Λ τ  and 

( )mmF ′ τ . The form of ( )mm′Λ τ  is specified by the type of 
transitions caused by the system-bath interaction SBH . For 
example, in the case of transitions between nonadiabatic 
terms we have  

 ( , )2

=
( ) =| | el il

mm m m mm
l

V
∞

λ ω τλ λ λ
′ ′ ′

−∞λ λ

Λ τ Φ∑∏ , (13) 

where quantity  

 ( )
( ) 2( , ) ( )

| |
1

= e

l

Dl mm
lmm mm

n
I z

n

λ
λ−λ λ λλ ′

′ ′λ
λ

 +
Φ  

 
 (14) 

reflects the contribution of the processes carried out with 
participation of lλ  phonons. The modified Bessel function 

| | ( )lI z  and Debye–Waller factor ( ) ( ) 2= ( ) (2 1)mm mmD g nλ λ
λ′ ′ +  

depend on the argument ( ) ( ) 2= 2( ) ( 1)mm mmz g n nλ λ
′ ′ + , which 

is thermally controlled. It is important to note that for 
> 0lλ  the function ( , )l

mm
λ λ
′Φ  does not disappear at low tem-

peratures. In fact, if 0nλ → , then according to the asymp-

totic of | |
| | ( ) ( / 2) (1/ | | !)l
lI z z l≈ , which is valid for the Bes-

sel function at 1z , we obtain (note 0lλ ≠ ):  

 ( )2| |( , ) ( ) ( )2exp ( ) / | | !
ll

mm mm mmg g lλ λλ λλ
λ′ ′ ′ Φ ≈ − ×    

 [ ]( 1) ( ) ( ) .n l n lλ λ λ λ× + Θ + Θ −  (15) 

If m and m′  are the molecular terms with the correspond-
ing vibrational levels, then the relaxation processes respon-
sible for the establishment of the equilibrium distribution 
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among the vibrational levels of the terms are concentrated 
in the factor  
 vib( ) = emmF −γ τ

′ τ , (16) 

where 1 1
vib = ( )m m

− −
′γ τ + τ  is the characteristic rate of the 

vibrational relaxation within the terms m and m′  [9]. As 
1

vib vib
−γ τ , the quantity ( )mmF ′ τ  decreases exponentially 

on the time scale vib∆τ τ . The characteristic time vibτ  is 
much shorter than the time scale trt∆ τ , on which the 
temporal evolution of occupancies takes place. Therefore, 
in Eq. (11), we can extend the upper limit of integration to 
infinity and neglect the non-markovity setting 

( ) ( )m mP t P t′ ′− τ ≈ . This reflects the Markov nature of the 
transport process, in which the temporal behavior of the 
integral populations is governed by the balance kinetic 
equations  
 [ ]( ) = ( ) ( ) .m mm m m m m

m
P t K P t K P t′ ′ ′

′

− −∑  (17) 

The corresponding transition rate constants have the form  

 
0

= ( )mm mmK d G
∞

′ ′τ τ∫ , (18) 

where the integrand is determined by the Eq. (12). 
If the transition occurs between the non-adiabatic elec-

tronic terms, then using Eqs. (13) and (14) gives  

 22= | | ( ) .mm m m mmK V FC′ ′ ′
π


 (19) 

The effect of phonons on the transition efficiency is 
concentrated in the Franck–Condon factor [14–16], which 
reads  

 ( , )

=

1( ) = .l
mm mmmm

l
FC l

∞
λ λ

′ ′ λ λ′
−∞ λλ λ

 
Φ δ Ω − ω  

 
∑ ∑∏



 (20) 

In (20), the form of the FC factor is represented in the 
most frequently used version when Lorentzian ( ) =L Ω  

2 2(1/ )[ / ( )]= π γ Ω + γ  is replaced by delta-function ( )δ Ω . 
This simplification is due to the fact that the summation 
over lλ  in the interval [ , ]−∞ +∞  may be replaced by the 
integration over the same infinite interval. 

2.2. Stochastic influence 
In addition to the dynamic effects, one should also take 

into account the stochastic effect of the environment on the 
system. The stochastic movements of the structural groups 
of the environment create time-dependent random fields 
[8, 11, 17–21], which can be caused by fluctuations of the 
energy of separate environmental groups [22]. These ran-
dom fields affect the system in such a way that its energy 
levels mE  experience stochastic displacements ( )E t∆ . 
Consequently, the Hamiltonian SH  of the system acquires 

stochastic addition ( ) = ( ) | |mm
H t E t m m∆ ∆ 〉〈∑ , which is the 

time-dependent contribution to the overall Hamiltonian (7). 
In the model under consideration, the fluctuations in the 
environment lead to a stochastic change in the number of 

phonons of each of the λth mode. Therefore, the mean vi-
bration energy of the bath, E , and the corresponding mean 
square energy fluctuation, 2 2 2= ( ) = ( / )BE E E k T E Tδ − ∂ ∂  
[23], read  

 = , = ( 1/ 2),E E E nλ λ λ λ
λ

ω +∑   (21) 

and  
 2 2 2 2= , = ( ) [ ( 1)],E E E n nλ λ λ λ λ

λ

δ δ δ ω +∑   (22) 

respectively. If we take into account that during vibrations 
of the structural groups of the environment, a part of the 
vibrational energy is transferred to the system, then the 
position of energy levels of the system becomes stochastic, 

( ) = ( )m m mE t E E t+ ∆ . As a result, instead of regular factor 

( )mmF ′ τ , a stochastic factor 
0

( ) = ( )mm mmi d
τ

′ ′′ ′τ − τ ∆Ω τ∫  

appears, which is a functional of the stochastic value 
( ) = [( ( ) ( ))] /mm m mE E′ ′∆Ω τ ∆ τ − ∆ τ . As a result, the inte-

gral occupancies are also stochastic occupancies ( , )m t . 
Now, to find the kinetic master equation for the observed 
occupancies ( )mP t , the original Liouville equation (1) must 
be averaged over the realizations of the random variable 

( )mmE ′∆ τ . 
In biosystems, a situation is often realized when transi-

ent processes occur at characteristic times trτ , which sig-
nificantly exceed not only the characteristic times vibτ  of 
the establishment of equilibrium vibrations, but also the 
characteristic times stochτ  of stochastic changes associated 
with the movement of structure units of the environment. 
In particular, stochastic shifts occur over a wide range of 
characteristic times stochτ  of the order of 8 1010 10− −−  s 
[24, 25]. In this case, a coarse-grained description of the 
kinetics becomes possible. As shown in Fig. 2, the behav-
ior of the population ( , )m t  on the time-scale stocht∆ τ  
is random, while on the time-scale trt∆ τ  its average value 

( )mP t  reflects smoothed evolution over time. In our case, 

Fig. 2. Random deviations of the population ( , )m t  of the mth 
state of the system from its average value ( ) = ( , )mP t m t〈〈 〉〉  is 
due to the action of stochastic fields (discrete dichotomous and 
trichotomous deviations are shown). If condition (23) is satisfied, 
a smoothed (coarse-grained) description can be carried out on the 
time scale trt∆ τ . 
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the time trτ  is related to the transition rates caused by sys-
tem-bath interaction SBH , and, thus, the time stocht∆ τ  
characterizes stochastic variations of the factor ( )mm′ τ . 
Therefore, according to the averaging procedure [8, 11, 17, 
21, 22, 26] and by virtue of the condition  
 tr stochτ τ  (23) 

we again come to equations (11) and (12), where now 
( ) = ( , )mP t m t〈〈 〉〉 , ( ) = ( , )mP t m t′ ′− τ 〈〈 − τ 〉〉  and  

 
0

( ) = ( )mm mmF i d
τ

′ ′′ ′τ − 〈〈 τ ∆Ω τ 〉〉∫  (24) 

are the averaged quantities. 
The basic principles of averaging stochastic functionals 

[27–31] indicates that to calculate the ( )mmF ′ τ , it is neces-
sary to know the mean amplitudes jσ  of ( )mm′Ω τ  realiza-
tions and the stationary probabilities jw  of these realiza-
tions. In the important special case of the dichotomous 
random process, the quantity ( )mm′Ω τ  has only two realiza-
tions, 1σ  and 2σ , which are executed with probabilities 

1 2 1 2= / ( )w ν ν + ν  and 2 1 1 2= / ( )w ν ν + ν , respectively. 
Then, following the exact results [8, 26], we obtain  

 
( )e e

( ) = e ,
s s avi

mm
s sF

s s

τ τ− +
+ − − Ω τ

′
+ −

−
τ

−
 (25) 

where ( )
1 1 2 2=av w wΩ σ + σ  is the average value of the 

( )mm′Ω τ . The main temporal behavior of the factor ( )mmF ′ τ  
is specified by the quantities  

 [ ]= (1/ 2) cos ( sin ) ,cs r i w r± − ν ± φ− ∆ ∆σ± φ  (26) 

where 1 2= ( ) / 2cν ν + ν , 1 2=∆σ σ −σ , 1 2=w w w∆ − , r =
2 2 2 2= ( ) 4( )c wν − ∆σ + ∆ ∆σ , and 2 2tan(2 ) = 2 / ( ).cwφ ∆ ∆σ ν − ∆σ  

A fundamentally important role of the stochastic shift 
of the energy levels of the system lies in the generation of 
the damping factors stoch = (1/ 2)( cos )c rγ ν ± φ , contained 
in the quantities s+ and s−. The presence of exponential 
decay on the time scale 1

stoch stoch= −∆τ τ γ  shows that if the 
kinetic process is described by Eq. (11) and develops on a 
time scale trt∆ τ  satisfying inequality (23), then we can 
set ( , ) ( )mP m t P t′′ − τ ≈  and, as in the case of fast vibrational 
relaxation, the upper limit of integration can be extended to 
infinity. Thus, as a result of averaging, we come again to the 
balance-like kinetic equations (17). In these equations, the 
average rates of the m m′→  transition in a system interact-
ing with a stochastic environment have the form (19) where, 
however, the integrand ( )mmG ′ τ , Eq. (12), contains the sto-
chastically averaged factor (24). In the case of a dichoto-
mous fluctuations, the latter is given by the Eq. (25). 

2.3. Thermodynamic fluctuations 

Specific reasons for the formation of the amplitudes jσ  

of the stochastic variable ( ) = ( ) /mm mmE′ ′∆Ω τ ∆ τ  can be 
different. If the deviation of the environment energy is 

explained by the deviation of vibrational quanta from their 
mean values nλ , then it can be assumed that the environ-
ment is in thermodynamic equilibrium and the vibrations 
of its structural groups are close to harmonic. Therefore, 
the stochastic addition mEδ  to the energy mE  can be 

caused by the fluctuation shift nλ λλ
ω δ∑   in the vibra-

tional energy of the environment. Since energy is con-
served in each act of energy exchange between the envi-
ronment (phonon reservoir) and the system, the condition  

 ( )m mE E n nλ λ λ
λ

+ δ + ω + δ =∑   

 = ( )m mE E n n′ ′ λ λ λ
λ

′ ′+ δ + ω + δ∑  (27) 

is satisfied even in the presence of random deviations of 
=n n nλ λ λδ −  and =n n nλ λ λ′ ′ ′δ − . The phonon assisted tran-

sition m m′→  occurs at a fixed energy difference 
= ( ).m mE E n n′ λ λ λλ

′− ω −∑   Hence, according to the Eq. (27), 

realization of the random energy deviations ( )mmE ′∆ τ  oc-
curs via stochastic values = =mm m mE E E′ ′δ δ − δ  

( ).n nλ λ λλ
′= ω δ − δ∑   For noninteracting phonons, the av-

eraging gives = = 0n nλ λ′δ δ  and 2
,n nn n n
′λ λ′ ′λ λ λ′δ δ δ δ . 

Then according to the Eqs. (21) and (22) we get  

 = = 0,mmE E′ λ
λ

δ δ∑   

 2 2( ) = 2 .mmE E′ λ
λ

δ δ∑  (28) 

The expressions (28) show that the average thermodynam-
ic fluctuations depend on the number of oscillator modes λ 
involved in the contact with the system. If the mean sto-
chastic life-time ( )

stoch
λτ  of realization of each quantity Eλδ  

(and thus 2Eλδ ) is approximately the same, then with a 
large number of oscillators the stochastic influence of the 
environment on the m m′→  transitions should manifest 
itself in the form of white noise, while with a finite number 
of oscillators the stochastic effect will be discrete. 

In biosystems, discrete fluctuations are of particular 
importance, since they relate to well-defined structural 
units of the system. For example, the study of protein fluo-
rescence has showed that the stochastic behavior of the 
fluorescence intensity reflects the fluctuation dynamics of 
proteins, and this dynamics is rather well manifested in the 
form of a dichotomous process covering the nanosecond 
and microsecond regions [32]. Therefore, we will consider 
the role of such dichotomous fluctuations assuming that 
among the possible oscillatory modes λ, the most effective 
is mode *λ  of frequency *ω , which leads to fluctuations of 
the value ( ) / =m m mmE E ′ ′− Ω . Hence, according to the 
results presented in the Eq. (28), we have *=mmE E′δ δ  and 

2 2
*( ) = 2mmE E′δ δ . In classical physics, the linear frequency 

= / 2ν ω π  corresponds to the frequency of collision of 
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a particle with the walls of the potential well. The collision 
results in an exchange of energy between the oscillator and 
the system. In the quantum case, assuming that at each 
collision with the wall the quantum of vibrational energy is 
acquired by a system or the oscillator receives a quantum 
of energy from the system (one-phonon approximation), 
we can relate * * *= / 2 = ( / 2 )Eν κω π κ π  to the frequency 
of realization of the one-phonon fluctuations (the tempera-
ture-independent parameter < 1κ  characterizes the effi-
ciency of energy exchange between the system and the 
phonon reservoir). Positive and negative mean amplitudes 
of this fluctuation are *=±σ ±σ  where 2 1/2

* *= [2 ] /Eσ δ . 
Hence, the simplest case of thermodinamic fluctuations of 
the vibrational energy of the environment leads to dichot-
omous stochastic displacements in the transition frequency 

mm′∆Ω  of the dynamic system. The frequency *ν  and the 
amplitude *σ  of these symmetric displacements are deter-
mined as (see also Refs. 11, 21)  
 * * *= ( / 4 )(2 1),nν κ ω π +   

 * * * *= 2 (1 ).n nσ ω +  (29) 

To be consistent with a standard symmetric dichotomous 
process, the escape frequencies and the amplitudes of the 
random deviations must be 1 2 *= = cν ν ν ≡ ν  and 

1 2 *=σ −σ ≡ σ , respectively. Then, based on the exact re-
sults, Eqs. (25) and (26), we obtain = ( ) = 0av mm′Ω 〈〈∆Ω τ 〉〉  

and 2 2
1,2 * * *= (1/ 2)[ 4 ]s − ν ± ν − σ . 

When the classical limit ( * 1n  ) is satisfied, then  

 stoch
*( ) = e cos ,mmF −γ τ

′ τ σ τ   

 stoch ( / 4 ).Bk Tγ κ π  (30) 

At the low temperature limit ( 2 2
* ( / 8 ) 1n κ π  ) we get  

 stoch( ) = e ,mmF −γ τ
′ τ   

 /*
stoch *(8 / )e .k TB− ωγ πω κ 

  (31) 

Averaged kinetic equations (20) with the transition rates 
determined by the Eqs. (19), (12) – (14), and (24) are used 
below as a basis for a coarse-grained description of kinetic 
processes on a time scale trt∆ τ  [cf. condition (23)]. 

3. Results and discussion 

This section shows how the above approach to describ-
ing the time behavior of the populations of the states of an 
open system is used to analyze kinetic and dynamic pro-
cesses in various types of biosystems. To do this, in each 
specific case, a model is used that defines the states in-
volved in the transitions and the interactions responsible 
for the transitions. As follows from Eqs. (12) and (19), the 
features of the temporal evolution of the state occupancies 
of the system are determined by the factors mm′Λ  and mmF ′ , 
which reflect the interactions between the electronic and 
nuclear degrees of freedom. 

3.1. Single-electron transfer through protein chains 

There are many different types of charge transfer pro-
cesses responsible for redox reactions in biosystems. 
Among them, a special place is occupied by reactions of 
one- and two-electron transfer between spaced redox cen-
ters. In many cases, such reactions are mediated by bridg-
ing structures (B) that connect the donor (D) and acceptor 
(A) centers. The role of D and A centers is attributed to the 
redox groups, while the D–A connection is often carried 
out through protein chains [33–35] or DNA [36, 37]. To 
understand the physical mechanism of the formation of 
electron transfer between spaced redox centers, in the late 
70s, a donor-acceptor model of electron transfer through a 
protein chain was proposed, where the peptide groups of 
the protein chain played the role of a bridge for electron 
transfer [38–41]. The model made it possible to explain the 
exponential drop in donor-acceptor electron transfer rate 

DAk  with an increase in the number of repeating bridge 
units N . This indicates the presence of a superexchange 
interaction between redox centers and, thus, explains the 
long-range electron tunneling through the protein structure. 
Further improvement of the superexchange model allowed 
one to find the conditions for its applicability for various 
molecular DBA systems [42–46] and to show that in the 
limiting cases the modified superexchange model covers 
the limiting case of deep tunneling and mimics tunneling 
through a rectangular barrier, thus making it possible to 
determine the effective mass of a tunneling electron, as 
well as the height and length of the barrier [39, 47]. If the 
energy gap between the highest energies of the donor and 
the lowest energy of bridging groups allows the tempera-
ture activated transfer of an electron from the donor to the 
bridge, the transfer process in the DBA system becomes 
noticeably more complicated. This is reflected in the mix-
ing of the superexchange and hopping transfer mechanisms 
[40, 41, 48–50]. In the case of nonadiabatic D–A electron 
transport, the kinetics is described by the system of equa-
tions (17) with the hopping rates (19). The electronic states 
of the DBA system | m〉  are characterized by the presence 
of a transferred electron on their structure units, i.e., 

1 2= , , , ,..., Nm D A B B B  where ,D D BA−≡  ,A DBA−≡  
m mB DB A−≡  (symbols 1 2... NB B B B≡  and 1 2... ...m m NB B B B B−≡  

denote a bridge chain without an extra electron and with 
the transferred electron located on the mth bridge unit, 
respectively). The normalization condition under which the 
system of 2N +  kinetic equations (17) is solved has the form  

 ( ) ( ) ( ) = 1.D B AP t P t P t+ +  (32) 

Therefore, if the integral population of the bridging units 
by the transferred electron is insignificant, i.e.,  

 
=1

( ) = ( ) 1,
N

B m
m

P t P t∑   (33) 

and, therefore,  
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 ( ) ( ) 1,D AP t P t+   (34) 

then an electron transfer in the DBA system looks like a 
oxidation-reduction reaction only between D and A centers. 
In this case, the N  bridging states | mB 〉  with energies mE  
play a virtual role in electron transfer. The condition (33) is 
fundamentally important when obtaining analytical expres-
sions for the bridge mediated electron-transfer rates 
[40, 49, 50]. One can show [41] how the ( 1)N + -exponential 
kinetics reduces to one-exponential kinetics, describing the 
time evolution only for ( )DP t  and ( )AP t . Such a reduction 
corresponds to a coarse-grained description of the of D–A 
electron transfer, which is characterized by the forward and 
backward D–A rates, DAk  and ADk , respectively (Fig. 3). 
Within the framework of a coarse-grained description, we get  

 1( ) [ e ],k tET
D b f

ET
P t k k

k
−+   

 ( ) [1 e ],f k tET
A

ET

k
P t

k
−−  (35) 

where the overall transfer rate  
 = ,ET f bk k k+  (36) 

determines the time-scale 1
tr = ETt k −∆ τ  of the electron-

transfer process.The forward rate  

 (hop) (sup)=f f fk k k+  (37) 

(and the backward rate ( )/= e E E k TA B B
b fk k − − ) contains two 

contributions. One of them,  

 (hop) 1 2

1 2

1= ,
1 ( 1)f

k kk
k k N
− 

 + + ξ − 
 (38) 

contain the parameter  

 1 2

1 2
= ,

( )
k k

k k k
ξ

+
 (39) 

which characterizes the decrease in the electron transfer 
along the sequential pathway D→B1→B2→ ...→BN →A 
carried out using the hopping rates 1 1= Dk k , 1 1= Dk k− , 

2 = NAk k , 2 = ANk k− , and 1= mmk k ± , ( = 1, 2, ...,m N ), 
(Fig. 3). The form of these rates is given by the Eq. (19). 

The second contribution,  

 (sup) (sup) ( 1)
3 0= = e N

f fk k k −ζ −  (40) 

reflects the direct D→A pathway associated with a one-
step hopping of an electron between the D and A centers. 
The parameter  

 | |
= 2 ln B

D B

V
E E

 
ζ −  ∆ ∆ 

 (41) 

characterizes the decrease in the contribution associated 
with the superexchange D–A coupling. In the Eq. (41), 

1B mmV V ±≡  is the electron coupling between the nearest 
bridge units, and ( ) ( )=D A B D AE E E∆ −  is the energy gap 
between the bottoms of electronic terms related to the 
bridge unit and the D(A) center. Figure 3 shows a good 
correspondence of the theory with experimental results on 
electron transfer from D(OsII) to A(RuIII) through a bi-
opolymer composed of proline units. 

3.2. Two-electron bridge-mediated transfer 

Two-electron transport (TET) is a basic physical pro-
cess that is responsible for redox reactions catalyzed by 
metalloenzymes. In most cases, TET is accompanied by 
the capture or release of one or more protons. For example, 
a hydride (:H−) transport is accompanied by the correlated 
transport of two electrons and a proton. One of the funda-
mental problems of multielectron transport is the elucida-
tion of the mechanisms of correlated delivery of electrons 
from donor to acceptor groups during sequential and con-
cert electron transfer [51]. Following the approach present-
ed in [52], as well as the above results concerning a coarse-
grained description of one-electron transfer, we will show 
how both mechanisms can be realized in a nanomolecular 
complex, where the transfer of two electrons from a donor to 
an acceptor occurs with the participation of a bridge struc-
ture. The results of the theory are used to explain the exper-
imental data on the reduction of mycothione reductase 
(MycR) with the oxidizing agent nicotinamide adenine di-
nucleotide phosphate (NADP). 

A model is used where the donor and acceptor centers 
can have one or two extra electrons, while the bridge has 
only one. This is possible if the D and A centers have polar 
groups, and the bridging units are in a hydrophobic envi-
ronment (this situation is quite typical for a biosystem). As 
a result, two-electron transfer can be realized using two 
repeating one-electron routes. During the first route, one of 

Fig. 3. The dependence of the overall rate ETK  of electron 
transfer from OsII n-donor to RuIII-acceptor (adapted from [41]) 
occurs according to a mixed mechanism, including direct 
tunneling (rates 3k  and 3k− ) and sequential hoppings with the 
participation of N  units of the bridge B (proline chain). For the 
considered DBA system, the probability of finding a transported 
electron on the bridge is insignificant and therefore the process is 
characterized by direct one-step jumps with rates fk  and bk . 
Details in the text. 
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the two extra electrons occupying the D center is trans-
ferred to the A center along the sequential pathway 

2
1 2 ... ND BA D B A D B A D B A D BA− − − − − − − − −→ → → → →  with 

forward ( 1, ,D NIk kα ) and backward ( 1 , ,D INk kβ ) rates as well 
as a one-step (superexchange) pathway 2D BA D BA− − −→  
with forward ( DIk ) and backward ( IDk ) rates. The first route 
forms an intermediate charging structure I D BA− −≡ , which 
switch on the second one-electron route. The latter includes 
the sequential pathway 1 2 ...D BA DB A DB A− − − − − −→ → →  

2... NDB A DBA− − −→ →  with forward 1( , , )I NAk kα  and 
backward ( 1 , ,I ANk kβ ) rates as well as a one-step (super-
exchange) pathway 2D BA DBA− − −→  with forward ( IAk ) 
and backward ( AIk ) rates. Schemes of both routes are shown 
in Fig. 4(a), the rates mmk ′  are determined by the Eq. (19), 
(more detail form of the rates is given in Ref. 52).  

When the bridge states act as an intermediate and thus 
the condition (33) is satisfied, then the D( 2 )D BA− →

)I(D BA− −→  and I( )D BA− − →A( 2DBA − ) transitions re-
lated to the routs = 1j  and = 2j , respectively, are con-
trolled by route rates [Fig. 4(b)]  

 
( ,seq)

( 1)0( ) ( ,sup)
01= e ,

11
1

f
Njj f j

jf N

j

k
k k

r
r

−ζ −
−
+

−
+ ξ

−

  

 /( ) ( )= e , ( = / ).E k Tj j j B
b fk k r−∆

β α  (42) 

They include the contributions caused by the one-electron 
sequential and superexchange mechanisms of an electron 
transfer. Corresponding dependence on the number of re-
peating bridge units is characterized by the quantities  

 
( )
( )

( ) ( )
1

( ) ( )
1

(1 )
=

j j
D NA

j j j
NA D

k k r

k k

−α −
ξ

α +
 (43) 

and  

 
( )1/2( ) ( )

| |
= 2 ln ,B

j
j j

D A

V

E E

 
 ζ −  
∆ ∆  

 (44) 

where the factors  

 
( ) ( )

( ,seq) 1
0 ( ) ( )

1

= ,
j j

f D NA
j j j

NA D

k k
k

k k+
  

 ( ) ( ) 2
( ) ( )1( ) 1 ( ) 1 ( )

2= | | ,j j
j jD NA D AN D A N

k V FCπ


 (45) 

and  

 
( ) ( ) 2

( ,sup) 1
( ) ( )0 ( ) ( )

| |2=
j j

f D AN
j jj j j D A

D A

V V
k FC

E E
π
∆ ∆

 (46) 

are respectively the hopping and superexchange one-electron 
transfer rates for the bridge with a single bridging unit ( = 1).N  
In Eqs. (43) – (46) the gaps 

(1) 2= ( ) ( ),DE E D B A E D BA− − −∆ −   

(1) = ( ) ( )AE E D B A E D BA− − − −∆ −   
and  

(2) = ( ) ( ),DE E DB A E D BA− − − −∆ −   

2(2) = ( ) ( )AE E DB A E DBA− − −∆ −   

specify the energy distances between the electronic work-
ing states of the entire DBA system, 

The route rates determine the coarse-grained kinetics on 
the time scale 1 1

1 2,DIAt K K− −∆ τ  . The overall TET rates  

 2
1,2 1 1 1 1 2 2

1= ( ( ) 4 ),
2

K c d c d c d+ ± − +  (47) 

where  
 (2) (2) (2)

1 2, ,AD DAf b fc k k k c k k≡ + + ≡ −   

 (1) (1) (1)
1 2, ,DA ADf b bd k k k d k k≡ + + ≡ −  (48) 

determine the kinetic process covering the three states | j〉 , 
( =j  D, I, A), whose integral occupancies are related by the 
normalization condition  

 ( ) ( ) ( ) = 1.D I AP t P t P t+ +  (49) 

Fig. 4. Scheme (adapted from [52]) of the tunneling and 
sequential pathways of two electrons from the donor to the 
acceptor through the bridge with the formation of an intermediate 
state I (only one of the two electrons was transferred). If the 
probability of populating the bridge with transferred electrons is 
small, then, as in the case of one-electron transfer, a coarse-
grained description of the process can be made using the rates fk  
and bk . Now these rates contain contributions from the “concert” 
(two-electron coherent) and sequential transport mechanisms. 
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The corresponding scheme of kinetic processes is shown in 
Fig. 4(b). These processes reflect the two-exponential tem-
poral evolution of the integral occupancies  

 (1) (2)1 2( ) = e eK t K t
j j j jP t P C C− −+ +  (50) 

to their stationary values  

 (1) (2)
1 2 1 1 2 2= ( ) / ( ),D b fP c k d k c d c d+ −   

 (1) (2)
2 1 1 1 2 2= ( ) / ( )A b fP c k d k c d c d+ −  (51) 

and = 1I D AP P P− − . With a weak population of the inter-
mediate state (i.e. at ( ) 1IP t  ), which happens if 

(1) (2) (2) (1), ,f b f bk k k k , the transfer of two electrons from the 
D center to the A center manifests itself as a one-
exponential kinetic process corresponding to the scheme 
shown in Fig. 4(c).The temporal behavior of the two-
electron occupancies,  

 1( ) [ e ],k tTET
D b f

TET
P t k k

k
−+   

 ( ) [1 e ],f k tTET
A

TET

k
P t

k
−−  (52) 

reflects a coarse-grained description on the time-scale 
1=TET TETt k −∆ τ  where =TET f bk k k+  is the overall rate 

characterizing the two-electron transfer between D and A 
centers [cf. Fig. 4(c)]. Since (step)

( ) ( )( )=f b DA ADf bk k k+ , then  

 (step) (conc)=TET TET TETk k k+  (53) 

The component  

 (step) (step) (step)= ,TET f bk k k+   

 
(1) (2)

( ) ( )(step)
( ) (1) (2)= ,f b f b

f b
b f

k k
k

k k+
 (54) 

is originated by the stepwise mechanism where the partial 
overall rates are determined by Eq. (42). Physically, these 
rates are identical to the one-electron transfer rate (37). 
The component  

 (conc) = DA ADTETk k k+  (55) 

of the overall rate is associated with the concerted mecha-
nism of a two-electron transfer [cf. Figs. 4(a) and 4 (b)]. 
The forward (backward) coherent rate  

 ( 1)(0)
( ) ( )= e ,NTET

DA AD DA ADk k −ζ −  (56) 

exhibits an exponential drop with the attenuation coeffi-
cient 1 2=TETζ ζ + ζ  determined by Eq. (44). The pre-
exponential factor (0)

( )DA ADk  is the two-electron super-
exchange transfer rate through a bridge with a single unit. 

3.3. Proton-assisted reduction of mycothione reductase 

The enzyme mycothione reductase (MycR ≡ E) demon-
strates specific electron-transfer pathways during redox 
reactions [53, 54]. We consider one of them, associated 
with two-electron reduction of enzyme by the oxidant 
nicotinamide adenine dinucleotide phosphate (NADP). 
Experimental data shows [55] that this reduction is con-
trolled by the protonation/deprotonation of the active site 
Cys34–S–S–Cys39 of enzyme (E ≡ MycR). In the oxidized 
enzyme Eox the –S–S– group binds the amino acids Cys34 
and Cys39, while in twofold reduced enzymes (EredH)−  
and E2

red
−  the binding between these amino acids is broken. 

This transforms the active site into the protonated and depro-
tonated structures [Cys34–S− , Cys39–SH] and [Cys34–S− , 
Cys39–S−], respectively. Transformation of the oxidized 
enzyme Eox requires several electron and proton coupled 
steps. Here, a special role belongs to flavin adenine dinu-
leotide (FAD), which, having received electrons from 
NADP, then participates as an electron donor at the final 
stage of two-electron transfer. The measured rate of the 
formation of the reduced enzyme Ered is redK =  
= 130TETK ≈  s 1− . This indicates that the characteristic 
time of the two-electron transport under consideration, 

210TET
−τ   s, is much greater than the characteristic times 

of vibrational relaxation ( vibτ ) and protonation/depro-
tonation process ( /pr dpτ ). Let us denote by ( )

( ) ( )m
s aP t  the oc-

cupancies of the mth electronic state in the presence of 
protonated ( =s pr ) or deprotonated ( =s dp) group a. Due 
to the inequality  

 / vib,TET pr dpτ τ τ  (57) 

the temporal evolution of the occupancies ( )
( ) ( )m

s aP t  change 
on the time scale TETt∆ τ  in the same way as their inte-
gral occupancy ( )mP t :  

 ( ) ( )
( ) ( )( ) = ( ),m m

ms a s aP t f P t   

 ( ) ( )
( ) ( )( ) = ( ) ( ).m m

m pr a dp aP t P t P t+  (58) 

The weight of the protonation (deprononation) fraction in 
the mth electronic state is determined by the functions  

 ( )
( ) ( )pH pK

1= ,
1 10

m
pr a m

a
f

−+
  

 ( )
( ) ( )pK pH

1= ,
1 10

m
dp a m

a
f

−+
 (59) 

(we use notations 10pH log [H ]+≡ −  and ( )pK m
a ≡  

( )
10log K m

a≡ − , where [H+] is the concentration of protons 
in the environment, and ( )K m

a  is a constant characterizing 
the binding of a proton to the a group of the system in the 
mth state). In the example under consideration, the first 
step of two-electron transfer is the binding of NADP to 
FAD–Eox and the formation of the charged fraction 
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Fig. 5. The bell-shaped pH-dependence of the rate of transfer of 
two electrons from NADP to enzyme MycR indicates a concert 
(coherent) transfer mechanism (adapted from [52]). 

+NADP –FADH−–Eox, which is affected by the protona-
tion/deprotonation of the group with pK 9.1 . This group 
is supposed to be Arg, so the weight of the formed fraction 
is proportional to (ox)

( )pr Argf . Fixing only the main formed 
fractions of the complex NADP–FAD–E, we can assume 
that the two-electron reduction of E include the departure 
of one electron from NADP+–FADH−–Eox (≡  D) and the 
formation of intermediate fraction NADP+–FAD*−–EH(≡  I). 
After this, the transfer of the second electron occurs with 
the formation of the final two-fold reduced deprotonated 
fraction NADP+–FAD–E2

red (− ≡ A(dp)). This sequential 
pathway D→ I→A is characterized by the rate (step)

TETk , 
Eq. (54). The gap ( )I D AE E−  between the intermediate and 
donor (acceptor) states exceeds several Bk T . This leads to 
the inequalities (1) (1)

f bk k  and (2) (2)
f bk k . If additionally 

(2) (1)
f bk k , then (step) (1)

TET fk k≈ . This rate is proportional of the 
weight of the protonated Arg during the formation of a two-
electron donor center in the complex NADP+–FADH−–Eox. 
Therefore,  
 (step) ( )

( ) .D
D ITET pr Argk f k →≈  (60) 

The coherent pathway D→A is associated with a one-step 
two-electron transfer. The corresponding rate (conc)

DATETk k≈ , 
Eq. (55) is formed when the amino acid Arg is protonated 
with weight ( )

( )
D

pr Argf  while the amino acid Cys39 is depro-
tonated with weight ( )

( )39
A

dp Cysf . Thus,  

 (conc) ( ) ( )
( ) ( )39

.D A
D ATET pr Arg dp Cysk f f k →≈  (61) 

Rates D Ik →  and D Ak →  are pH-independent values that can 
be estimated using quantum-chemical methods. In the 
semiphenomenological approach, they are considered as 
fitting parameters. Figure 5 exhibits a bell-shaped behavior 
of red = TETk K  versus pH, which corresponds to the theo-
retical expression (61) showing a concert (synchronic) 
mechanism of two-electron reduction.  

3.4. Oxygen-mediated transfer of triplet excitations 
in the pigment-protein complex 

Pigment-protein complexes with carotenoid (Car) and 
chlorophyll (Chl) molecules play a decisive role in photo-
synthesis, participating in the conversion of light quanta 
energy into chemical energy. One of the functions of ca-
rotenoids in carotinoid-containing photosynthetic proteins 
is the quenching of triplet excitations of chlorophyll with 
use of the triplet-triplet energy transfer (TTET) reaction 
3 * 1 1 3 *Chl Car Chl Car+ → + . This prevents the formation of 
highly reactive singlet oxygen 1 *

2O  resulting from the exci-
tation-transfer reaction 3 * 3 1 1 *

2 2Chl O Chl O+ → + , which is 
especially effective under aerobic conditions in the absence 
of carotinoids [56]. In the presence of carotenoids, singlet 
oxygen is quenched in accordance with reaction 
1 * 1 3 3 *

2 2O Car O Car+ → + . 
Direct triplet transfer between Chl and Car molecules 

can prevent singlet oxygen formation only at rather small, 
(3–4) Å, distance between these molecules. If it is not 
the case, then the TTET must be mediated by the bridging 
unit/units. In certain membrane-bound protein complexes, 
the role of the bridging unit is often played by the oxygen 
molecule. Here, we discuss a triplet-triplet transfer be-
tween the Chl a and Car (β-carotene) in cytochrome 6b f  
complex. In this complex, a molecular oxygen enters a 
specific intraprotein channel connecting the Chl a and Car 
[57]. This provides a sufficiently fast triplet-triplet 
3 * 3 *Chl Cara →  excitation transfer and, simultaneously, 
prevents the formation of the 1O*

2 . It is important that both 
a rather fast quenching of the Chl a by the β-carotene and 
protection against the formation of singlet oxygen are car-
ried out under conditions when β-carotene is about 14 Å 
from Chl a . A possible physical explanation is discussed 
below based on the model of four electronic states of the 
complex [Chl a , O2 , β-Car]. In their ground electronic 
states, the Chl a  and β-Car molecules have zero spin, and in 
the lowest excited states their spins are equal to 1. In con-
trast, the O2  molecule has spins 1 and 0 in its ground and 
excited states, respectively. We denote by = 0, 1sm ±  the 
projections of a spin = 1S , and by * *= ,x yl π π  — the atomic 
orbitals of the O2  molecule. In complex [Chl a , 2O , β-Car], 
there is no direct coupling between the spaced molecules 
Chl a D≡  and β-Car A≡ , which appear in TTET as a donor 
and an acceptor of a triplet excitation, respectively. Regard-
ing the coupling of the O2  mediator with D and A mole-
cules, the magnitude of this coupling is too small to noticeably 
change the electronic spectra of D and A. Consequently, the 
O2 –D(A) interaction can be considered as a perturbation and 
the following expressions can be used for excited initial (I), 
bridging (B), excited final (F) and ground (G) electronic 
states of complex [Chl a , O2 , β-Car]:  
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3 * 3 1
2| ( ) | ( ) | O ( ) | ,s s sI m D m m A〉 − 〉 〉 〉   

1 1 * 1
2| ( ) | | O ( ) | ,B l D l A〉 〉 〉 〉   

1 3 3 *
2| ( ) | | O ( ) | ( )s s sF m D m A m′ ′ ′〉 〉 〉 − 〉   

1 3 1
2| ( ) | | O ( ) | .s sG m D m A′ ′〉 〉 〉 〉  (62) 

Since TETT is considered in the absence of the magnetic 
field, the degeneracy with respect to the spin projection is 
not removed, and thus the energies of the above states are 
independent of Sm  and l :  

3 * 3 1
2( ) ( O ) ( ),I E D E E A+ +    

1 1 * 1
2( ) ( O ) ( ),B E D E E A+ +    

1 3 3 *
2( ) ( O ) ( ),F E D E E A+ +    

1 3 1
2( ) ( O ) ( ).G E D E E A+ +   (63) 

Considering complex [Chl a , O2 , β-Car] as an open sys-
tem, we arrive at kinetic equations (17), where, due to the 
presence of degeneracy, the role of m is played by ( )sI m , 

( )B l , ( )sF m′  and ( )sG m′ . Taking into account the fact that 
degeneracy is conserved during triplet energy transfer, we 
can analyze this transfer using the integral occupancies  

 ( )
=0, 1

( ) = ( ), ( = , , ),J J ms
ms

P t P t J I F G
±

∑   

 ( )
* *= ,

( ) = ( ).B B l
l x y

P t P t
π π
∑  (64) 

The temporal behavior of these occupancies is governed by 
kinetic equations (17), where the transfer rates are [58]  

( ) O ( ) ( )2
= 3 ,BI F D A i fK K r≡   

( ) ( ) ( ) ( )= 3 ,IF FI D A A D if fiK K r≡   

( ) ( )O ( )2
= 2 .I F B D A i fK K r− −≡  (65) 

Here, elementary backward and forward rates are deter-
mined by equations (19) and (20) as well as the relations  

 /( )
( )O O ( )2 2

= e ,k TD A B
D A D AK K −∆   

 /= e ,k TB
AD DAK K −∆  (66) 

where ( ) ( )D A B I F∆ −    (cf. Fig. 6) and I F∆ −    
are the gap controlling the TTET. 

The characteristic time of the TTET in the b6 f complex 
is < 8TTETτ  ns [57] while the characteristic excitation de-
cay times decτ  for the 3Chl* a 1→ Chl a, 3Car* 1→ Car, and 
1O* 3

2→ O2  transitions are (100–400) µs, (1–5) µs and 20 μs, 
respectively. As  

 dec ,TTETτ τ  (67) 

there are two different characteristic time scales for the 
transfer of excitations. This allows us to represent the tem-
porary behavior of the occupancies of excited states as  

 (tr)( ) ( ) ( ).J JP t P t P t  (68) 

Occupancies (tr) ( )JP t  evolve on the time scale 
TTETt∆ τ  and are characterized by the transfer rates (65), 

(cf. the scheme in Fig. 6). If we replace (1(2))
( )i f fr k− − → , 

(1(2))
( )i f br k→  and ( ) ( )if fi DA ADr k→ , then matematically the 

expression for (tr) ( )JP t  becomes of the same form as the 
expression defined by the Eq. (50). The overall transfer 
rates 1K  and 2K  are given by Eq. (47) where now  

 1 2= , = ,f f fi if fc r r r c r r−+ + −   

 1 2= , = .i i if fi id r r r d r r−+ + −  (69) 

These quantities determine the two-exponential regime of 
TTET via the excitation transfer rates (65) and (66). De-
spite the fact that molecular oxygen in the b6 f complex 
facilitates the transfer of triplet excitation from Chl a to 
β-Car, nevertheless, the formation of reactive singlet oxygen 
1O*

2  was not detected in this complex. Within the framework 
of the physical model under consideration, this means a neg-
ligible probability ( )BP t  of the formation of bridge state 

1 11 *
2 )B O( Chl Car  mediating the TTET [cf. Fig. 6(b)]. The struc-

ture of complex b6 f is such that an oxygen molecule fixed near 
heme bn  is noticeably closer to β-Car than to Chl a, Fig. 6(a). 

Fig. 6. A possible way of transferring two triplet excitations from 
Chla  to β-Car through the mediator structure in the pigment-
protein complex b6  f (a) and scheme of the transfer of triplet 
excitation from the initial state I = 3Chl*3O2

1Car to the final 
F = 1Chl3O2

3Car* with the participation of the bridge state 
B = 1Chl1O*

2
1Car (b). Degradation of excitation brings the complex 

to the ground state G = 1Chl3O2
1Car (b). 
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Therefore, the emptying of the state | B〉  due to the process 
B→A occurs much faster than the filling of the | B〉  due to 
the process I→B. As a result, the fraction of toxic oxygen 
1O*

2  is practically not formed (Fig. 7), and TTET looks like 
a jump of triplet excitation from Chl a(D) to β-Car(A), 
occurring at a rate  

 /
2 = (1 e ).k TB

TTET D AK K K −∆
→ + 

  (70) 

Forward TTET rate  

 (seq)=D A ififK r r→ +  (71) 

contains contributions (seq) = / ( )i f i fifr r r r r− +  and ifr  asso-
ciated with sequential and coherent routes, respectively. 
Which route is preferred depends largely on the sign of the 
gap =D B IE E∆ − , which in accordance with the Eq. (63) 
corresponds to the difference 1 3

O2
( )g gE −∆ ∆ → Σ −  

Chl 0( )aE S T−∆ →  between energies of singlet-triplet exci-
tations for Chl a and O2  molecules. If > 0D∆ , then the 
involving of the sequential route in the TTET requires tem-
perature activation, whereas the coherent route can work 
even at low temperature. Qualitative estimations show [58] 
that the sign of the gap D∆  can be positive or negative de-
pendently on the polarity of the groups surrounding the 
complex [Chl ,a  O2 , β-Car]. Therefore, to clarify the path-
ways of transfer of triplet excitation from Chl ,a  to β-Car 
in the pigment-protein complex b6 f, experimental data are 
needed to describe the kinetics of transfer on a time scale of 
0.1–1 ns. The possible kinetics of such transport is shown in 
Fig. 7. 

The TTET is carried out by converting two triplet excita-
tions (TT) into two singlet (SS) excitations (I→B transition) 
and two singlet excitations into two triplet ones (B→F tran-
sition), Fig. 6(b). Since there is no direct contact between 
mediator O and pigments Chl a and β-Car, the TT→SS 
and SS→TT transitions occurs due to superexchange two-
electron coupling between the oxygen molecule and each 

pigment. Presumably, these couplings are formed with the 
participation of specific mediators [heme B and trypto-
phan, Fig. 6(a)]. Estimates show [58] that taking into ac-
count these mediators allows one to obtain fairly realistic 
kinetics characterizing the TTET process in the b6 f com-
plex on the time scale 1=TTET TTETt K −∆ τ , see also Fig. 7:  

 (tr)

1 2

1= ( ),i fi f fi i fDP r r r r r r
K K −+ +   

 (tr)
O2 1 2

1= ( ),i fi i f if fP r r r r r r
K K − − − −+ +   

 (tr)

1 2

1= ( ).i if f if f iAP r r r r r r
K K −+ +  (72) 

These values can be considered as the initial occupancies 
for the slow process of degradation of the excited states of 
the complex. To find the corresponding characteristic de-
cay time decτ , we substitute (tr)

JP  into the Eq. (68). If the 
inequality (67) is satisfied, then taking into account the 
normalization condition ( ) ( ) = 1GP t P t+  and the fact that 

(tr)( ) = ( ) = ( )G J J J JJ J
P t k P t k P P t− −∑ ∑   , we obtain  

 dec( ) = 1 e .k t
GP t −−  (73) 

Thus, the characteristic decay time 1
dec dec= k −τ  is expressed 

through the rate  

 (tr) (tr) (tr)
dec OO 22

= ,D AD Ak P k P k P k+ +  (74) 

which characterizes the decay of excitation in the complex 
[Chl ,a  O2 , β-Car]. With a small quasi-stationary occupa-
tion of the initial I and bridging B states of the pigment-
protein complex, the decay is mainly associated with the 
3 * 1Car Car→  transition in the β-Car pigment. In this case, 

dec Ak k . 

3.5. Unique temperature-independent transitions 

Temperature independent transitions are usually associ-
ated with quantum tunneling processes. As applied to bio-
logical systems, the tunneling was recorded in the 60s when 
considering the electron transfer from a high-potential cyto-
chrome to an oxidized dimer of chlorophyll [59]. The ex-
planation and description of this process was carried out 
within the framework of the theory of donor-acceptor elec-
tron transport [15] (the basic formulae of the theory follow 
from the Eqs. (19) and (20) for ,m m′  = D, A). However, in 
biosystems, temperature-independent reactions not associ-
ated with the processes of photosynthesis were also re-
vealed. Here we discuss the desentization of ATP P2X3 
receptors [60], which takes place in a physiologically im-
portant region. 

The P2X3 receptors belong to the family of ionotropic 
receptors widely evolved in the peripherical nervous system. 
These receptors bind ATP molecules to specific gates of the 
selective transmembrane ion pores. The gates can be in the 
open (op) or closed (cl) conformations. It has been shown 

Fig. 7. Kinetics of the triplet transfer in the complex looks like a 
transfer between donor (Chl) and acceptor (Car), that is, between 
I and F states only. This is due to the insignificant probability of 
population of the bridge state, in which singlet oxygen is formed 
(adapted from [58]). 
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experimentally (cf. Fig. 8) that different ATP-induced selec-
tive ionic currents ( )I t  manifest themselves as the same 
(almost identical) two-stage decrease. The corresponding 
temporal behavior of the probability of receptor desensiti-
zation, 0( ) = 1 ( ) /dP t I t I− , looks like [60]  

 / /1 2( ) = 1 [ e (1 )e ]t t
dP t A A− τ − τ− + −  (75) 

with parameters 0.97A , 1 = 14.7 msτ  and 2 = 230msτ  
characterizing the pre-exponential weight and the two tem-
perature-independent decay constants, respectively. To un-
derstand the physics of such unique temperature-inde-
pendent behavior, we will follow the approach that takes 
into account the role of thermodynamic fluctuations in the 
formation of transitions between states of an open system. 
The description can be done on the basis of a kinetic ap-
proach using balance equations (17), where the transition 
rates are evaluated with Eq. (19). 

A model is used in which the channel can be in only 
two physiologically important states (open and closed) 
[11, 60, 61]. In this case, the simplest explanation of the 
two-exponential temporal behavior of desensitization is 
achieved if two types of channels, = 1, 2j , are responsible 
for desensitization.The current through the jN  channels of 

the jth type, ( )
op( ) = ( )j

j j jI t N i P t , is determined by the cur-

rent ji  through an open separate channel and the probabil-

ity ( )
op ( )jP t  that the channel is open. Since ( ) = ( )jj

I t I t∑ , 

we get (1) (2)
op op( ) / (0) = ( ) (1 ) ( )I t I AP t A P t+ −  where 

1 1 1 1 2 2= / ( )A N i N i N i+ . To determine the temporal behav-

ior of probabilities ( )
op ( )jP t , we assume that transitions be-

tween the states ( ) = op( )m s s  and ( ) = cl( )m s s′ ′ ′ , are quasi-
isoenergetic, but the states are degenerate in the number of 

conformational substates ( )
op= 1, 2,..., js µ  and ( ) .cl= 1, 2,..., js′ µ  

Then, according to expression (19), the equation describing 
the temporal behavior of the occupation of sth substate of 
the state op reads  

 

( )
cl

( ) ( ) ( ) ( ) ( )
op( ) op( )op( )cl( ) cl( )op( ) cl( )

=1
( ) = ( ) ( ) .

j

j j j j j
s ss s s s s

s
P t K P t K P t

µ

′ ′ ′
′

 − − ∑   

  (76) 
Transitions between substates ( )s s′  belonging to the state 
open (closed) occur for the corresponding characteristic 
times ( )

op
jτ ( ( )

cl
jτ ), which are much less than the characteristic 

times (10 100)jτ −  ms of the transition process op cl→ . 

Therefore, the substate occupancy is defined as ( )
( ) =j

m sP

( ) ( )(1/ ) ( )j j
m mP t= µ  where 

( )
( )( )
( )=1

( ) =
j

jj m
m m ss

P t Pµ∑  is the integral 
occupancy. Using this relation, we arrive at the equation 

( ) ( )( ) ( ) 1 ( ) 1
op op op cl cl( ) = ( ) ( ) ( ) ( )j jj j j

j jP t K P t K P t− −− µ + µ  where 
( ) ( )
op( )cl( ) cl( )op( )= j j

j s s s sss ss
K K K′ ′′ ′

≈∑ ∑ . Taking the normal-

ization condition ( ) ( )
opcl ( ) ( ) = 1j jP t P t+  into account leads to 

the solution 
( )( ) ( ) ( )( ) ( ) ( ) ( )tr

op op op opcl cl cl( ) = [ / ( )]e / ( )
jk tj j jj j j jP t −µ µ +µ +µ µ +µ  

describing a decrease in the integral occupancy with the 
overall rate ( ) ( ) ( )( ) ( )

tr op opcl cl= [( ) / ]j j jj j
jk Kµ +µ µ µ . It is seen that 

if the degeneracy of the closed state significantly exceeds 

the degeneracy of the open state, then 
( )

( ) tr
op ( ) e

jk tjP t −
 . This 

is the result of nonrecurrent kinetics, that leads us to the ex-
pression (75) where (1,2) 1

1,2 tr= [ ]k −τ  and ( ) ( ) 1
tr op( )j j

jk K−µ . 

Calculation of the transition rate jK  is based on expres-

sions (19) and (12). We formally put = op( )m s , = cl( )m s′ ′  

and estimate the ( )j
mmK ′  using the one-phonon approximation, 

in which ( ) 2( ) = | | [( 1)e e ].i i
m m m mM n nω τ − ω τλ λ λ
′ λ λ′λ

Λ τ + +∑  

Here, ( ) ( )=m m mmM λ λ
′ ′χ  is the matrix element of the transition 

between adiabatic terms m and m′ . The transition is ac-
companied by absorption or emission of a phonon of fre-
quency λω , Eq. (10). If a one-phonon transition occurs 

between the nonadiabatic terms, then ( ) ( )= mmmm mmM V gλ λ
′′ ′, 

where ( )
op( ),cl( )= j

mm s sV V′ ′  is the matrix element of transition 
between the substates of diabatic terms (cf. Eq. (9) and 
inset in Fig. 8). If random deviations of the energy differ-
ence m mE E ′−  are caused by the thermodynamic fluctua-

tions of the vibration energy ( 1/ 2)nλ λλ
ω +∑  , then in the 

classical and quantum limits the factor ( )mmF ′ τ  is given by 
Eqs. (30) and (31), respectively. Substituting the above 
expressions for ( )m m′Λ τ  and ( )mmF ′ τ  into the integral of 
expression (19) we obtain  

Fig. 8. Temperature-independent two-exponential kinetics corre-
sponding to the onset of desensitization of P2X3 receptor 
(adapted from [61]). The direction of the desensitization reaction 
is due to the nonrecurrent kinetics, when the degeneracy ( )

cl
jµ  of 

the closed state of the channel is much higher than the degeneracy 
( )
op

jµ  of its open state. 
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 ( ) ( ) 2
2

1= = | |j
j mm mm

ss ss
K K M λ

′ ′
′ ′ λ

×∑ ∑∑


  

 2 2
=1,2

( 1)
[ ( 1) ]mm

nλ λ
ξ

′λ λ λξ

 + γ× +
γ + Ω −ω + − σ

∑   

 2 2 ,
[ ( 1) ]mm

nλ λ
ξ

′λ λ λ

γ + 
γ + Ω +ω + − σ 

 (77) 

where stoch=λγ γ . If among the set of modes λ there are 
modes *=λ λ , the connection with which leads to the ap-
pearance of resonance at * *= ( 1)mm

ξ
′Ω ±ω + − σ , then the 

main contribution to the rate jK  will be made by the reso-
nance terms like * *( 1) /n + γ  and * */n γ . According to the 
expression (30), we have * Bk Tγ  . As * 1n + ≈  

* /Bn k T λ≈ ω , we see that * *( 1) /n + γ  and * */n γ  
are independent of temperature. Therefore, the rates jK  
and thus, the degradation times ( ) 1

op= j
j jK −τ µ  are also 

temperature-independent characteristics of the process of 
desensitization. 

3.6. Conformational regulation of enzymatic reactions 

Enzymes are natural nanocatalysts. Nowadays it is gen-
erally recognized that the unique peculiarities of their func-
tioning are attributed to not only their active center speci-
ficity but also structural changeability of the whole 
macromolecule. In this subsection we briefly trace the role 
of this distinctive property of biomacromolecules in regu-
latory mechanisms of enzymatic reactions. In the reactions 
of the enzyme (E) with the substrate (S), the probabilities 
of the free ( ( )EP t ) and bound ( ES j

P ) states of the enzyme 
change while maintaining the normalization condition  

 1 2( ) = 1 ( = , , ,...).j
j

P t j E ES ES∑  (78) 

In enzymatic reactions, the total concentration of enzyme, 
[Et], does not change. Therefore, the condition (78) is 

identical to equality [Et] = [E] + 
j∑ [ES j ], where [E] and 

[ES j ] are the concentrations of the free enzyme and the 
complex “enzyme+substrate” in the j th state, respectively. 
In traditional enzymology, concentrations are used instead 
of corresponding probabilities = [ ] / [ ]E tP E E  and 

= [ ] / [ ]ES j tj
P ES E  to describe the reactions of an enzyme 

with a substrate. 
The basis of enzymology is represented by celebrated 

Michaelis–Menten’s scheme. Introduced more than a centu-
ry ago [62], it still serves as a starting point of any experi-
mental or theoretical investigation in the field. According to 
this scheme, a reaction of converting substrate S into product 
P via formation of complex ES with enzyme-catalyst E is 
described within simple chemical kinetics based on the mass 
action law as  

 
k kc

kb

E S ES E P+ → + ,  

 ( )[ ] / = [ ] [ ][ ]b cd ES dt k k ES k S E− + + , (79) 

where [ ]S  is the substrate concentration. From Eq. (79), 
the famous expression for the stationary reaction velocity 

( )= [ ] / = [ ][ ] / [ ]c t Mv d P dt k E S S K+  immediately follows 
(here MK  is Michaelis’ constant, = ( ) /M b cK k k k+ , and 
[ ] = [ ] [ ]tE E ES+  is the total enzyme concentration). For a 
long time, the hyperbolic dependence ( )[ ]v S  served as a 
validity test of investigation of any enzyme, and deviations 
from it were considered as artefacts. The situation began 
changing in the second part of the last century, when the 
problem of regulation/control of enzymatic reactions gradu-
ally became central [63]. In the first place, it concerned revi-
sions of the mentioned hyperbolic dependence in favor of 
rather trigger-like ones, with considerable velocity differ-
ences in narrower substrate concentration intervals. For this, 
in the first models of cooperativity, apart from allostery (the 
presence of several binding sites in an oligomeric biomole-
cule), different conformations of the reaction states have 
been necessarily introduced [64]. 

Later, it turned out that “cooperativity” (in the sense of 
sigmoid dependences on [S]) could be exhibited even by 
non-allosteric enzymes with an only binding site [65, 66]. 
For a prolonged period, this elegant idea based in fact on 
protein structured memory was beyond the enzymology 
mainstream and provoked a vivid interest only recently 
(mostly caused by experimental confirmations of the effect in 
some enzymatic reactions of vital physiological importance 
[67]), up to introducing a special term “allokairy” [68]. Revi-
sions and extensions of the Michaelis–Menten scheme 
were revived since the beginning of the present century, 
especially because of implementation of the single-
molecule (SM) methods into enzymology. The latter, how-
ever, have not brought fundamental changes in theoretical 
approaches to describing the regulatory role of structural 
changeability, as either ensemble or SM reactions were 
(and still are) mainly considered within the standard chem-
ical kinetics schemes, often reduced to sets of linear equa-
tions for concentrations or population probabilities of reac-
tion states, respectively. Below we describe the generic 
models and effects within this traditional framework and 
then discuss an advanced approach based on the concept of 
molecular self-organization. The typical phenomena of 
conformational regulation can be seen even in reactions of 
monomeric enzymes possessing an only binding site. 

3.6.1. Conformational regulation in discrete schemes 

The simplest and traditional way to take into account 
the enzyme structural complexity implies introduction of 
several conformational (sub)states of a free enzyme and/or 
enzyme-substrate complex, with conformational transitions 
between them. For such schemes (which in fact correspond 
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to the splitting of the Michaelis–Menten scheme into sev-
eral conformational channels of the reaction) they use the 
mentioned rate equations. For ensemble reactions, espe-
cially for calculating their steady-state velocities, even the 
stationary solutions are often informative enough. Not 
much more complex is the case of SM reactions. As it can 
be concluded from numerous works exploiting this ap-
proach, the characteristic effects of conformational regula-
tion show up even under splitting into only two channels; 
their larger numbers lead to more cumbersome expressions 
only, adding no truly new mechanisms. The generic mini-
mal schemes of regulation [69, 70] related to nontrivial 
dependence of the reaction velocity on substrate concentra-
tion or unbinding rates are pictured in Fig. 9 (it is sufficient 
to show the enzyme states only). Scheme in Fig. 9(a) was 
proposed in [71]. It illustrates a striking effect of reaction 
acceleration with rate bk  of “unproductive” substrate un-
binding growing in a certain initial interval (this possibility 
was pointed out quite recently [72]). Here Eq. (79) should 
be obviously replaced by the set  

 ( )1
1

[ ]
= [ ] [ ][ ]b C

d ES k k ES k S E
dt

− + + ,  

 ( )2
2

[ ]
= [ ] [ ][ ]b c

d ES k k ES k S E
dt

− + +  (80) 

which, together with the total enzyme concentration con-
servation condition 1 2[ ] = [ ] [ ] [ ]tE E ES ES+ + , leads to the 
following stationary reaction velocity:  

 
( )

( ) ( )( )
[ ][ ] 2

.
[ ] 2

t b C c C c

b C c b c b C

k S E k k k k k
v

k S k k k k k k k
 + + =

+ + + + +
 (81) 

If the catalytic rates are of similar magnitude, c Ck k≈ , 
then ( )bv k  monotonically decreases, as it is customary for 
the Michaelis–Menten scheme. If, however, the channels 
are markedly different in their catalytic rates, C ck k , 
then there exist an interval of ( )bv k  growing. The effect 
becomes possible at substrate concentrations satisfying the 
condition ( ) ( )2[ ] > /c C C c C ck S k k k k k k+ − . This unex-
pected result can be nevertheless explained rather simply. 
Indeed, without the possibility of escape from the “dead-
lock” state 2ES  with too long waiting times of the catalytic 
stage (thereby without a chance of a new start and subse-
quent catalysis via state 1ES ), the enzyme would be cap-
tured in this less functional state. In fact, scheme in 
Fig. 9(a) represents a particular case of a more general ef-
fect of decrease of the mean first passage time in random 
walks with resetting [73, 74]. 

Scheme in Fig. 9(b) is a simplified version of Rabin’s 
scheme of “kinetic cooperativity” [63, 65] and uncovers 
important physical reasons of this distinctive deviation 
from the classical hyperbolic dependence. Unlike to the 
previous scheme, here different conformations of the free 
enzyme with different binding rates, >k k ′, are introduced. 
It is assumed that “more active” state 2E  can slowly relax 
to “less active” state 1E . The higher substrate concentra-
tion, the longer the residence time in more active state. 

Fig. 9. Reaction schemes and corresponding velocity plots. Plot (a): [ ] = 10.k S  = = 3C ck k  (curve 1); = 10,Ck  = 1ck  (curve 2). Plot (b): 
= 1,α  = 1,k  = 0.1,k′  = 10,bk  = 100ck . Inset: the initial part of the plot for small [ ]S  (see the text). Plot (c): = 10,α  = 1,β  = 1,k  
= 10,k′  = 10,b  = 1,B  = 1,ck  = 10Ck . 
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Under the condition ( ) ( )< [ / 1]b ck k k k ′α + −  this results in 
a sigmoid dependence ([ ])v S  (“cooperativity”) [75]. Vari-
ous extensions of this scheme are frequently used (see e.g., 
[67, 68, 76]). It should be noted, however, that in the case 
of small number of conformation channels the sigmoid 
behavior is barely seen (as in Fig. 9(b) where it is slightly 
discernible in the inset only). This is common for linear 
schemes of discrete conformations, classical schemes of 
cooperativity included — in the latter, the more macromol-
ecule subunits, the more pronounced cooperativity. 

Finally, scheme in Fig. 9(c) admits, in addition to the 
effects described above, the possibility of self-inhibition 
(again, in the case of markedly different catalytic rates). 
Under certain condition on the system parameters (see [69] 
for details), the role of the less active channel can prevail 
with [ ]S  growing, and the reaction velocity decreases, see 
the plot in Fig. 9(c). 

With these three effects, the non-standard deviations 
from classical Michaelis–Menten’s theory, related to con-
formational regulation, are seemingly exhausted. Generali-
zations towards more complex discrete schemes (e.g., [76]) 
lead to very bulky expressions while hardly producing new 
meaningful physical insight. 

Almost all recent works in the field concern reactions of 
single enzymes, since this experimental technique is be-
coming dominant. It allows one to observe enzyme func-
tioning in a serial regime of consecutive conversions of 
substrates into products, one by one, and to obtain arrays 
of turnover times and their probability density ( )f t . The 

reciprocal 1t −〈 〉  of the mean turnover time 
0

= ( )t tf t dt
∞

〈 〉 ∫  

(in fact, mean first passage time [74]) plays the part of the 
reaction velocity while the higher moments mt〈 〉  reflect 
“dynamical disorder”, etc. For theoretical derivations of 

( )f t , the same discrete schemes are used with the only dif-
ference that the kinetic equations are formulated for proba-
bilities ( ), ( )E ESP t P t  of the reaction system residence in 
corresponding states. It should be noted, however, that the 
problem becomes non-stationary (the stage of the enzyme 
return into the initial free state is not taken into account). 
Correspondingly, the conservation condition (78) does not 
hold true any longer, and attempts to preserve it (e.g., 
[77, 78]) lead to unnecessary inconsistence only. 

It is easy to show that 1t −〈 〉  calculated for classical 
Michaelis–Menten’s scheme (79) in such a way is equal to 

[ ] / ([ ] )Mk S S K+ , that is 1 = / [ ]tt v E−〈 〉 . This important 
relationship, connecting the ensemble and SM results, was 
called “single molecule Michaelis–Menten equation” and 
verified experimentally [77, 79]. Remarkably, it remains 
valid in the presence of conformational splitting of the re-
action pathway as well [69]. Thus, being interested in the 
reaction velocity, it is sufficient to calculate it in the sta-
tionary cases of ensemble schemes, which is much simpler. 
For example, calculation of / [ ]tv E  performed in [69] for 
the ensemble version of scheme in Fig. 9(c) has resulted 

in the expression identical to that obtained for 1t −〈 〉  in a 
much more laborious way. 

3.6.2. Conformational regulation as an example 
of molecular self-organization 

All the schemes discussed above imply essentially non-
equilibrium flow conditions (the part of the flow intensity 
is played by substrate concentration [ ]S ). This provokes 
one to speculate about possible synergetic mechanisms of 
conformational regulation. According to Haken [80], the 
necessary conditions of self-organization phenomena in-
clude, apart from the flow, a pronounced temporal hierarchy 
and nonlinearity of the system dynamics. These conditions 
are practically omnipresent in biomolecular processes, en-
zyme functioning included. The spectrum of biomolecule 
structural movements is very broad and includes, in partic-
ular, those much slower ones than elementary acts and 
turnovers of the reaction. Due to such structural memory, 
cumulative structural changes caused by consecutive sub-
strate arrivals become possible. In turn, these changes en-
tail changes in reaction rates, and this feedback ensures 
nonlinearity in the system. As a result, stationary non-
equilibrium regimes of the enzyme functioning emerge 
which are self-consistent with the flow. Intensity of the 
latter plays a role of a control parameter, with its changes 
causing bifurcation phenomena like bistability, that is, 
emergence/disappearance and coexistence of functional 
regimes with markedly different reaction velocities, etc. 

Far from being exotic, these quite natural ideas form the 
basis of our concept of molecular self-organization [75] 
which was applied to describing the conformational regula-
tion effects in primary reactions of photosynthesis (see 
e.g., [81, 82] and references therein). Application of this 
concept to enzyme functioning is given in [83]. It is sup-
posed that slow structural changes can be represented by a 
continuous generalized structural coordinate x which the 
reaction rates become dependent on. The motion along this 
coordinate is certainly classical and governed, apart from 
the influence of standard thermal white noise LF  of 
Langevin’s type, by the switching between structural po-
tentials ( ),EV x  ( )ESV x  in the corresponding enzyme states. 
In other words, the substrate arrivals/departures are the 
source of a specific dichotomous noise tF  [84, 85], with its 
space of states { , } = { / , / }E ES E ESf f dV dx dV dx− −  and 
characteristics (reaction rates) dependent itself on the 
structural variable. Thus, the stochastic equation for x  
reads = t Lx F F+ , while the master equation for the di-
chotomous noise is  

 ( | ) = ( ) ( | ) [ ( ) ( )] ( | ),E E b c ESt x k x t x k x k x t xρ − ρ + + ρ   

 ( | ) ( | ) 1E ESt x t xρ +ρ = ,  

where ,Eρ  ESρ  are the probability densities of realization 
of forces ,Ef  ESf , respectively. Then it can be shown 
[84, 85] that the Michaelis–Menten scheme (79) can be 
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represented by the following evolution equations for prob-
ability densities ( , ),EP x t  ( , )ESP x t :  

 = ( ) [ ( ) ( )]E E
E E E b c ES

P dVD P k x P k x k x P
t x dx x

∂ ∂ ∂ + − + + ∂ ∂ ∂ 
,  

= ( ) [ ( ) ( )]ES ES
ES ES E b c ES

P dV
D P k x P k x k x P

t x dx x
∂ ∂ ∂ + + − + ∂ ∂ ∂ 

,  

  (82) 

where ,ED  ESD  stand for the coefficients of diffusion gen-
erated by the thermal noise. Eqs.(82) can be considerably 
simplified by applying the adiabatic approximation, obvi-
ously valid due to the slowness of structural movements. 
Then one arrives at Fokker–Planck’s equation for distribu-
tion ( , ) = ( , ) ( , )E ESP x t P x t P x t+  with the following deriva-
tive of effective nonequilibrium potential eff ( )V x :  

 
eff [ ]=

[ ] ( )
ESE E

M

dVdV dVdV S
dx dx dx dx S K x

 + −  + 
. (83) 

To derive Eq. (83), it was supposed that k  is non-
distributed, 1= [ ]k k S  (this usually holds in enzyme reaction 
studies) while Michaelis constant became x-dependent, 

1( ) =[ ] /M b cK x k k k+ . A remarkable property of eff ( )V x  is 
its dependence on flow intensity [ ]S . Thus, if potentials 

( ),EV x  ( )ESV x  are of a one-well shape, then, with [ ]S  
growing, the shape of eff ( )V x , gradually transforming from 
that of ( )EV x  to that of ( )ESV x , may become two-well in 
some interval of [ ]S . In [83] this is shown for the case 
when the dependence of Michaelis’ constant on x  can be 
reduced to exponential one, ( ) e x

MK x −≈  (while the part of 
generalized structural variable x  is played by the affinity 
that changes due to cumulative actions of substrates). The 
corresponding emergence of stationary distribution st ( )P x  
bimodality means the appearance of bistability, that is, coex-
istence of two enzyme functioning regimes with markedly 
different reaction velocities. With the strength of substrate-
conformation interaction (difference in the positions of min-
ima of ( ),EV x  ( )ESV x ) exceeding some critical value, the 
dependence ([ ])v S  acquires a pronounced sigmoid shape 
(see Fig. 10), imitating the cooperativity effect. Also, allow-
ance for realistic dependences ( )ck x  leads to the possibility 
of the self-inhibition effect [83]. 

The above-described picture of reaction regime regula-
tion represents in fact a fold-type catastrophe in full analo-
gy with non-equilibrium phase transitions of the 1st kind 
(see [83] for details). As distinct from the typical examples 
of self-organization occurring in macrosystems, here we 
have this phenomenon at the level of single molecules.  

Experimental confirmations of conformational regula-
tion mechanisms may be rather tricky since the latter are of 
hidden nature and imply concomitant measurements at 
very different timescales. For ensemble reactions the cor-
responding proof is often reduced to a collection of indirect 
evidences (cf. [81]). In this sense, the new possibilities 

provided by SM technique look much more promising. To 
this end, computer simulations of stochastic “SM trajecto-
ries” (that is, thousands of turnovers in a model reacting 
system with realistic parameters which admit bistability) 
were undertaken in [86]. Their statistical processing has 
revealed rather eloquent qualitative threshold-like changes 
in the mean turnover times and behavior of characteristic 
temporal correlation functions (that is, just in the primary 
observables in SM experiments) exactly in the bistability 
area. Detection of such anomalies in scanning a single-
enzyme reaction subject to substrate concentration changes 
would be the most straightforward confirmation of molecu-
lar self-organization phenomena at work. 

4. Conclusion 

The main goal of the work is to show how to describe 
and analyze the processes of charge/excitation transport and 
conformational transformations in biosystems under condi-
tions when transport and conformational changes occur 
against the background of faster processes. Fast processes, 
such as for example, relaxation among the vibrational levels 
of electronic terms of biomolecules, stochastic deviation of 
the energy levels, as well as sorption-desorption of protons, 
lead to the establishment of a quasi-equilibrium between the 
probabilities of populating substates and thus facilitate the 
formation of integral occupancies of molecular terms of the 
system. Integral occupancies change on a time scale that is 
much longer than the characteristic times of fast processes 
occurring between substates. As a result, we obtain averaged 
kinetic equations that contain the characteristics, which can 
be estimated from the experiment. This refers also to the 
equations describing the binding of ligands or substrates to 
enzymes. 

We used the nonequilibrium density matrix method to 
obtain averaged kinetic equations and indicated criteria for 
the applicability of these equations to the description of 

Fig. 10. Dependence ([ ])v S  in the self-organization model 
( const)ck =  [83]. The curves correspond to the strength of sub-
strate-conformation interaction growing from curve 1 to 4. 
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various types of reactions in biosystems. As an application 
of the method, we analyzed one-electron and two-electron 
donor-acceptor transfer between redox centers, as well as 
the transfer of triplet excitation between pigments in the 
pigment-protein complex. In both cases, the important role 
of the bridge structure in the formation of hopping and 
tunneling (coherent) paths of electron transfer and excita-
tion is shown. The corresponding transfer rates and their 
dependence on the number of bridging units were found, 
and for two-electron transfer, the dependence of the rate of 
the redox reaction on the protonation of amino acids in the 
enzyme was also estimated. A coarse-grained (averaged) 
description of transitions between conformationally degen-
erate states of ion channels made it possible to propose a 
possible mechanism of channel desensitization. 

Within the conventional framework of enzyme kinetics, 
the generic schemes of conformational regulation of enzy-
matic reactions are revisited. With the example of a mono-
meric enzyme with an only binding site, all the possible 
mechanisms caused by conformational splitting are de-
scribed for both ensemble or single-enzyme reactions and 
the simplest ways of calculating the reaction velocity are 
indicated. An alternative approach based on the ideas of 
molecular self-organization due to structural memory of 
the enzyme is outlined. 
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Особливості кінетичних та регуляторних процесів 
у біосистемах 

L. N. Christophorov, V. I. Teslenko, E. G. Petrov 

Особливістю біологічних систем є їх суттєва структурна 
неоднорідність. Це проявляється в тому, що процеси, які 
спостерігаються на наноскопічному рівні, є багатостадійни-
ми в часі. Викладено підхід, який дозволяє на основі методів 
нерівноважної статистичної механіки отримувати кінетичні 
рівняння, що уможливлюють опис еволюції повільних про-
цесів на тлі більш швидких. До найбільш важливих швидких 
процесів належать коливальна релаксація в електронному 
термі та стохастичні відхилення положення електронних 
енергетичних рівнів системи від їхніх стаціонарних поло-
жень. Як приклад показано, яким чином можна описувати 
кінетику одно- та двоелектронного переносу через білкові 
ланцюжки, передачу триплетного збудження в пігмент-
білковому комплексі за участю кисню, кінетику температур-
но-незалежної десенсибілізації больових рецепторів, а також 
конформаційну регуляцію ферментативних реакцій. 

Ключові слова: матриця густини, стохастичне поле, релакса-
ція, динаміка конформації. 
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