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Based on the self-consistent Hartree–Fock approximation, the nonstationary equation is obtained for the one-
particle wave function describing the Bose–Einstein condensate in a rarefied gas of spin-zero bosons. A rarefied 
gas of bosons is exposed to the static external field, which ensures its finite ground state. The derived equation 
allows one to correctly determine the ground state energy in the stationary case. 
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The experimental observation of the Bose–Einstein 

condensate (BEC) in ultracold gases of alkali metals [1] 
gave a powerful impact for theoretical studies of weakly 
nonideal Bose systems. Due to the presence of magnetic 
moments, alkali metal atoms can be kept in magnetic traps. 
To achieve the ultralow temperatures required for the forma-
tion of BEC, laser cooling and the evaporation of the high-
est energy atoms from a magnetic trap are used (see [2] for 
more details). The resulting ultracold gas is usually rarefied 
and strongly inhomogeneous [3]. In view of the inhomoge-
neity of the system, the nonstationary Gross–Pitaevsky (GP) 
equation [4, 5] is widely used to describe such a gas at zero 
temperature with regard to the effect of laser radiation [6]. 
However, this equation does not allow to directly deter-
mine the ground state energy of a Bose gas [7, 8]. 

In the case of an ultracold gas of spinless bosons of 
mass m, located in a static external field (ext) ( )ϕ r , the GP 
equation for the BEC wave function ( ), tΨ r  has the form 
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where 0U  is a constant that determines the intensity of the 
pair interaction of bosons: 

0( ) ( )U U= δr r  

 ( ) 23 , , d r t NΨ =∫ r  (2) 

N  is the number of particles in the considerated degenerate 
Bose gas, equal to the number of particles in the BEC [4, 5]. 
The derivation of the GP equation is usually based on the 
exact equation of motion for the field operators of creation 
ˆ ( , )t+Ψ r  and annihilation ( )ˆ , tΨ r  in the Heisenberg repre-

sentation: 
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with the subsequent formal replacement of these operators 
by their average (expected) values [4, 5]: 

 ( ) ( ) ( )*ˆ ˆ, , , , t t t+ +Ψ → Ψ ≡ Ψr r r    

 ( ) ( ) ( )ˆ ˆ, , ,t t tΨ → Ψ ≡ Ψr r r . (4) 
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However, the use of formal substitution (4) raises cer-
tain doubts (see [9–13] and the references therein). In this 
regard, A. Leggett [7] drew attention to the fact that the de-
rivation of the GP equation can be derived using the well-
known self-consistent Hartree–Fock approximation (SCHF). 
At the same time, he also pointed out that in this case 
the GP equation (1) contains a some contradiction, which 
was already mentioned above: the stationary GP equation 
does not directly determine the energy of the ground state 
of a degenerate Bose gas (see also [8]). Indeed, in a statio-
nary state, for which the BEC wave function has the form 

 ( ) ( ) ( ), exp /t i tΨ = ψ −r r  , (5) 

the “stationary” wave function ( )ψ r  satisfies the stationary 
GP equation: 

 ( ) ( ) ( ) ( )
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Physically,   must coincide with the ground state ener-
gy 0  per particle. However, in the approximation corre-
sponding to the GP equation, the ground state energy 0  is 
determined by the relation 
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It is easy to verify the validity of (7), if we take into ac-
count that with regard to Eq. (4), the expected value of the 
Hamiltonian Ĥ  for the system under consideration 
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leads to the ground state energy 0 N . 
In this case, to derive the stationary GP equation (6), it 

is reasonable to assume that the stationary many-particle 
wave function for a degenerate Bose gas in the ground 
state can be represented in the form 

 ( ) ( )0 1 2 0
1

, , , ,
N

N i
i=

ψ … = χ∏r r r r    ( ) 23
0 1d r χ =∫ r , (9) 

where ( )0χ r  is the one-particle stationary wave function. 
To determine the wave function ( )0χ r , the variational prin-
ciple should be used for calculating the energy of the ground 
state of the system with the Hamiltonian 
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Then it is easy to verify [7] that the function ( )0χ r  sa-
tisfies the equation 
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Equation (11) defines the stationary wave function 
( )0  χ r  for one boson with zero spin in the self-consistent 

field of the other ( )1N −  bosons. Provided that 1N  , the 
stationary GP equation (6) immediately follows from (11), 
if we assume that the stationary wave function of the BEC 
is determined by the relation 

 ( ) ( )0 . Nψ ≅ χr r  (12) 

A similar result within the SCHF approach can be ob-
tained using the secondary quantization formalism [8]. 

To obtain the appropriate nonstationary equation (for 
the one-dimensional case in the absence of an external field, 
such an equation was first derived for in Ref. 14), it is na-
tural to assume that for a degenerate Bose gas the nonsta-
tionary many-particle wave function in the coordinate re-
presentation ( )0 1 2, , , ;N tΨ …r r r  satisfying the Schrödinger 
equation 
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by analogy with (9) can be represented in the form (see, 
e.g., [7]) 
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Substituting (14) into (13), one obtains 
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where the function { }( ) ( )0, ,
N

i k i j
j i

t t≠
≠

Λ = χ∏r r  does not 

depend on the spatial variable ir . Further, within the frame-
work of the accepted consideration, very significant as-
sumptions are made to obtain a nonstationary equation [7]. 

In particular, by virtue of the condition  1N  , it is as-

sumed that the quantity ( )
N

i j
j i≠

δ −∑ r r  can be considered as 

the local inhomogeneous density of the gas at the point ir . 
Moreover, it is accepted that this value can be replaced 
by its expected value [by analogy with the statement (4)]. 



V. B. Bobrov, S. A. Trigger, and A. G. Zagorodny 

380 Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 4 

Under the validity of such assumptions, it is argued that 
Eq. (15) is satisfied if the one-particle wave function 

( )0 , tχ r  satisfies the following equation: 
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which is equivalent to the nonstationary GP equation (1) 
up to the replacement ( ) ( )0, ,t N tΨ ≅ χr r  [see (12)] [7]. 

Meanwhile, as shown in [14], for the case of a one-
dimensional problem in the absence of an external field, 
there is no need for the assumptions made in [7]. 

To derive a closed equation for the function ( )0 ,i tχ r , it 
is sufficient to multiply equation (15) by the function 

( )* { },i k i t≠Λ r  and integrate over all spatial variables ir , ex-
cept for the selected ir . As a result, omitting the index ( )i  
and accounting that 
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where the angular brackets define the procedure for calcu-
lating the expected values: 
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and the operator ̂ in the coordinate representation is equal 
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It is convenient to rewrite Eq. (18) in the form similar 
to the nonstationary GP equation (16) for the one-particle 
wave function: 
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Next, we substitute (20) into (21), multiply by the func-
tion ( )*

0 , tχ r  and integrate over the spatial variable r. 
Thus, we obtain 
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The nonstationary equation for the one-particle wave 
function of the Bose–Einstein condensate in the form (21) 
directly follows from Eqs. (21)–(23) with ( )E t  equal to 

 ( ) ( ) 2
0 0 0 0

1 , . 
2

E t U t= − χ χ χr  (24) 

Let us emphasize that the obtained relations, as well as the 
method of their derivation, are in full agreement with the 
results obtained for the first time in Ref. 14 and reproduce 
them for the one-dimensional case in the absence of an 
external field. Equations (21)–(24) indicate that describing 
behavior of one boson, it is necessary to take into account 
the self-consistent change in the behavior of the other bos-
ons, which is not reduced to the traditional “mean field” 
effect (see [14] for more details). 

In a stationary state, when the wave function ( )0 , tχ r  
can be represented as 

 ( ) ( ) ( )0 0 0, exp / , t i tχ = Χ − εr r   (25) 

the quantity E(t) is described by 

 ( ) 0 0 0 0
ˆ .E t E= = Χ Χ − ε  (26) 

As a result, according to Eqs. (18)–(26), we obtain a 
stationary equation that determines the function ( )0Χ r  and 
the energy 0ε : 

 ( ) ( )
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(ext)  1
2

N
m


− ∆ + ϕ + − ×


r r   

 ( )( )} ( ) ( )2
0 0 0 0 0 0 0

ˆ .U N× Χ + Χ Χ Χ = ε Χr r r  (27) 

It is easy to show that the energy 0ε  coincides with the 
energy of the ground state 0  per particle in the considerated 
boson gas [see (5)], that was required to prove. Taking into 
account Eq. (26), it is seen that the function ( )0Χ r  corre-
sponds to the solution of the stationary GP equation (11). 
 ________  

1. M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, 
and E. A. Cornell, Science 269, 198 (1995). 

2. E. A. Cornell and C. E. Wieman, Rev. Mod. Phys. 74, 875 
(2002). 

3. F. Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, 
Rev. Mod. Phys. 71, 463 (1999). 

4. E. P. Gross, Nuovo Cimento 20, 454 (1961). 
5. L. P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961). 
6. L. P. Pitaevskii, Phys. Usp. 41, 569 (1998); ibid. 49, 333 

(2006). 
7. A. J. Leggett, Rev. Mod. Phys. 73, 307 (2001). 

https://doi.org/10.1126/science.269.5221.198
https://doi.org/10.1103/RevModPhys.74.875
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1007/BF02731494
https://doi.org/10.1070/PU1998v041n06ABEH000407
https://doi.org/10.1070/PU2006v049n04ABEH006006
https://doi.org/10.1103/RevModPhys.73.307


Nonstationary equation for the one-particle wave function of the Bose–Einstein condensate 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 4 381 

8. V. B. Bobrov, A.G. Zagorodny, and S. A. Trigger, Fiz. Nizk. 
Temp. 44, 1549 (2018) [Low Temp. Phys. 44, 1211 (2018)]. 

9. C.-H. Zhang and H. A. Fertig, Phys. Rev. A 74, 023613 (2006). 
10. P. Navez and K. Bongs, EPL 88, 60008 (2009). 
11. V. B. Bobrov, S. A. Trigger, and I. M. Yurin, Phys. Lett. A 

374, 1938 (2010). 
12. A. M. Ettouhami, Progr. Theor. Phys. 127, 453 (2012). 
13. V. B. Bobrov, A.G. Zagorodny, and S. A. Trigger, Fiz. Nizk. 

Temp. 43, 420 (2017) [Low Temp. Phys. 43, 343 (2017)]. 
14. A. M. Kosevich and A. S. Kovalev, Introduction to Nonli-

near Physical Mechanics, Naukova Dumka, Kiev (1989) [in 
Russian]. 

 ___________________________  

Нестаціонарне рівняння для одночастинкової 
хвильової функції бозе-ейнштейнівського 

конденсату 

V. B. Bobrov, S. A. Trigger, A. G. Zagorodny 

На основі самоузгодженого наближення Хартрі–Фока от-
римано нестаціонарне рівняння для одночастинкової хвильової 
функції, що описує конденсат Бозе–Ейнштейна в розрідже-
ному газі спін-нульових бозонів. Розріджений газ бозонів під-
дається впливу статичного зовнішнього поля, що забезпечує 
його кінцевий основний стан. Отримане рівняння дозволяє 
правильно визначити енергію основного стану у стаціонар-
ному випадку. 

Ключові слова: вироджений бозе-газ, конденсат Бозе–Ейн-
штейна, самоузгоджене наближення Хартрі–
Фока, енергія основного стану.
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