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The transmission coefficient T of the Dirac quasielectrons through a rectangular potential barrier in the α-T3 
model is calculated and analyzed in the continuum approach. The dependence of the transmission rate on para-
meter α, which characterizes the degree of coupling of the central atom with the atoms in the vertices of the he-
xagonal lattice, and parameter β, which is equal to the ratio of Fermi velocities in the barrier and out-of-barrier 
regions, is analyzed. It was found, for certain quasiparticle energies, the supertunneling phenomenon is observed, 
which is that the transmission coefficient is equal to one independently of an angle of the particle incidence on 
the barrier, provided that α = 1. The values of these energies depend on the barrier height and the parameter β. It 
is shown that for some sets of parameters the function T(α) has maxima in the range 0< α <1. For a large range 
of parameter values, the transmittance increases monotonically with increasing α. For the zero angle of incidence 
of quasiparticles on the barrier the Klein paradox is observed, i.e., the quantum transparency of the system is 
ideal, and this is true for any values of parameters α, β, barrier height, and energy of quasiparticles. 
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Introduction 

A lot of modern physical structures can be conveniently 
described using the so-called α-T3 model [1–8]. This 
model can rightly be attributed to a new class of objects 
that have received the name of the Dirac materials in re-
cent years [9]. These include very different objects in their 
structure, in particular the low and high-temperature d-wave 
superconductors, superfluid phases of 3Не, graphene, two- 
and three-dimensional insulators, etc. [9]. The key concept 
that unites these different objects is a linear dispersion rela-
tion that describes the low-energy excitations of the quasi-
particles. Due to the fact that the Dirac materials have a 
number of non-trivial, interesting properties, they are ac-
tively studied in the last time. Under low energies, the 
quasiparticle states of the Dirac materials are described by 
a massless Dirac equation in one or two dimensions, analo-
gous to the equation for the quasielectrons in graphene. 
The dispersion relation for the Dirac particles relates to a 
cone in the three-dimensional case. Some properties of 
states in the Dirac materials are expressed in terms of topo-
logically invariant quantities and, importantly, are protec-
ted from the influence of moderate perturbations due to the 

symmetry of inversion of time in the corresponding Hamil-
tonian. Time reversal invariant perturbations such as lattice 
imperfections or non-magnetic moderate disorder do not 
produce a gap.  

The α-T3 model is an intermediate structure between a 
dice lattice and graphene. It is characterized by the pa-
rameter α which determines the coupling strength between 
the central atom of the hexagonal lattice and the atoms in 
the hexagon vertices [1–8]. It is clear that different values 
of α correspond to different physical states of the α-T3 
model and it was successfully applied to various physical 
structures [1–8].  

At the same time, it is known that the characteristics of 
structures based on the Dirac materials are significantly 
influenced by the difference in the values of the Fermi ve-
locity in different parts of the given structure [10–20]. 
A lot of various structures with non-equal Fermi velocities 
in different regions of the considered structure were stud-
ied in the last years. They include the graphene based sin-
gle- and double-barrier structures, various types of super-
lattices including the quasiperiodic ones, superconducting 
junctions, structures based on the topological insulators, 
etc. [10–20]. 
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Motivated by the above considerations, in this paper, 
we study the ballistic transmission of quasielectrons 
through a rectangular potential barrier in the α-T3 model 
and show that it depends strongly, in particular, on the re-
lation between the parameters α and β. To be more exact, 
we consider the α-T3 model proposed in [1]. In this mo-
del, two sites per unit cell are associated with the hopping 
parameter t, and the connection between the additional site 
(placed at the center of each hexagon) with the site at the 
vertice of the hexagon is believed to be realized via the 

hopping parameter tα . This model interpolates between 
two limiting cases: if   0α=  we deal with the pristine graphene, 
and if   1α=  the proposed model is reduced to the dice lat-
tice. By changing the values of the parameters α and β, 
one can flexibly control the transmission properties of the 
structure under consideration within a wide range. 

Model and Formulae 

The Dirac-like equation for the considered model can 
be represented as follows [1–8] 
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where U is the external potential which corresponds to the 
rectangular barrier and is equal to: in the barrier region 
U(0 < x < D) = U and U = 0 otherwise, 0I  is the identity 
matrix, xk , yk  the quasimomentum components along 0x 
and 0y axis, the wave moves across the barrier (0x axis). 

For our purpose, it suffice to take into consideration on-
ly one K valley in the hexagonal Brillouin zone. The quan-
tity Fυ  acquires different values in the barrier and out-of-
barrier regions. The parameter ϕ  is introduced for conve-
nience, arctan ,ϕ= α  α is a parameter showing the cou-
pling strength of the central atom with the atom at the he-
xagon vertice; for the dice lattice   1α= , for graphene   0α= . 

The eigenfunctions in the Eq. (1) can be represented as 
follows 
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where index II refers to the barrier region and I, III refer to 
the out-of-barrier regions, φ, θ are the incidence and the 
refraction angle, respectively. Then the quasimomentums 
are equal to: 
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Using the appropriate matching conditions at the interfaces 
[21, 22]: 

 ( ) ( )1 I IIIcos 0 sin 0F x x− − υ ϕψ = + ϕψ = =    

 ( ) ( )2 I IIIcos 0 sin 0F x x+ + = υ ϕψ = + ϕψ =  ,  

 ( ) ( )1 II 2 II0 0F Fx x− +υ ψ = = υ ψ = ,  

 ( ) ( )2 I IIIcos sinF x D x D− − υ ϕψ = + ϕψ = =    

 ( ) ( )1 cos sinF I IIIx D x D+ + = υ ϕψ = + ϕψ = ,  

 ( ) ( )2 II 1 IIF Fx D x D− +υ ψ = = υ ψ =  (6) 

we can obtain the expression for the coefficient t:  

] [( ) { [ ( )4cos cos e 2 1 cos s(2 1 cox xi k q Dt − += φ θ + θ−φ − − θ+   

( )2  2  2 2 1e 1 e sin 2 sin sin .)] ( ) ( ) }x xi q D i q D− − −+ φ − − ϕ θ+ φ  (7) 

This formula is an agreement with the expression (18) 
from [11] in the case of   0α=  and with the expression (12) 
from [17] in the case of   1α= . The transmission coefficient 
T is equal to 2 .T t=  

Results and Discussion 

Figures 1–3 show the transmission spectrum, i.e., the 
dependence of the transmission coefficient T on the 
quasielectron energy Е (Fermi energy).  
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The spectra have a pronounced resonant-tunneling cha-
racter. Two groups of different origin should be distin-
guished among the resonant peaks. First of all, let us distin-
guish the maxima corresponding to the energies E+  = 0.2 eV 
and E−  = 0.6 eV in Fig. 1. These maxima refer to the phe-
nomenon of the supertunneling, which means that the 
transparency of the given structure becomes perfect, i.e., 
the transmission coefficient becomes equal to one for all 
angles of incidence of quasielectrons on the barrier. We 
emphasize that this phenomenon occurs only for the value 

  1α= . As known [17], it is observed in structures based on 
the dice lattice, in which it is manifested for energy equal 
to half the height of the potential barrier: E = U/2. In the 
structure considered in this paper, the energies for which 
the supertunneling phenomenon is realized depend on the 
value of β. We can find this dependency from the formulae 
above and it reads: 

 .
1
UЕ± = ±β

 (8) 

Therefore, for each value of the potential barrier height U 
and the Fermi velocities in the barrier and out-of-barrier 
regions there are two energies for which the supertunneling 
is observed. 

Another group of peaks with a maximum value of T = 1 
refers to the Fabry–Perot-type resonances resulting from 
the interference of electron waves. These resonances obey 
the formula 
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where n = 1, 2, 3, … . 
As can be seen from this formula, the Fabry–Perot reso-

nances do not depend on the value of α, which is confirmed 
by Figs. 1, 2 on which we see that the Fabry–Perot peak 
positions on the energy axis are the same for all α values. 

At the same time, the values of the transmission coefficient 
T for the energies located between the resonant peaks de-
pend significantly on α, and they increase markedly with 
increasing in α. 

A marked characteristic of these spectra is the presence 
in them of the energy gap — the band in which the value of 
T is close to zero. This band is located around the energies 
close to the top of the potential barrier Е ~ U, and its origin 
is due to the fact that, for these energies, the quasi-momen-
tum in the barrier region becomes imaginary [see Eq. (5)] and 
the electron wave decays [see Eqs. (2)–(4)].  

The spectra T(E) are very sensitive to the values of the pa-
rameter β. Thus, with increasing β, the energy gap increases 
significantly; the number of the Fabry–Perot resonances in the 
fixed energy range markedly decreases (Figs. 1–3). 

The analyzed spectra also have a pronounced angular 
dependence, that is, the values of the transparency coeffi-
cient T strongly depend on the angle of incidence of the 
quasiparticles on the potential barrier. We will dwell more 
on this dependence below, and here we will pay attention 

Fig. 1. (Color online) The dependence of the transmission coeffi-
cient T on the quasielectron energy E. The parameter values are 
as follows: U = 0.3 eV, ϕ = 1 rad, β = 0.5, D = 10 nm; dashed 
(brown), dotted (blue), and solid (magenta) lines correspond to 
the values of α = 0.3, 0.7, and 1, respectively. 

Fig. 2. (Color online) T vs E dependence for the parameter val-
ues: U = 0.3 eV, ϕ = 1 rad, β  = 0.3, D = 10 nm; dashed (brown), 
dotted (blue), and solid (magenta) lines correspond to the va-
lues of α = 0.3, 0.7, and 1, respectively. 

Fig. 3. (Color online) T vs E dependence for the parameter values: 
U = 0.3 eV, ϕ = 1 rad,   1α= , D = 10 nm; dashed and dotted (ma-
genta), dashed (brown), dotted (blue), and solid (red) lines corre-
spond to the values of β = 0.3, 0.5, 0.8, and 1.5, respectively. 
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to the presence of the so-called critical angle of incidence 
сφ  — such that for all incidence angles сφ> φ  the barrier 

becomes completely opaque. The value of the critical angle 
of incidence can be found from the Snell’s law, and it is 
equal to:  

 arcsinс
E U

E
 − 

φ = ±  
β 

. (10) 

In particular, for the parameters for Fig. 3 the largest 
value of β leads to that the angle φ = 1 rad is already greater 
than the critical one: see the corresponding solid (red) line. 
The other curves in this figure correspond to the angles 
less than the critical one (here   1α=  for all curves). We 
would like to note that according to Eq. (10) the critical 
angle depends on both quantities U and E, it can be ob-
served for 1β>  as well as for 1β< . In case of absence of 
the electrostatic potential (U = 0) the critical angle can be 
realized only for values of 1β>  (see, e.g., [14, 15]).  

Note that the lines T(E) for different values of α are the 
curves with inflection. This inflection becomes more pro-
nounced with increasing α until the coefficient T reaches 
its maximum value T = 1, which corresponds to the phe-
nomenon of the supertunneling at   1α=  (see the gradual 
transformation of the lines T(E) with change in α in Fig. 4). 
Note that these inflexions affect the dependence on energy 
of the conductivity and of the Fano factor of the considered 
structure. 

In order to analyze in more details the dependence of the 
transparency coefficient T on the parameter α, it is convenient 
to use the image of the function ( )T α  presented in Fig. 5.  

The obtained spectra are very sensitive to the changes 
in the parameter values. For most of them, there is a ten-
dency: the magnitude of T increases with increase in α. At 
the same time the most striking feature of the function 

( )T α  is its non-monotonicity, namely the presence of a 
maximum for a certain value of α (in the range 0< α <1). 
So we have an important conclusion: in a certain range of 

the parameter values (quite a narrow one) the transmission 
reaches a maximum value and this maximum is realized 
for some intermediate values of α (between 0 and 1, not 
for   1α= ). This conclusion is echoed by a series of works 
[1–8] showing that some physical properties will prove to 
reveal the non-monotonic dependence on α. For example, 
in [7] it is shown that the Hall conduction has the addition-
al steps only for certain intermediate (between 0 and 1) 
values of α. In connection with the above, one can note the 
works of [2, 4, 5], which investigated the magneto-optical 
conductivity, orbital magnetic susceptibility and the Hof-
stadter butterfly. They also emphasized the importance of 
intermediate values of α. 

It is known that in graphene or graphene structures, a 
special selection of parameter values can lead to special 
effects or results. The same situation is relevant to the 
structure considered in this work. In particular, for the val-
ues of the parameters E = 0.2 eV, U = 0.4 eV, D = 10 nm, 

0.7,β≈  the transmission coefficient T is almost equal to 
one in the whole range of incidence angle, provided that 

  1α= , see Fig. 6. For other values of α, the value of T is also 
high. In fact, here we have a result close to the supertunneling. 

The dependence of T(ϕ) displays the unordinary behav-
ior for the value β ≈ 0.7 comparing with other β values 
(see Fig. 7): there is a decrease in T with increasing of 
ϕ starting from zero, but after reaching a value ϕ ≈ 0.37π 
the coefficient T begins to increase until the certain angle 
near ϕ = π/2 is reached, after which the value of T drops 
sharply to zero. Note that for this set of the parameter val-
ues, the magnitude of T is high even for small α.  

Note that the transmission of the quasielectrons through 
a given structure depends essentially on the values of the 
parameter α, as well as on the values of the parameter β, that 
is, substantially depends on the interplay between α and β. 

Fig. 4. (Color online) T vs E dependence for the parameter val-
ues: U = 0.3 eV, ϕ = 1 rad, D = 10 nm, β  = 0.8; solid (red); dot-
ted (blue), dashed (brown), dashed and dotted (magenta) lines 
correspond to the values of   1α= , 0.9, 0.8, and 0.6, respectively. 

Fig. 5. (Color online) T vs α dependence for the parameter va-
lues: for all lines D = 2 nm, ϕ = 1 rad; for the thick solid (red), 
and thin solid (blue) lines E = 0.2 eV, U = 0.3 eV, for other 
curves E = 0.02 eV, U = 0.03 eV; thick solid (red), thin solid 
(blue), dotted (blue), dashed (brown), dashed and dotted (ma-
genta) lines correspond to the values of β = 0.156, 0.5, 0.8, 
1.35, and 3, respectively. 
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For most values of the parameters of this problem, the re-
gion of the incidence angles with a high value of T is wider 
for larger α and smaller β, and the values of the coefficient 
T for a fixed angle increase with increasing of α and de-
creasing in β.  

Figures 6, 7 show that in the structure considered there is 
an effect similar to the Klein paradox: for the normal inci-
dence of quasiparticles on the barrier, it becomes perfectly 
transparent, that is, the value of the coefficient T is equal to 
unity, regardless of the value of the barrier height U and its 
thickness D. We emphasize that in this case T = 1 also inde-
pendently on the values of the parameters α and β.  

Figure 8 illustrates the dependence of T on α for differ-
ent incidence angles. 

Let us dwell further on the dependence of T on the thick-
ness of the potential barrier D. In this dependence we ob-

serve several different modes. They are presented in Fig. 9. 
The dashed line corresponds to the phenomenon of the 
supertunneling, which is independent of the magnitude of D. 
The value of β = 0.3 (for other fixed parameters) corre-
sponds to the oscillating function with D — the dotted line 
in Fig. 9. Note that the horizontal line with T = 1 in Fig. 4 
of [14, 15] refers to the Klein-like tunneling whereas the 
dashed line in Fig. 9 is related to the supertunneling. Final-
ly, the descending curves T(D) (β = 0.6 and 0.7) corre-
spond to such set of the parameters for which the existing 
barrier leads to a monotonous decrease in the magnitude of 
the transparency coefficient as the thickness of the barrier 
increases — as in the case of the conventional tunneling. 
As the thickness of the barrier increases, the number of 
resonances of the Fabry–Perot type increases and this num-
ber, like the position of the peaks on the 0ϕ axis, does not 

Fig. 6. (Color online) T vs ϕ dependence for the values of the pa-
rameters: for all lines E = 0.2 eV, U = 0.4 eV, D = 10 nm, β  ≈ 0.7; 
solid (red), dotted (blue), dashed (brown), and dashed-dotted 
(magenta) lines correspond to the values of   1α= , 0.8, 0.5, and 
0.3, respectively. 

Fig. 7. (Color online) T vs ϕ dependence for the values of the 
parameters E = 0.2 eV, U = 0.3 eV, D = 10 nm, β = 0.5; solid 
(red), dashed-dotted (magenta), dotted (blue), and dashed (brown)  
lines correspond to the values of α  = 1, 0.8, 0.5, and 0.1, respec-
tively. 

Fig. 8. (Color online) T vs α  dependence for different incident 
angles, the parameters are as follows: for all lines E = 0.2 eV, 
U = 0.6 eV, D = 10 nm, β = 0.35; thick solid (red), dotted (blue), 
dashed (brown), dashed and dotted (magenta), and thin solid 
(blue) lines correspond to the values of ϕ = 0.3, 0.5, 0.7, 0.9, and 
1.1 rad, respectively. 

Fig. 9. (Color online) Dependence of the transmission coefficient 
T on the barrier thickness D for the parameters: E = 0.2 eV, U = 
= 0.3 eV, ϕ = 1.2 rad,   1α= ; solid (red), dotted (blue), dashed-
dotted (magenta), and dashed (brown) lines correspond to the 
values of β = 0.3, 0.5, 0.6, and 0.7, respectively. 
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depend on α; but the value of T for the angles placed be-
tween the Fabry–Perot resonances depends on α, increas-
ing with increasing α. These affirmations are evidenced by 
Fig. 10 for value of D = 50 nm. 

Figure 11 shows the dependence of T(E) for the barrier 
thickness larger than in Fig. 1, namely D = 20 nm. Here, 
such changes in the graph T(E) are observed: the oscilla-
tion frequency increases and half the width of the resonant 
peaks decreases with D. The energy gap becomes more 
pronouncedly formed. 

Conclusions 

Transmission properties of the single-barrier structure 
based on the α-T3 model are considered in the paper. It is 
believed that the barrier is sharp and has a rectangular 
shape. The physical origin of the barrier is assumed to be 
electrostatic, but it is taken into account that the Fermi ve-
locities in the barrier and out-of-barrier regions have dif-
ferent values and this situation is referred to in the litera-
ture as the presence of the Fermi velocity barrier. The 
parameter α in this model can acquire values from zero to 

one, moreover the case   0α=  corresponds to graphene and 
  1α=  to the dice lattice. Particular attention is given in the 

work to intermediate values of α, since, as is known from 
the literature, they are important for observing for a lot of 
physical phenomena. The transmission coefficient is found 
by means of matching of wave functions at the interfaces. 
The obtained spectra show a pronounced dependence on an 
angle of incidence of the pseudo-relativistic Dirac quasi-
particles on the barrier of the structure under consideration. 
In particular, for the normal incidence angle there is a per-
fect penetration of particles through the barrier for any 
values of the parameters α, β, as well as of the barrier 
height and thickness, that is, an effect similar to the Klein 
paradox is realized here. At the same time for certain 
quasiparticle energies we observe the effect of the super-
tunneling, which is that for these energies the barrier of the 
system becomes absolutely quantum-transparent for any 
angle of incidence of the particles on the barrier. Formula 
for these energies depending on the problem parameters is 
presented. For a given set of the parameter values, there 
are two energy values of quasielectrons, for which this 
phenomenon is realized. This unconventional feature can 
be useful for designing “a perfect focusing lens without 
loss” [17]. Also we show that for some special parameter 
sets there is a phenomenon similar to the supertunneling, 
i.e., the transmission rates is almost equal to unity for all 
incident angles. The spectra reveal the presence of the non-
monotonicity in the ( )T α  dependence, namely there is 
maximum of the ( )T α  function. This circumstance is asso-
ciated with the fact that some physical phenomena are ob-
served for an intermediate (between zero and unity) values 
of α. The dependence of the transmission spectra on the 
barrier thickness is non-trivial, and qualitatively different 
modes of this dependence are possible. The spectra are 
sensitive to the interplay between α and β values, and they 
also substantially depend on other of the problem parame-
ters. The obtained results may be useful in the modern 
nanoelectronics based on the Dirac materials. 
 ________  
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Кіральне тунелювання через однобар’єрну 
структуру на основі моделі α-T3 

A. M. Korol, A. I. Sokolenko, O. Shevchenko 

У рамках континуального підходу обчислено та проаналі-
зовано коефіцієнт пропускання T квазіелектронів Дірака 
крізь прямокутний потенціальний бар’єр у моделі α-T3. Про-
аналізовано залежність коефіцієнта пропускання від параме-
тра α, який характеризує ступінь зв’язку центрального атома 
з атомами у вершинах гексагональної гратки, та параметра β, 
який дорівнює відношенню швидкостей Фермі в бар’єрній та 
позабар’єрній областях. Встановлено, що для певних енергій 
квазічастинок спостерігається феномен супертунелювання, 
тобто коефіцієнт пропускання дорівнює одиниці незалежно 
від кута падіння частинок на бар’єр, за умови, що α = 1. Зна-
чення цих енергій залежать від висоти бар'єру та величини 
параметра β. Показано, що для деяких наборів значень пара-
метрів функція T(α) має максимуми в інтервалі 0 < α < 1. Для 
значного діапазону значень параметрів коефіцієнт пропус-
кання монотонно зростає зі збільшенням α. Для нульового 
кута падіння квазічастинок на бар’єр спостерігається пара-
докс Клейна, тобто квантова прозорість системи є ідеальною, 
і це справедливо для будь-яких значень параметрів α, β, ви-
соти бар’єру та енергії квазічастинок. 

Ключові слова: α-T3 модель, коефіцієнт трансмісії, супер-
тунелювання. 
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