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We review one-dimensional lattice models and the corresponding results that describe the low-temperature 
properties of quasi-one-dimensional lattice systems with long-range interaction. A widely known example is nar-
row-band low-dimensional conductors with long-range interelectron repulsion. The models deal with particles 
that live on the one-dimensional host lattice (chain), translation invariant or disordered, and interact via the long-
range repulsive potential. The results are presented concerning the translation invariant host chain, in particular: 
the low-temperature thermodynamics incommensurable ground states and related devil-staircase form of various 
characteristics as functions of pertinent parameters, the self-localization of particles, a new branch of elementary 
excitations, etc. In the disordered case, where the sites of the host chain fluctuate randomly around the sites 
of the periodic chain, the low-temperature thermodynamics and the structure of the ground state are discussed 
in the framework of a certain model, which we call the cluster model and which seems to be a fairly reasonable 
approximation for low temperatures and small concentration of particles. Using analytical and numerical tools 
we analyze the thermodynamics and the ground state of the model. The latter proves to be a sequence of random 
domains and we study in detail their distribution. 

Keywords: one-dimensional systems, disordered systems, ground-state structure. 
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1. Introduction 

Low-dimensional and layered conductors are of consi-
derable interest because they possess a number of unusual 
properties. These are, for instance, the conductors with the 
combination of narrow-band dynamics and weak Coulomb 

screening. In these materials, the effects determined by in-
terelectron (or interholes) repulsion play the dominant role 
and make them qualitatively different from the compounds 
described by the Hubbard model where electron-electron 
interaction is local. These effects are especially pronounc-
ed in quasi-one-dimensional systems having the macro-
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scopic extent in one direction and the microscopic size in 
all other directions. 

A widely used model that describe these systems con-
sists of N  particles living on the one-dimensional host lat-
tice (host chain)   of L  sites (translation invariant or dis-
ordered). The pair interaction between particles is described 
by long-range potential V  that decays polynomially at in-
finity: 

 0( ) | | , | | >> ,V x x x a−γ


 (1.1) 

where > 0γ  and 0a  is a parameter that determines the 
basic length scale of the lattice (lattice period in the trans-
lation invariant case, the typical distance between the lat-
tice or rather networks sites in the disordered case). 

One can broadly classify the d -dimensional systems 
with long-range potential (1.1) by writing 

 = dγ + σ (1.2) 

and specifying σ  (see, e.g., [1]). The systems with < 0σ  
can be called the “strong” long ranged. In this case, one 
has either to take into account certain truncations proce-
dures (screening, confining the system to a finite box, etc.), 
or to be prepared to obtain rather unusual properties, espe-
cially if V  is attractive or anisotropic (see, e.g., [2, 3]). The 
systems with “weak” long-range interaction [ > 0σ  in (1.1)] 
admit the traditional statistical mechanics description pos-
sessing, however, certain special properties if σ  is small 
(say, < 2σ ). 

In this work, we assume that = 1d , > 0σ  and V  is posi-
tive (repulsive) and convex, i.e., 

 ( ) > 0.V'' x  (1.3) 

The last condition is important [see, e.g., formulas (2.5), 
(2.6), (2.24), and (3.23)]. 

The convexity condition is important [see, e.g., formu-
las (2.5), (2.6), (2.24)] and its violation may change signi-
ficantly the results (see, e.g., [4]). We will mostly use the 
model (and the terminology) of narrow-band quasi-one-di-
mensional conductors with long-range interelectron repul-
sion. These materials possess a variety of interesting and 
often counterintuitive properties that not only differ them 
qualitatively from ordinary metals (including the transition 
metals) and semiconductors, but also from the conductors 
described by the conventional Hubbard model, where in-
teraction is local. 

Among the conductors of this type those where the 
charge tunneling between host-lattice sites is suppressed by 
their mutual repulsion are of special interest. In this case, 
the whole ensemble of charge carriers turns out to be self-
localized [5]. The criterion of the self-localization (SL) is 
the smallness of overlapping integral t  with respect to the 
typical change 

 1
0( / )V a l Vγ+δ 

 (1.4) 

in energy of the charge carrier jumping (tunneling) be-
tween the lattice sites, where l  is the typical interelectron 
distance and V  is the typical energy per electron. 

One of the most known examples of the two-dimen-
sional (2D) systems of this type is the so-called MOSFET 
structure (metal-oxide-semiconductor field-effect transis-
tor) with the hole-impurity band. Note that the systems 
where the charge carriers are pressed out on the surface by 
external electric field normal to the surface belong also to 
this class of conductors (2D lattice electron gas). In this 
case, the electric field plays the role of a chemical potential µ. 
Changing µ, we can vary considerably the electron density ec . 
Besides, there are strong reasons to believe that layered 
structure, including high-temperature superconductors (HTSC) 
and a number of metaloxides of other types also possess 
the long-range interaction. 

Another important group consists of one-dimensional (1D) 
and quasi-1D compounds. These are, for example, quasi-
one-dimensional organic conductors [6] and spin valves on 
the base of narrow-band-gap nonmagnetic metals [7]. Fur-
thermore, a lot of artificially created 1D nanosystems, such 
as chains of quantum dots [8] and chains of metallic nano-
grains with tunnel junctions between them [9], also belong 
to this group. 

In view of the above, below we will write an electron 
instead of a particle. 

The question on the influence of disorder of the host-
lattice sites on the ground state and low-temperature pro-
perties of these systems is of special interest, since the 
overwhelming majority of SL conductors are essentially 
disordered. For instance, in semiconductors based on the 
MOSFET the disorder is due to the random distribution of 
impurities [10, 11], and in certain nanostructures [8, 9] the 
disorder is due to fluctuations of tunneling junctions. There 
are also strong reasons to believe that 1D charge transfer 
salts of TCNQ, TMTTF, and DCNQI types also belong to 
this class due to their nonideal chemical structure. 

The Hamiltonian of the systems under consideration 
can be obtained from that of the extended Hubbard model 
[recall that the conventional Hubbard model is given by 
(1.5), where the last term is absent] 

, , 0 , ,
1ˆ ˆ ˆ ˆ ˆ ˆ= (| |) ,
2' '

' '
H t c c U n n V ' n n+

σ σ ↑ ↓
〈 〉 σ ≠

− + + −∑ ∑ ∑r r r rr r
r,r , r r r

r r  

  (1.5) 
in which ' ∈r,r  are the coordinates (sites) of the host-
lattice  , translation invariant or disordered, of L  sites, 
〈 〉  denotes the neighboring sites, t  is the overlap (hop-
ping) integral, 0U  is the strength of the interaction of elec-
trons with opposite spins on the same site, V  is the usual 
pair interaction, ĉ+σr,  and ĉ σr,  are creation/annihilation ope-
rators of electron on site r with spin σ , , , ,ˆ ˆ ˆ=n c c+

σ σ σr r r , 
, ,ˆ ˆ ˆ=n n n↑ ↓+r r r  and 

 =n N∑ r
r
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is total number of electrons. The electron density is 

 = .e
Nc
L

 (1.6) 

In a number of 1D narrow-band conductors (for example, 
charge-transfer salts of a TTF-TCNQ type [6]) and adatom 
systems (if the adatom interaction with a substrate is suffi-
ciently strong [12]), we have typically < 1ec  and ( )U V l

. 
This is why it seems reasonable to neglect the quantum dy-
namics (first term) and Fermi statistics (second term) effects 
in (1.5). The obtained system is known as the generalized 
Wigner crystal (GWC) and is described by the classical 
Hamiltonian 

 1= (| |) ,
2 '

'
H V ' n n

≠

−∑ r r
r r

r r  (1.7) 

where = 0, 1nr  are the classical occupation numbers of 
electrons on host-lattice site with coordinate r. 

It is often useful to rewrite Hamiltonian (1.7) in terms 
of the coordinates of electron =1{ }N

j jx , instead of occupa-
tion numbers { }n ∈r r . Using the condition = 1,

j
nx  

= 1, ...,j N , we obtain 

 1= (| |).
2

N

j k
j k

H V
≠

−∑ x x  (1.8) 

2. Translation invariant systems 

2.1. Generalities 

The classical lattice gas models with purely repulsive 
and strictly convex V  of (1.1) were used to study the or-
derings of electrons in quasi-one-dimensional conductors 
by Hubbard [6, 13] and the orderings of monolayers of 
atoms adsorbed on solids by Pokrovsky and Uimin [14]. 
The periodic ground-state particle configurations of these 
models have been described exactly in [6, 14]. Namely, it 
was shown that particles are distributed as far as possible 
from each other respecting restrictions imposed on their 
locations by the underlying periodic hostchain. These con-
figurations, the generalized Wigner lattices according to 
Hubbard [6], are independent of any further details of the 
interaction potential. Moreover, the ground-state configu-
rations have an interesting property known as the complete 
devil’s staircase [15–17]. 

One-dimensional systems with = 1γ  in (1.1) were con-
sidered first by Hubbard [6], who argued that if 

 = / = / ,ec N L p q  (2.1) 

where /p q is irreducible, then the ground state of (1.7) 
is the “electron crystal” with cell length 0a q and p par-
ticles per cell. Besides, the distance jl  between the nearest 
neighboring electrons can assume of the following two 
values: 

 1 0= = [1/ ],j j j el x x a c+ −  0 ([1/ ] 1),ea c +  (2.2) 

where [ ]  denotes the integer part and , = 1,2,jx j 
 are 

the electron positions. More detailed analysis of the ground 
state of (1.7) was carried out in [16]. 

The grand canonical ensemble version of the one-
dimensional lattice described by (1.7) with potential having 
an arbitrary > 1γ  [see (1.1)] was studied rigorously in [17]. 
The Hamiltonian in this case is [cf. (1.7)] 

 1= (| |) ,
2 '

'
H V ' n n n

≠

− −µ∑ ∑r r r
r r r

r r  (2.3) 

where µ is the chemical potential. In particular, it follows 
from [17] that the ground state structure does not depend 
on γ  and can be described by the simple formula 

 0= [ / ],j ex a j c + φ  (2.4) 

valid for any, i.e., not necessarily rational ec  [the same is 
true for (2.2)]. Here [0, 1)φ∈  is an arbitrary (initial) phase 
determined by the choice of the origin of the host chain. 
The zero temperature concentration ec  as a function of µ is 
the devil staircase with the widths of the stairs (stability 
intervals of electron crystal) equals 

 2

=1
( ) = ( , ) = ( ),e

k
c p q q k V qk

∞

∆µ ∆µ δ∑   

 2 ( ) = ( 1) 2 ( ) ( 1).V x V x V x V xδ + − + −  (2.5) 

It follows from (2.5) that the widths depend only on the 
denominator q of (2.1). Note that the case = 1γ  treated in 
[6, 16] is a bit delicate, since it requires a certain cutoff at 
a screening radius 0 0r a  to provide the existence of mac-
roscopic thermodynamics. In this case, the devil-staircase 
steps with 0( )''V r∆µ  vanishes. 

2.2. Low-temperature thermodynamics. 
Nearest-neighbor approximation 

According to (2.2) and (2.4), the only two interelectron 
distances are possible in the ground state. This implies that 
in the low-density region ( 1ec  ) one can assume the qua-
si-equidistant distribution of particles. Besides, it follows 
from (2.5) that the only “simple” electron densities like 

= 1/ec q contribute significantly to the low-temperature 
thermodynamics. Indeed, we have by (2.5) 

 ( = / ) ( ).''
ec p q V q∆µ 

  

Considering two close electron densities, for example, 
= 1/ 3ec  and = 101/ 300ec , we conclude that 

( = 1/ 3) (3) ( = 101/ 300) (300)'' ''
e ec V c V∆µ ∆µ  

. 

At any finite temperatures, the devil-staircase steps with 
( )ec T∆µ   will be destroyed. According to (2.2), the mean 

interelectron distance 1j jl x x+≈ −  is about 1/ ec , thus 
(1/ )''

eV c∆µ . Assume that 

 (2 / ) < < (1/ ).'' ''
e eV c T V c  (2.6) 
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These inequalities imply that it suffices to consider only 
the nearest-neighbor interactions in (1.7), see Sec. 4 for 
more general case. As a result, we obtain the correspond-
ing approximate Hamiltonian 

 
1

1
=1

= ( ),
N

NN j j
j

H V x x
−

+ −∑   

 1 01 < < < < < <j Nx x x a L 
 (2.7) 

and every , = 1, ,jx j N
 runs over the set 0 =1{ }L

ssa  of 
the host-chain sites. 

Note that in this approximation we take into account the 
interaction between the nearest electrons but not the nearest 
host chain sites. As a result, the only the devil-stair steps 
corresponding to the structures with = 1p  survive. More 
detailed explanations of the proposed approximation and 
its applicability are given at the end of this section. 

In order to calculate the corresponding to (2.7) partition 
function 

 
1

1
=1

1( , ) = exp ( ) ,
N

j j
S jN

Z L N V x x
T

−

+

 
 − −
 
 

∑ ∑  (2.8) 

where NS  is the domain indicated in (2.7), T  is the tempe-
rature and Boltzmann constant is equal to unity here and 
everywhere below. It is convenient to introduce the parti-
tion function ( , )Q N L  of N  particles and L  host-chain sites 
where the last site is occupied. Then we have 

 
=

( , ) = ( , ).
L

l N
Z L N Q l N∑  (2.9) 

It follows from the definition that ( , )Q L N  satisfies the re-
current formula 

 
1

=

( )( , ) = ( , 1)exp .
L

l N

V L lQ L N Q l N
T

− − − − 
 

∑  (2.10) 

Applying to the formula the discrete Laplace transforma-
tion in L , we obtain 

 

=
( , ) = ( , ) exp( ) =

L N
Q N Q L N L

∞

α −α∑   

 
= =

( )= exp ( ) ( , 1)exp ,
L

L N l N

V L lL Q l N
T

∞ − −α − − 
 

∑ ∑  (2.11) 

hence, 

  ( , ) = ( , 1) ( ) = ( ) (0, ),NQ N Q N G G Sα α − α α α  (2.12) 

where 

 
=1

( )( ) = exp
l

V lG l
T

∞  α − − α 
 

∑  (2.13) 

and 

 

1( ,0) = e (1 e )Q −α −α −α − .  

This and (2.9) imply for the Laplace transform ( , )Z P N  of 
( , )Z L N  



/ / / 2

=
( , ) = e ( , ) = e (1 e ) ( / ),PL T P T P T N

L N
Z N P Z L N G P T

∞
− − − −−∑  

  (2.14) 

where we introduced =P Tα , P  is the pressure. 
Note that the introduction of the Laplace transforms 

( , )Q Nα  in (2.11) and ( , )Z P T  (2.14) is essentially moti-
vated by the computation need to find the partition func-
tion ( , )Z L N  (2.8) of the model (1.7) in NN approxima-
tion, the discrete analog of the well-known model of hard 
rods (see, e.g., [18]). On the other hand, ( , )Z L N  can be 
viewed as the partition function of the one-dimensional 
lattice gas described by the canonical ensemble formalism. 
The passage from ( , )Z L N  to ( , )Z P N  can then be inter-
preted as that from the canonical ensemble description of 
our lattice gas to the isothermal-isobaric ensemble descrip-
tion used for systems that are in the thermal and mechani-
cal equilibrium with the environment (see, e.g., [19], Sec. 
13, 14). The corresponding independent parameters in the 
ensemble are the temperature, number of particles and 
pressure and corresponding thermodynamic potential 

 ( , , ) = ( , ) = log ( , ).N P T P T N T Z P NΦ µ −  (2.15) 

which is sometimes called the Gibbs free energy. 
Formulas (2.13), (2.14) yield in the thermodynamic 

limit N →∞ : 

 
=1

( )( , ) = log exp .
l

V l lPP T T
T

∞ + µ − −     
∑  (2.16) 

Note that the r.h.s. if finite because of the condition > 1γ  in 
(1.1). 

2.3. The equations of state 

According to (2.15) and (2.16), the macroscopic limit of 
the mean electron concentration as the function of P and T is 

1
=1

=1

( )exp
( , )( , ) = = .

( )exp

l
e

l

V l lP
TP Tc P T

P V l lPl
T

∞

−

∞

+ − 
∂µ   

 ∂  + − 
 

∑

∑
 (2.17) 

We will need below the notion of “l -pairs”. It is defined 
as the pairs of the neighboring electrons with the 
interelectron distance equal l . According to the above, the 
mean number of l -pairs per particle is 

 

=1

( )exp
( , )( , , ) = = .

( ) ( )exp
j

V l Pl
P T Tn l P T

V l V j jP
T

∞

+ − ∂µ  
∂ + − 

 
∑

 (2.18) 
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To analyze (2.17) and (2.18), it is convenient to write 
the exponent of these formulas as ( , )l Pα , where 

 ( , ) = ( ) / ,l P V l P l+   

 = / .P Tα  (2.19) 

Consider first the case, where 1α , i.e., the high-
temperature and/or low-pressure region. In this case, the 
major contribution to the sums over l  in (2.17) is due to the 
large 1/l α , hence we can replace ( , )l P  by l . This 
leads to the equation of state of the classical ideal gas 

 = .PL NT   

The result is quite natural, because in the case 1α  
the interelectron interactions can be neglected. 

Expanding the sums of (2.17) in powers of α, we obtain 
the analogue of the virial expansion. Its first term leads to 
the van der Waals-like equation of state 

 ( ( ) ) = ,P L B T N TN−  (2.20) 
where 

 
=1

( )( ) = 1 exp > 0
ln 

V lB T
T

∞   − −    
∑   

(essentially, the second virial coefficient) is the effective 
deficit of the system volume due to the electron-electron 
repulsion. 

In the opposite limiting case 1α , the thermodynam-
ics of the system depends essentially on the behavior of 

( )V l Pl+  as a function of the integer valued argument l . 
The function is monotone decreasing for 

 > = (1) (2),CP P V V−  (2.21) 

while for < CP P  it has a minimum. Following [6, 16, 17], 
we will consider a convex V , thus there is only one mini-
mum at integer 0 0 0= ( ) = [ 1/ 2] > 1l l P x + , where 0x  is the 
unique root of the equation (see Fig. 2.1) 

 ( ) = .V' x P−  (2.22) 

If > CP P , the most probable length of l -pair is = 1l , while 
in the opposite case < CP P  the length is 0 ( )l P . 

In the first case ( < CP P ), only the term with 0= ( )l l P  
contributes to the sums in (2.17). More exactly, this is the 
case if P  is not too close to the degeneration points { }qP  
determined by the expression 

 1 = ( ) ( 1),qP V q V q+ − +  = 1, 2, .q 
 (2.23) 

For these values of P , the contributions of two terms with 
0= [ ( )] =ql x P q  and 0= [ ( ) 1] = 1ql x P q+ +  coincide [recall 

that 0 ( )x P  is the root of equation (2.22)]. The points { }qP  
divide the P  axis into intervals 1( , )q qP P+  which form the 
devil-staircase intervals corresponding to = 1p  of (2.1) in 
the framework of NN approximation. The width of the qth 
interval is 

 1 = ( 1) 2 ( ) ( 1).q q qP P P V q V q V q+∆ ≡ − − − + +  (2.24) 

Note that the above expression is positive since V  is con-
vex. As was shown in [20], the devil-stairs widths ( )ec∆µ  
[see (2.5)] and ( )eP c∆  are related as 

 ( , ) = / ( , ),P p q p q p q∆ ∆µ  (2.25) 

i.e., (2.24) is just first term of (2.5). Within the qP∆  inter-
vals ec  is independent of P  with an exponential accuracy 
in α and is equal to [cf. (2.1)] 

 = const = 1/ .ec q  (2.26) 

Thus, for < CP P , just as in the parameter region 1α , 
the ground state is the complete devil’s staircase (see Fig. 2.2). 

If P  belongs to the intervals 1( , )q qP P+ , the periodicity 
of the chain is broken because of the thermal creation of 
l-pairs with = 1l q ± . According to (2.18) and (2.23), the 
mean number of ( 1)q ± -pairs has the exponential form 

 ( 1, , ) = exp ,qP P
n q P T N

T
− 

−  
 

 (2.27) 

Fig. 2.1. The effective energy ( )V l Pl+  as a function of distance l. 
Fig. 2.2. The mean electron density ec  as a function of pressure P  
according to (2.17), = 1 / ( 1) 1 /ec q q∆ − − . 
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 1( 1, , ) = exp .qP P
n q P T N

T
+ − 

+  
 

 (2.28) 

As seen from (2.27), the total number of l -pairs with =l q  
and = 1l q −  becomes comparable in the regions 
| |qP P T−  . Similarly, it follows form (2.28) that the 
numbers of l -pairs with =l q  and = 1l q +  in the regions 

1| |qP P T+−   are comparable. As a result, we have the 
steps rounding of ( )ec P  (see insert of Fig. 2.2). 

Besides, it follows from (2.17) and (2.18) that the pre-
sence of ( 1)q ± -pairs changes the density ec  by small 
amount 

 ( )2
1( , , ) = ( 1, , ) ( 1, , ) ,ec q P T n q P T n q P T

q N
δ − − +  (2.29) 

showing that each ( 1q + )-pair increases the length of 
the system from L  to 1L +  and, conversely, a ( 1q − )-pair 
decreases from L  to 1L − . These pair excitations are the 
elementary “quanta” of rarefaction [( 1q + )-pairs] or com-
pression [( 1q − )-pairs]. We will call them the rarefaction or 
compression defectons. 

In the framework of the NN approximation (2.7), the only 
( )ec P  steps corresponding to = 1/ec q survive (see Fig. 2.3). 

This means that the proposed model describes sufficiently 
well the system under consideration provided that the con-
centration of q-pairs is much larger than the concentration 
of l-pairs with l q≠  and that the only term with =l q  gives 
the major contribution into sums (2.17). This is the case 
where P  belongs the neighborhood of the middle points 

 mid
1= ( ) / 2q q qP P P+ +   

of intervals 1( , )q qP P+  of (2.23). In the opposite case of 
1qP P +→ , the number of 1q + -pairs increases exponentially 

[see (2.28)] and the contributions of two terms with =l q  
and = 1l q +  into sum (2.17) are comparable. At the same 

time, in the framework of the NN model the energy of the 
system depends on the number of l -pairs but not on their 
distribution. Hence, in these P  regions, it is necessary to 
go beyond the NN approximation. 

It was shown in [21] that taking into account the nearest- 
and next-nearest-neighbor interactions modifies the ( )ec P  
dependence (Fig. 2.3). New fine details appear, namely, 
the steps corresponding to “crystals” with = 2 /ec q, 

= 3, 5, 7,q 
. It is important that the step widths are pro-

portional to ( )V q′′  and, therefore, much less than the step 
widths of corresponding “crystals” with close ec , but be-
longing to the = 1/ec q class. Thus, the long-range interac-
tion for finite temperature leads to a slight modification of 

( )ec P  and ( )ec µ  dependences. It means that in the limiting 
case 1α  [see (2.19)] the main role play “crystals” with 

= 1/ec q. This result is physically clear. In the nearest-
neighbor approximation, the energy of l -pairs configura-
tions in elementary cell with two or more electrons is the 
same. For example, if = 2 / 5ec , then the ground-state l-pairs 
distributions is 2 3 2 3− − − −. In NN approximation, this 
configuration is equivalent to 2 2 3 3− − − − one. Next-
nearest interaction remove the degeneration. Actually, the 
energy (per cell) of the configuration 2 3 2 3− − − − is 

(2) (3) 2 (5)V V V+ + , whereas this energy is (2) (3)V V+ +
(4) (6)V V+ +  for 2 2 3 3− − − − configuration. Due to V(x) 

convexity 2 (5) < (4) (6)V V V+ . Thus, next-nearest inter-
action stabilizes the “crystals” with two electrons per cell. 

On the other hand, the degeneration energy per cell 

  2 (5) (4) (6)E V V V− +
  

is much less than the corresponding energy (per cell) of the 
“crystals” with close ec , but form = 1/ec q class ( = 1/ 2ec  
and = 1/ 3ec ). This manifests itself in the graph of ( )ec P  
as a short step corresponding to = 2 / 5ec  and lying be-
tween two wide steps corresponding to = 1/ 2ec  and 

= 1/ 3ec  (see Fig. 2.3). 

2.4. Elementary excitations, defectons 
with fractional charge 

According to (2.25), the dependence of ec  on the che-
mical potential µ is devil’s staircase whose widths q∆µ  are 
determined by qP∆ . For a given µ the deviation cδ  of 
(2.29) is due to the change of the particle number N  for 
a fixed chain length L . This means that adding or remov-
ing an electron in the system increases or decreases by 
amount q the total number of the defects. In the limit 

1α  [see (2.19)], these defects are in fact free charge 
carriers with the fractional charge 

 * = / ,e e q±  (2.30) 

where e is the electron charge and the signs “+” and “–” 
correspond to the rarefaction and the compression, which 
we call defectons. Formula (2.30) generalizes Hubbard’s 
result [6], which holds for the special case = 2q . 

Fig. 2.3. The electron density ec  as a function of pressure P for 
the model that takes into account the nearest and next-nearest 
neighbors interactions [21]. Dotted line corresponds to the 
NN approximation. 
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It follows from (2.28) and (2.29) that, as P  tends to the 
endpoints of interval 1( , )q qP P+ , the mean interelectron dis-
tances ( 1, , )n q P T−  or ( 1, , )n q P T+  rapidly increase by an 
order of magnitude compared with N . This means that the 
number of “l”-pairs with = 1l q −  or = 1l q +  also increases 
rapidly, and the electron density decreases rapidly from 

= 1/ ( 1)ec q −  and = 1/ec q. 
For the description of these intermediate regions where 

| |q qP P P−   one should take into account the terms with 
= 1l q −  and =l q  in the sums over l  of (2.17). This leads 

to the simple formula: 

 11/ = .
1 exp

e
q

c q
P P

T

−
− 

+  
 

 (2.31) 

If qP P T− 
, then the r.h.s. of the formula is 

1( / )qq N N−− , where 1qN −  is given by (2.28). Similarly, in 
the limit qP P T− 

 the r.h.s. of (2.31) is 1 ( / )qq N N− + . 
In the intermediate domain | |qP P T− 

, the system is 
a highly disordered “liquid” since qN  and 1qN −  are of 
the same order of magnitude. 

The case > CP P  corresponds to = 1q , thus cannot be 
treated by the NN approximation (2.6). Nevertheless the 
results obtained for 1α  are quite reasonable. The “elec-
tron crystal” with period = 1q  is formed and the number of 
the translation symmetry-breaking elementary excitations is 

 (1, , ) = exp .CP P
n P T N

T
− 

 
 

  

The excitations are simply the electron vacancies with 
charge 

 *e = .e   

If CP  coincides with an endpoint 2P  [see (2.21) and (2.23)], 
the intermediate region between crystals with = 1q  and 

= 2q  is described by (2.31) with = 1q . 
Thus, the change of the pressure P  for a given 1α  

produces a succession of electronic crystals with periods 
= 1,2,q 

 which increases as P  decreases. It should be 
noted that at 1α  the crystals exist, even if P  is small. In 
the low-pressure limit the typical value of q is determined 
by the equation 

 
=

( ) = .
x q

dV x P
dx

−   

The thermodynamic behavior of the system in this case is 
schematically represented in Fig. 2.4. 

The discussed above defectons is a rather special and 
interesting branch of the elementary excitations of the sys-
tem under consideration. According to (2.2), the ground-
state structure of the 1D generalized Wigner crystal con-
sists of two types of l-pairs, those with =l q  and = 1l q + , 
where = [1/ ]eq c  (except the case = 1/ec q where the only 
distance =l q  is possible). The number of these l -pairs 

depends on ec  [see (2.23), (2.27), (2.28)]. Thus, the 
ground-state structure can be consider as the superstructure 
of defectons with = 1l q +  on the background of 1D chain 
with a period q (or vice versa). 

It was shown in [22] that the low-energy excitations of 
the system form jumps of “left” electron of an defecton to 
the right or jumps of “right” electron to the left [see 
Figs. 2.5(a)–(c)]. The jumps are equivalent to the defecton 
translations by the period of the generalized Wigner crys-
tal. In the quantum case, i.e., if the overlapping integral t  
in (1.5) is not zero, defectons acquire the dispersion law 

 ( ) = 2 cos ( ),t qε κ − κ   

where κ  is an electron quasi-momentum. The factor q 
of (2.1) in the argument of the cos is due to the mentioned 
above fact that the jump of an electron in defecton is 
equivalent to the defecton translation to the period of ge-
neralized Wigner crystal. 

Fig. 2.4. The phase diagram of the system. V-shaped “negative” 
peaks are boundaries, ( , , ) = 1 /ec q P T qδ , ( 1, , ) = 1 /ec q P T qδ + , 
between the electronic liquid and the electronic “crystal”. 

Fig. 2.5. The examples of defectons: (a) a fragment of 1D GWC 
ground-state structure with 1mδ  ; (b) and (c) on isolated defec-
ton shifted to the right and to the left; (d) two defectons; (e) a de-
fecton shift (excitation); (f) an antiparallel shifts of two defectons. 
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In what follows, it is more convenient to deal with the 
mean interelectron distance = 1/ el c  instead of ec . Let us 
write l  as 0=l m m+ δ  with integer 0 = [ ]m l  and fractional 

 = [ ], 0 < 1.m l l mδ − ≤ δ  (2.32) 

Then the Hubbard formula (2.4) becomes 

 ( )0 0= [ ]jx a jm j m+ δ  (2.33) 

and we do not write here and below the phase φ of (2.4), 
since it does not contribute to the essential property of the 
system in view of its translation invariance. 

From (2.33) we conclude that the electron coordinates 
=1{ }N

j jx  are equidistant with period 0 0a m  as long as 
0 < < 1j mδ . For 0 = [1/ ]j mδ  the interelectron distance 

10 0j jx x −−  is 0 1m + . For 0>j j  the interelectron distances 
are 0m  again, as long as 1 < < 2j mδ , etc. Thus, we have 
here the periodic superstructure of ( 0 1m + )-pairs (defec-
tons) whose background is the ideal structure of 0m -pairs 
[Fig. 2.5(d)]. According to (2.33), the concentration 1mc +  of 

0( 1m + )-pairs is δm and the mean distance between 0( 1)m + -
pairs is 0 0= /x a m mδ  [more exactly, 0= ( / 1)x m mδ + ]. This 
and (2.4) imply that the ground-state electron configuration 
is strictly equidistant with period 0m  for integer l , i.e., the 
concentration of ( 1m + )-pairs is zero. In the case of 

= 1/ 2mδ , the concentrations of the 0m -pairs and ( 0 1m + )-
pairs are the same and we have either superstructure of 0m -
pairs on the background of ( 0 1m + )-pairs, or, vice versa, 
that of ( 0 1m + )-pairs, on the background of 0m -pairs. For 

> 1/ 2mδ , the concentration of 0m -pairs is less than that of 
( 0 1m + )-pairs and it is more convenient to consider the 
system as the superstructure of 0m -pairs (defectons) on the 
background of ( 0 1m + )-pairs. In the limiting case 1mδ → , 
the ground state is the superstructure of ( 0 1m + )-pairs, i.e., 
the strictly periodic structure with period 0 1m + . It is con-
venient to define the density of defectons as 

 
= [ ], 1/ 2,

=
1 , otherwise.d

m l l m
c

m
δ − δ ≤

− δ

  

We conclude that dc  is periodic in 1/ ec  [see Fig. 2.6(a)]. 
The excitation energy of defecton is [22] 

 2
ex

=1
( ) = (1, ) = ( ),

k
E x E x V kx

∞

δ∑  (2.34) 

where 2 ( )V xδ  is defined in (2.5) and dim= [ ] / 1.x l c +  
The typical forms of x  and exE  are given by 

Figs. 2.6(b) and 2.6(c), correspondingly. 
Let us consider now the excitation energy ( )E n  of n 

successive defectons corresponding to parallel electron 
shifts. We will call such an excitation the “domain” con-
taining n defectons. It is easy to see that 

 2

=1
( , ) = (1, ) ( ) ( ).

n

k
E n x nE x n k V kx− − δ∑  (2.35) 

It is worth noting that, according to (2.34), (2.35), the en-
ergy of the domain of infinite length 

 2

=1
( , ) = ( )

k
E x k V kx

∞

∞ δ∑   

is finite even in the case of the (nonscreened) Coulomb 
pair potential: 

 
3

2
3( ) ,xV kx

k
δ ≈  

2
3 3

2
=1

1( , ) =
6k

E x x V x
k

∞ π
∞ ≈ ∑ .  

Thus, the spectrum of the domain excitations can be viewed 
as a quasi-band consisting of a series of accumulating levels 
of width 

 2
band

=1
= ( , ) (1, ) = ( 1) ( )

k
E x E x k V kx

∞

∆ ∞ − − δ∑   

and with the “gap” (1, )E x  to the ground state. 
An example of the domain excitation spectrum is pre-

sented in Fig. 2.7. 
Let us consider now an “antiparallel” excitation of two 

neighboring defectons [see Fig. 2.5(f)]. These excitations 
can be associated with the oscillations of defecton density 
and have the excitation energy 

Fig. 2.6. (a) The defecton concentration as a function of the in-
verse electron concentration l ; (b) and (c) are the typical forms 
of 0( )x l  and ex 0( )E l , correspodingly. 

Fig. 2.7. The spectrum of the domain excitations. 



One-dimensional narrow-band conductors 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2021, vol. 47, No. 9 787 

 ( )ex 0 0 0 0 0( , ) = ( ) 2 ( ) ( 1)E x m V x V x m a V x m a− − + + − ≈   

 2
0 0 0 03 ( ) 2 / ,m a V' x m a V x≈ 

 (2.36) 

where 0 01 < <m l , and 

 ex 0 ex 0 0( , ) / ( ) 1.E x m E x m l

 
  

We conclude that the lowest energy excitations in 
the system under consideration are the “domains” . 

2.5. Domain decay 

Let us consider the process of destruction of domains of 
length n centered at 0n  ( 01 n n≤ ≤ ). It is easy to show that 
the energy of this process is 

10 0
2 2

0
=1 =1

( , , ) = (1, ) ( ) ( ),
n n n

k k
E n n x E x V kx V kx

− −

∆ − + δ + δ∑ ∑  (2.37) 

where (1, )E x  is defined in (2.34) and 2Vδ  is defined in (2.5). 
It follows from (2.37) that 0( , , )E n n x∆  possesses the sym-
metry property 

 0 0( , , ) = ( , 1 , ).E n n x E n n n x∆ ∆ + −   

Besides, we have 

1
2 2 2

=1 =1 =
( ,1, ) = ( ) ( ) = ( ),

n

k k k n
E n x V kx V kx V kx

∞ − ∞

∆ − δ + δ − δ∑ ∑ ∑  

  (2.38) 
and 
 ( ,1, ) = ( 1, ) ( , ).E n x E n x E n x∆ − −   

Thus, ( ,1, )E n x−∆  is the energy of the boundary defecton 
removed from a “domain” with length n. The energy 

0( , , )E n n x∆  is minimal for 0 = 1n  and 0 =n n and has a 
maximum at 0 = [ / 2]n n  (see Fig. 2.8). It means that the 
low-temperature domain decay is the step-by-step detach-
ing of the bounded defectons from the domain. 

2.6. Quantum effects 

Until this paragraph we have neglected the tunneling term 
in (1.5). As was shown in [6], such an approximation is 
suitable for the most 1D charge transfer salts. At the same 
time, for a number of newly artificially-created 1D com-
pounds the tunneling significantly affects on the ground 
state and low-temperature properties of GWC (see, for 
example, [23]). Now, we will consider 1D ensemble of 
fermions with a nonzero overlapping integral t , interacting 
via a local repulsion 0U  and a long-ranged repulsive poten-
tial V  described by the Hamiltonian (1.5) which we write as 

 ˆ ˆ ˆ= .H T U V+ +  (2.39) 

As is indicated in Introduction, the classical limit studed 
by Hubbard [6] arises in the limit 0t →  and 0U →∞ in 
(1.5). The ground-state configuration in this case is given 
by (2.4). For finite t  quantum fluctuations will tend to de-
localize the electrons with respect to their classical config-
uration. Nevertheless, the classical solution is still a good 
approximation for small t  (see [23]). 

In order to study the ground state of (2.39) we will use 
the variational ansatz 

 ˆ( ) = e T
B

−η
∞Ψ η Ψ  (2.40) 

introduced previously in the context of the Mott–Hubbard 
transition [24]. Here η is a variational parameter, T̂  is the 
kinetic energy operator of (2.39) and ∞Ψ  is the ground 
state for = 0t , i.e., Hubbard’s classical solution. 

We first assume that the on-site repulsion is the dominant 
energy scale, and take the limit 0U →∞. This eliminates 
both double occupancy and mixing of different spin configu-
rations. In the case of Coulomb potential ( = 1γ ), we obtain 
the following simplified model for spinless electrons: 

 
RBZ RBZ, 0

1ˆ ˆ ˆ ˆˆ ˆ= ( ) ,
2

T V c c V
L

+
κ κ κ κ −κ

κ∈ κ∈ κ≠

+ ε + κ ρ ρ∑ ∑   

where RBZ is the reduced Brillouin zone (the lattice pa-
rameter 0a  has been set equal to 1) and 

= 2 cos ,tκε − κ  
RBZ

ˆ ˆ ˆ= ,'
'

c c+
′κ κ+κ κ

κ ∈

ρ ∑   

 ( )0( ) = log 2[1 cos ] .V Vκ − − κ   

The classical solution in the case of = 1/ 2ec  corre-
sponds to alternating occupied and empty sites. It should 
be noted, that half-filling model corresponds to = 1ec  and 
quarter-filling model corresponds to = 1/ 2ec . Thus, wave 
function ∞Ψ  in (2.40) can be written in the momentum 
space representation as 

 ( ) 0
RBZ

1 ˆ ˆ= ,
2

c c+ +
∞ κ κ+π

κ∈

Ψ + Ψ∏   

where the product runs over the reduced Brillouin zone 
| |< / 2κ π , and 0Ψ  is the vacuum for electrons. The opera-

Fig. 2.8. The energy of a “domain” excitation as a function of 0n  
obtained using (2.37) for = 40n . 
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tor ˆe T−η  is now diagonal and we can write straightforward-
ly the (normalized) variational wave function (2.40) as 

 ( ) 0
RBZ

1 ˆ ˆ( ) = e e ,B c c
N

−ηε ηε+ +κ κ
κ κ+π

κκ∈

Ψ η + Ψ∏   

where the normalization factor is given by 
2 = 2cosh(2 )Nκ κηε  (we have set = 1t  so that energies are 

now expressed in units of the hopping parameter). The best 
variational ground state is obtained by minimising the en-
ergy functional 

 ˆ( ) = ( ( ), ( ))B B BE Hη Ψ η Ψ η  (2.41) 

with respect to the variational parameter. 
The structure factor 

 ˆ ˆ( ) = ( ( ), ( ))B BS κ −κκ Ψ η ρ ρ Ψ η   

has a regular part 

 
RBZ

1 sinh (2 ) sinh (2 )1 1( ) =
4 4 cosh (2 )cosh (2 )

'

' '
S d ' ′κ κ−κ

κ κ−κ

+ ηε ηε
κ − κ

π ηε ηε∫   

and the Bragg peak 

 
2

RBZ

1( ) =
2 cosh (2 )
dS

κ

 κ
π  

π ηε  
∫   

at =q π of the amplitude corresponding to the periodic 
ordering of electrons. 

According to (2.4), the charge density at the site s for 
electron concentration ec  [see (2.1)] can be written as 

 ( ) = [ / ] [( 1) / ].n s sp q s p q− −   

Setting ( ) = cos( )n s n n s+ π , we see that the intensity of 
the Bragg peaks in the structure factor is proportional to 
the square of the order parameter, 2( ) =S nπ  . It is finite for 
any finite η, so that the wave function ( )BΨ η  always rep-
resents a charge-ordered state. 

In the limit 0η→ , one recovers the classical GWC. 
The kinetic energy vanishes and the structure factor be-
comes ,( ) = / 4qS q πδ . This and (2.41) yield 

 0(0) = ( ) / 8 = / 4 log 2.BE V Vπ −   

The opposite limit η→∞ yields the Hartree–Fock energy 
of the liquid phase, which is equivalent to taking into ac-
count the interaction in lowest order in perturbation theory. 

3. Disordered systems 

In the Introduction, it was indicated that the influence 
of the host lattice disorder on the ground state and low-
temperature properties of the system under consideration is 
important because a lot of these systems are essentially 
disordered. In this section, we study a disordered version 
of the translation invariant model considered in previous 
sections. 

3.1. Cluster model and its basic properties 

Consider the case, where the sites =1{ }L
s sr  of the host 

chain deviate slightly from those =1{ }L
ss  of the periodic 

one-dimensional lattice, more precisely, we assume that 
the coordinates of the host chain sites are 

 , = 1, , ,uu u L+ χ   (3.1) 

where =1{ }L
u uχ  are independent and identically distributed 

random variables with the common probability density w , 
and assume that 

 = 0.〈χ〉  (3.2) 

Note that here and below we assume without loss of ge-
nerality that the period 0a  of the “unperturbed” chain [see, 
e.g., (1.1), (2.2), (2.4), etc.) is one: 

 0 = 1.a  (3.3) 

Thus, according to (3.1), (3.2), a realization of our disor-
dered chain is, in fact, a realization of the collection of 
random variables =1{ }L

u uχ , and the corresponding Hamilto-
nian (the energy) of the system is [cf. (1.7)] 

 1 ( ) ,
2 s t r rs t

s t
V r r n n

≠

−∑  (3.4) 

where now the host chain coordinates sr  and tr  are random 
assuming values (3.1), (3.2). 

Applying an argument similar to that used in beginning 
of Sec. 2.2 to introduce the nearest-neighbor approxima-
tion in the translation invariant case [see (2.7)], we obtain 
the analogous approximation in the disordered case replac-
ing the total interaction energy (3.4) by [cf. (2.7)] 

 
1

1
=1

= ( ),
N

NN j j
j

H V x x
−

+ −∑  (3.5) 

 11 < < < < < < ,j Nx x x N 
 (3.6) 

where now every electron coordinate , = 1, ,jx j N
 runs 

over the set of the host-chain sites (3.1)–(3.3). Note again 
that the nearest-neighbor approximation means that we 
take into account the interaction between the nearest elec-
trons but not the nearest host-chain sites. The effect of other 
terms of (1.8) will be considered in Sec. 4. 

Recall also that in the translation invariant case 
( = 0, 1, ..., )u u lχ =  this approximation was already suffi-
cient in order to carry out a rather detailed analysis of the 
ground state and the low-temperature properties of the sys-
tem. This is notably because we were able to write the par-
tition function ( , )Z L N  of (2.8) as 

 ( , ) = ( , ),NZ L N T1 1  (3.7) 

where T  is the (triangular) transfer matrix with entries 
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 ( )/( , ) = e ( ), , = 1, , .V u TT u u u L− − θ − v v v v  (3.8) 

Here θ is the Heaviside function and 1 is the L-dimen-
sional vector whose components equal 1. This L L×  matrix 
can be diagonalized by the discrete Laplace transformation 
[see (2.11), (2.12)], thereby providing the technical back-
ground for further analysis. 

Passing to the disordered case, we obtain again (3.7), 
however now the corresponding transfer matrix is random 
since its entries are [cf. (3.8)] 

 ( )/( , ) = e ( ),V r r Tu
uT u r r− − θ −v

vv  , = 1, ,u Lv , (3.9) 

where ur  and rv  run over the set of random sites (3.1)–(3.3) 
of the disordered host chain. This L L×  matrix is a particu-
lar case of the so-called Euclidean random matrices arising 
in condensed matter theory and adjacent fields, see, e.g., 
review works [25–27]. The matrices are not simple to deal 
with and have not been studied in detail. Thus, we will 
study the problem numerically, by a certain direct method. 

Before proceeding in this direction, let us discuss briefly 
a related general topic of the theory of disordered systems. 
It is evident that the characteristics of disordered systems 
of finite size depends nontrivially on the realizations of dis-
order, i.e., fluctuate from sample to sample. However, the 
specific extensive characteristics, i.e., those per unit volume 
or per particle (free energy, entropy, specific heat, magnet-
ization, conductivity, etc.), become deterministic in the mac-
roscopic limit. This is known as the self-averaging property, 
which is assumed, sometimes implicitly, in practically all 
works on disordered systems [26]. 

The property is a consequence of the spatial homogene-
ity of the probability distribution (spatial homogeneity in 
mean) and of the decay of spatial correlations between 
random parameters entering the Hamiltonian of the system 
(interaction, external field, particle coordinates, etc.) and 
determining the disorder. 

The mechanism by which the self-averaging property 
occurs under these conditions is follows (see, e.g., [26, 28]). 
Every extensive observable DO  becomes additive if the d-di-
mensional domain D  (the d -dimensional cube for simpli-
city) of volume | |D  occupied by the system is macroscopi-
cally large. This means that by partitioning D  into a col-
lection of smaller but still macroscopically large congruent 
subdomains { }j jD  separated by the “mesoscopic corridors” 
of width 1/| | dR D

, we can write the specific observable 
/ | |DO D  up to the surface terms as the arithmetic mean of 

its values in the subdomains: 

( ) ( )1/
1/ | | = | | / | | / | | | | .d

D D jj
j

O D D D O D O D −+∑  (3.10) 

Note that a similar partitioning is carried out in statistical 
mechanics of translation invariant systems while proving 
the existence of the macroscopic (thermodynamic) limit 
[29, 30]. 

The statistical properties of the term in (3.10) are the 
same in view of the spatial homogeneity in mean and if R  
is sufficiently large ( 0R a ), then the terms in (3.10) are 
statistically independent in view of the decay of correla-
tions. Hence, every D j

O  assumes all its possible values 
independently of the others and if the number 1| | / | |D D  of 
subdomains is large enough, then the sum (3.10) contains 
practically all possible realizations of some D j

O  (precisely 
which one is unimportant since all of them are identically 
distributed due to the spatial homogeneity in mean). In 
other words, the summation over j  in (3.10) is equivalent 
to the summation over all possible realizations of any D j

O , 
i.e., its averaging with respect to the corresponding proba-
bility distribution. Thus, for macroscopic domains the spe-
cific variable / | |DO D  coincides with its mean / | |DO D〈 〉  
value, i.e., is a nonrandom quantity. The quantity coincides 
with the mean value of any / | |D jj

O D  if jD ’s are large 
enough up to fluctuating error terms of order | | ,aD −  

= min{1/ 2,1/ }a d . 
Recall that in our case, disorder is determined by the 

collection =1{ }L
u uχ  of the independent and identically dis-

tributed random variables in (3.1), (3.2). Thus, the averag-
ing operation 〈 〉  is the integration of the quantity in ques-
tion calculated for a given realization of the collection with 
the density 

 { }( )1
=1

= ( ),
L

L u
u

W wχ χ χ∏  (3.11) 

where w  is the common probability density of the collec-
tion =1{ }L

u uχ . 
The above scheme has to be somewhat modified in the 

case of slow decaying but oscillating interactions and cor-
responding correlations [31] or for the mean-fields (i.e., for 
the infinite range) type models [32], both quite popular in 
the spin glass theory [33], but the essence of the scheme is 
quite similar in all cases and is analogous to that of the 
proof of the law of large numbers in probability theory. 

It can be shown that the free energy of the classical dis-
ordered system, determined by the random host chain with 
coordinates (3.1), (3.2) and by energy (1.8), where V  satis-
fies (1.1), (1.2), is self-averaging, see, e.g., [28, 31, 32] for 
related results, in particular, for the validity of the self-
averaging property under rather general conditions of spa-
tial ergodicity of random variables =1{ }L

s sχ  instead the con-
dition to be independent and identically distributed. 

On the other hand, self-averaging quantities are not only 
important characteristics of disordered systems. The systems 
can also possess a number of important non-self-averaging 
characteristics, e.g., the spectrum of elementary excita-
tions, the structure of the corresponding states, in particu-
lar, the ground state, certain thermodynamic characteris-
tics, such as the hierarchy of relaxation times, related non-
ergodic phenomena, and even the order parameter in cer-
tain mean field models of spin glasses [26, 32, 33]. 
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All the above makes the studies of disordered systems 
both noninteracting (like localization and percolation phe-
nomena) and interacting (like many body localization, 
thermalization and phase transitions) quite difficult and 
requires new ideas and techniques, or, at least, appropriate 
modifications of those worked out in translation invariant 
theories. This, among others, motivate an extensive use of 
numerical methods in the field (see, e.g., [34] concerning 
the “classical” simulation methods such as Monte Carlo 
and molecular dynamics methods). 

We will consider the ground state and the low-tempe-
rature excitations of electrons on the disordered host chain 
confining ourselves the simplest case of the density 

= 1/ec q of (1.6) and (2.26). We assume also that ec  is 
sufficiently small, which is typical for narrow-band semi-
conductors, quasi-one-dimensional organic conductors, and 
nanochains. In this case, the electron positions =1{ }N

j jx  de-
viate slightly from those =1{ }N

jjl + φ  of Hubbard’s genera-
lized Wigner crystal with the same electron density ec , 
where [see (2.2) and (2.4)] 

 = 1/ = 1.el c q  (3.12) 

In other words, in the case of small concentrations and low 
temperatures, the leading contribution to the thermody-
namic functions is due to the electron configurations in 
which j th electron occupies one of the sites of a small 
(relative to l ) neighborhood of jl . We will call these 
neighborhoods clusters (see, for example, [35–37]), denote 
them jC  and assume (for simplicity) that all clusters con-
sists of the same nonrandom number 1ν  of the host-
chain sites. Thus, the total number Nν  of sites belonging 
to the clusters is small with respect to the total number L  
of sites of the host chain, since 1/ = 1eN L c−ν ν . 

Let us write the coordinates of the host-chain sites 
belonging to the jth cluster as [see (2.4), (3.1)–(3.3), and 
(3.12)] 

 =1= { } ,m
j j mC r ν  1 [ /2]= ,m

j jq mr r + − − ν  (3.13) 

where ur  is defined in (3.1). 
Note that in general one has to assume that jC  contains 

jm−  particles to the left of j , jm+  particles to the right of j  
and that these numbers are independent and identically 
distributed random variables, hence = 1j j jm m+ −ν + +  are 
also independent and identically distributed to provide the 
translation invariance in mean and the decay of correla-
tions properties. 

The same property of the translation invariance in mean 
implies that the physical information on the system is in-
dependent of the shift of the host chain by any τ [cf. (2.4)]. 
It is convenient then to write the possible electron coordi-
nates in the j th cluster in the form 

 = ,m m
j jr jq s+ + τ  (3.14) 

where 

 
=1 =1

1 1=
N

m
j

j m
r jq

N

ν 
τ −  ν 

∑ ∑  (3.15) 

is the “mean center of inertia” of cluster and 

 1 [ /2]= 1 [ / 2] .m
j jq ms m + − − ν− − ν − τ + χ  (3.16) 

We will call m
js ’s the shifts. It follows from (3.1), (3.2), 

and (3.14) that the shifts are independent and identically 
distributed random variables, since =1{ }L

u uχ  of (3.1)–(3.3) 
possess this property, thereby providing the translation 
invariance in mean and the decay of correlation of the 
model. 

According to (3.2) and (3.16), the typical value of the 
shifts is 
 = <<m

js s q〈 〉 ν  (3.17) 

and since the arithmetic mean in (3.15) coincides with the 
probabilistic mean of the summand in the limit of infinite N, 
we have 

 1/21/ 2, is even
= ( ).

0, is odd
O N −− ν

τ + ν
 (3.18) 

An example of a 1D disordered host chain with clusters, 
corresponding to = 2ν , is presented in Fig. 3.1(a), where 
every cluster contains two host-chain sites, adjacent from 
the left and right to the sites of Hubbard’s generalized 
Wigner crystal positions. The examples of electron config-
urations are presented in Fig. 3.1(b). 

In this case we have 

 
1

1 1

2

= 1 1/ 2 = 1/ 2 ,

= 1/ 2 = 1/ 2 .
j jq jq

j jq jq

s jq jq

s jq jq
− −− + χ − + − + χ

+ χ − + + χ
 (3.19) 

Fig. 3.1. (a) The example of a 1D disordered host-lattice chain 
(× = the ideal Wigner lattice positions jq ,  = host-lattice sites). 
(b) Several possible electron configurations on this chain. 
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By the way, we have for translation invariant case 
= 0,uχ  = 1, ,u L

: 

1 2

1 2 3

1 2 3 4

= 2 : = 1/ 2, = 1/ 2,

= 3 : = 1, = 0, = 1,

= 4 : = 3 / 2, = 1/ 2, = 1/ 2, = 3 / 2,

s s

s s s

s s s s

ν − +

ν − +

ν − −

 (3.20) 

i.e., definition (3.16) of shifts implies that, in the absence 
of disorder, their values coincide with those of quantum 
spins of 1/2, 1, and 3/2. 

The above argument determines the cluster approxima-
tion. Let us find an effective Hamiltonian corresponding to 
the approximation. For this, we rewrite the Hamiltonian 
(3.5), (3.6) in terms of shifts (3.16) and expand the result 
up to the second order with respect to the shifts, i.e., up to 
the second order in the small parameter / / << 1s l qν  
[see (3.17)]. We obtain 

 1
1= ( 1) ( ) ( )( )m mN

NN NH N V l V' l s s− + − +   

 ( )1 2
1

1
=1

1 ( ) ,
2

N m mj j''
jj

j
V l s s

−
+

++ − +∑   (3.21) 

where the first term is the ground-state energy WC  of the 
generalized Wigner crystal with a given density ec  and the 
second term is of the order 1. Omitting these two terms and 
taking into account the convexity of V , we obtain the ef-
fective Hamiltonian 

 
1

1 2
1

=1

1( ) , = ( ) > 0
2

N m mj j ''
jj

j
J s s J V l

−
+

+ −∑  (3.22) 

that describes the low-energy part of the Hamiltonians (3.4), 
(3.5), and (3.6) spectra. Since the typical distance between 
electrons is >> 1l  in the low-concentration limit [see (3.12)], 
the cluster approximation seems fairly reasonable. 

It is convenient to measure the energy in units of J . 
Then (3.22) became 

 ( )1 2
1

1
=1

= ,
N m mj j

C jj
j

H s s
−

+
+ −∑  (3.23) 

where now the Hamiltonian and the shifts are dimensionless. 
To determine completely model (3.23), we have to spe-

cify the common probability distribution of the collection 

 ,
= =1= { }

m j N
N j j ms ν
νΣ  (3.24) 

of shifts. According to (3.2) and (3.16), the shifts are inde-
pendent and identically distributed in j  and independent 
in jm . Hence, the joint probability distribution of the col-
lection (3.24) of the shifts is [cf. (3.11)] 

 ( )
=1 =1

( ) = 1 [ / 2] ,
N m j

N j
j m

W w s m
ν

νΣ − + + ν + τ∏∏  (3.25) 

where w  is the common probability density of random 
variables =1{ }L

u uχ  in (3.1)–(3.3) assumed to be independent 
and identically distributed. 

The partition function of the cluster model determined 
by Hamiltonian (3.23) is 

 ( , , ) = exp .C
N

N

H
Z N T

Tν
Σ ν

 Σ − 
 

∑  (3.26) 

According to the discussion of the self-averaging pro-
perty in Sec. 3.1, the free energy per site 

 1( , , ) = ( , , ),N Nf N T N F N T−
ν νΣ Σ   

 ( , , ) = ln ( , , )N NF N T T Z N Tν νΣ − Σ  (3.27) 

of the cluster model (3.23) calculated for a fixed realiza-
tion of shifts of (3.24) possesses the self-averaging proper-
ty, thus coincides with its mean 

 ( , , ) = ( , , ) ( )N N N Nf N T f N T W dν ν ν νΣ Σ Σ Σ∫  (3.28) 

with respect to the joint probability density (3.25) of the 
shifts up to a fluctuating error term proportional to 1/2N − . 

For the computer calculations, we used the rectangular 
density 

 
1, | | / 2 1/ 2,1( ) =
0, 1/ 2 > | | > .

x A
w x

x AA
< <




 (3.29) 

The parameter A  is the measure of disorder in the system. 
The complete disorder corresponds to 1A → . On the other 
hand, if 1A  the random shifts (3.16) are slightly dis-
persed around the right-hand side of (3.16) with = 0uχ  
and the limiting case = 0A  corresponds to the equidistant 
ground-state configurations with period q (see Sec. 2). In 
the absence of disorder, the shifts are 1/ 2±  [see (3.20)] 
and the ground state is obtained if all shifts are equal. 
Hence, the second and the third terms of the right-hand 
side of (3.21) are zero, and we obtain the energy of the 
generalized Wigner crystal. 

In what follows, we confine ourselves to the case = 2ν . 
We redefine the shifts [see (3.19) and Fig. 3.1] as follows: 

 1 2,j j j js s s s− +→ →  (3.30) 

and write 

 = , = , 0,j j
j j j j js
σ σ σσ λ σ ± λ ≥  (3.31) 

where =1, ={ }N
j j
σ

σ ±λ  are independent random variables ac-
cording to (3.1). We conclude that in this case the shifts 
(3.16) can be viewed as Ising-type spins with random 
lengths , = 1,...,j

j j N
σ

λ , cf. (3.20). To make more explicit 
the dependence of Hamiltonian (3.23) on the =1{ }N

j jσ  and 
the frozen disorder described by the random spin lengths 

=1{ }j N
j j
σ

λ , we write 
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= , = ( ) / 2,

= ( ) / 2 0,

j
j j j j j j j

j j j

σ + −

+ −

λ α σ +β α λ −λ

β λ + λ ≥
 (3.32) 

where =1{ }N
j jα  and =1{ }N

j jβ  do not depend on =1{ }N
j jσ  and 

are statistically independent for different j . By using this 
parametrization and omitting the constant term, we can 
write (3.23) as 

 
1

1
=1 =1

({ }) =
N N

I j j j j j j
j j

H I h
−

+σ − σ σ − σ∑ ∑ , (3.33) 

where 
 1= 2 ,j j jI +β β   

 1 1= 2 ( 2 ),j j j j jh + −β α +α − α  (3.34) 

and =1{ }N
j jα , =1{ }N

j jβ  are given by (3.32). 
Thus, the Hamiltonian (3.23) is thermodynamically equi-

valent to that (3.33), (3.34) of the one-dimensional disor-
dered Ising model with random ferromagnetic interaction 
and random short correlated external field (recall that jα  
and jβ  are independent for different j ). 

Note that our effective Ising model is ferromagnetic just 
because of the convexity property (1.3) of the potential, 
see (3.23). 

Since =1, ={ }N
j j
σ

σ ±λ  are nonnegative, independent and 
identically distributed in j  and = 1jσ ± , = 1, 2, ,j N

, it 
follows from (3.32) that =1{ }N

j jβ  are nonnegative, indepen-
dent and identically distributed and =1{ }N

j jh  are symmetri-
cally distributed (stochastically oscillating), in particular, 

 = 0.jh〈 〉  (3.35) 

We obtain the periodic host-lattice setting if = 1/ 2j
j
σ

λ  for 
all j. In this case, (3.33), (3.34) corresponds to the one-
dimensional ferromagnetic Ising model with the nearest-
neighbor interaction.  

In the disordered case and = 2ν  we have in view 
(3.19), (3.29)–(3.31) 

 
1= (1 ),
2

j j
j j js A
σ σ

σ − ξ  (3.36) 

where =1, ={ }j N
j j j

σ
σ ±ξ  are independent random variables that 

are uniformly distributed over the interval [ 1,1]− . 

3.2. The low-temperature thermodynamics 

Denote 

 =1, == { }j N
N j j j

σ
σ ±Λ λ  (3.37) 

the realization of random spin lengths of (3.31), hence, 
random variables of (3.32). The partition function of our 
model (3.33) is [cf. (3.26)] 

= 1 = 1 = 11 2

({ })
( , , ) = exp .I j

N
N

H
Z N T

Tσ ± σ ± σ ±

σ 
Λ − 

 
∑ ∑ ∑  (3.38) 

The free energy per site ( , , )Nf N T Λ  corresponding 
to (3.38) is defined by formulas analogous to those in (3.27). 
It can be shown (see, e.g., [28]) that ( , , ) =NF N T Λ
= ( , , )NNf N T Λ  satisfies (3.10), hence, possesses the self-
averaging property according to the discussion in Sec. 3.1 
coinciding with its mean 

( , ) = ( , , ) = log ( , , )N N
Tf N T f N T Z N T
N

Λ − Λ  (3.39) 

up to an error term of the order 1/2( ).O N −  
We will find the mean free energy per site in the cluster 

model by using another than (3.9) version of the transfer 
matrix method. Namely, in view of (3.33) we can present 
(3.38) as a product of 2 2×  random transfer matrices 

 

, =( ) = { ( , )} ,j 'P j P ' ′′σ σ ±′′σ σ    

 
( , )

( , ) = exp ,j
j

'
P '

T

′′σ σ 
′′σ σ − 

 


 (3.40) 

where, according to (3.33), (3.34), 

 1
1( , ) = ( ).
2j j j j' I h h +′′ ′ ′′ ′ ′′σ σ σ σ − σ + σ  (3.41) 

Imposing the cyclic boundary condition 

 = , = 1, , ,j j N j N+σ σ 
 (3.42) 

we obtain for (3.38) 

 

=1
( , , ) = Tr ( ) ,

N

N
j

Z N T P j
 
 Λ
 
 
∏  (3.43) 

where the symbol Tr  denotes the trace of a 2 2×  matrix. 
The representation (3.43) allows us to carry out fast nu-
merical calculation of the free energy. 

Note that in general the multiplication of two 2 2×  ma-
trices requires 32  steps of calculation (one have to calcu-
late 22  matrix elements, where each element is a sum of 
2 terms). Thus, the total calculation time is 32 N . In the 
case of the direct calculation of the right hand side of (3.38) 
this time is 2N

 . 
Besides, it is shown in the next section that an appropri-

ate numerical method makes it possible to find the ground-
state configuration of our model of the one-dimensional 
Wigner glass on disordered host lattice. 

Figure 3.2 shows the entropy 

 1( ) = ( , )s T f N T
N T

∂
−

∂
 (3.44) 

as a function of temperature calculated by using (3.43) for 
= 2ν  and several values of the disorder parameter 

0 < 1A≤  [see (3.36)]. The mean free energy ( , )f N T  is 
found numerically by using (3.39) and (3.43) and by iden-
tifying the operation 〈 〉  in (3.39) with the arithmetic 
mean of log ( , , )NZ N T Λ  over a sufficiently large number 
of realization of NΛ . 
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Note that ( 0) = 0s T →  as it has to be for any model 
(even classical) with a discrete phase space. Moreover, for 
any > 0A  of (3.36) the entropy is linear for low tempera-
tures (in particular, ( = 0) 0s' T ≠ , see Fig. 3.3). 

This is an indication of the gapless nature of the excita-
tion spectrum of our model and raises a natural question on 
the nature and properties of corresponding elementary ex-
citations. To answer the question one needs to know more 
about the ground state of the model. 

3.3. The ground state 

In general, every realization of the collection (3.37) of 2N  
random “spin lengths”, hence the random variables =1{ }N

j jα  
and =1{ }N

j jβ  of (3.31), (3.32) and (3.34), provides a realiza-
tion of disorder, thus fixing the Hamiltonian to be used to 
find the ground state of our disordered system: 

 =1= { }GS GS N
k kσ σ  (3.45) 

defined by 

 =1
{ = }

= ({ } ) = ( ).min N GS
GS I k k I

k
E H H

σ ±
σ σ  (3.46) 

3.3.1. Matching subchains 

The low-temperature thermodynamic properties of the mo-
del (3.23) have been studied in [46] using the transfer-
matrix formalism. In particular, a weak local external field 

 =1 , 0
= { } , =N

k k k k kh h hε δ   (3.47) 

was introduced into the Hamiltonian (3.23) as a tool of 
analysis of the ground state. Here ε is a small constant and 

, 0k kδ  is Kronecker symbol. In other words, the field affects 
only the 0k th spin and the corresponding Hamiltonian is 

 
0

= I kH H − εσ ,  

where IH  is defined in (3.33). Using the transfer-matrix 
techniques, one can calculate the free energy of the system 
and the corresponding magnetization per spin 

 loc 0 =0
=0

1( , ) = ( | ) / .FM T k F F N
N ε

ε

∂
− ≈ − ε

∂ε
 (3.48) 

It is reasonably to believe that if loc 0( , ) > 0M T k  in the 
low-temperature limit, then the 0k th spin of the ground 
state is parallel to the field, while if loc 0( , ) < 0M T k , then 
the 0k th spin is antiparallel to the field. Thus, calculating 

loc 0( , )M T k  for 0 = 1, 2, ,k N  one can obtain the orienta-
tions of all the spins of ground state. 

However, the method seems to have certain disadvant-
ages. First, since h affects only one spin, the local magnet-
ization (3.48) is of the order 1/ << 1N  for sufficiently large 
systems. Hence, the method can only be applied to the cas-
es, where the length of the system is not too large, thus the 
boundary conditions may seriously effect the ground state. 
Second, the amplitude ε of the local field should be small: 

 << , ,sfT eε  (3.49) 

where sfe  is typical “spin flip” energy. However, in view 
of possible local energy degeneration sfe  can be zero for 
certain spins, thus the sign of 0( , )M T k  is rather sensitive 
to the value of ε and the applicability of the method to 
rather large systems is again questionable. 

Thus, we will study the ground state by a another meth-
od, main idea is as follows. Let us divide the system into 
  parts (subchains) with overlaps: the end-points of every 
subchain coincide with the corresponding end-points of the 
adjacent subchains. Denote 

 0 1 2 11 = < < < < < =jp p p p p N−   (3.50) 

the end-points of subchains and 

 1= 1, = 0, 1, , 1k k kl p p k+ − + −   (3.51) 

the lengths of the subchains. Thus, the k th subchain con-
tains kl  spins 

 1 11 1
, , , , .p p p pk k k k+ −+ +

σ σ σ σ  (3.52) 

Fig. 3.2. The plots of s(T) for different values of disorder para-
meter A. 

Fig. 3.3. The dependence ( 0)s' T →  on A. 
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It should be noted again, that the spin pk
σ  

( = 1, 2, ..., 1k − ) belongs to the two neighboring subchains, 
i.e., pk

σ  is the last spin of k th subchain and the first spin 
of ( 1)k + th subchain. 

It is convenient to index the spins in each subchain as 

 1 ,= ,p j k jk + −σ σ  (3.53) 

i.e., the first index indicates that spin belongs to the k th 
subchain and the second one is the number of the spin in 
the subchain. In this notation the k th subchain consists of 
the spins 
 ,1 ,2 , 1 ,= ( , , , , ).k k k k l k lk k−σ σ σ σ σ  (3.54) 

Now we carry out the direct enumeration of the states 
(the direct search for the configurations with minimum 
energy) in each of   subchains. 

According to (3.33), the energy of k th subchain is 

 
1 1

, , , 1 , ,
=1 =1

( ) =
l lk k

k k k j k j k j k j k j
j j

H I h
− −

+σ σ σ − σ∑ ∑ . (3.55) 

Let min
mH  is the minimum of mH  over the spin configura-

tions of the k th subchain (including its end spins) and let 

 min min min min min
,1 ,2 , 1 ,= ( , , , , )k k k k l k lk k−σ σ σ σ σ  (3.56) 

be a corresponding spin configuration, i.e., min = ( )m m kH H σ . 
Now we claim that if the last spin of each subchain is 

equal to the first spin of the next subchain, i.e., if 

 min min
, 1,1= , = 0,1 , 2,k l kk

k+σ σ −   (3.57) 

then the union of all the subchain minimizing configura-
tions (3.56) is a ground-state configuration GSσ  of the whole 
Hamiltonian (3.33): 

 =1= { }GS GS N
k kσ σ =  

min min min min min min min
0,1 0,2 0, 1,2 1, 1,2 1,0 1 1

= ( , , , , , , , , , , ),l l l j− − −
σ σ σ σ σ σ σ       

  (3.58) 
and the corresponding total minimum energy (3.46) is 

 
1

min

=0
= .GS k

k
E H

−

∑


 (3.59) 

A similar idea has been recently used to study the ground 
states of certain rather complex (in particular, frustrated) 
translation invariant spin models [47]. 

A more detailed description of the above procedure of 
minimization of spin Hamiltonians is given at the end of 
this section. 

Note that the procedure does not guarantee that the ob-
tained ground state is unique. However, this does not con-
tradict to the fact that the energy assumes the absolute min-
imum on this configuration. In fact, the nonuniqueness of 

minimizing configuration (ground state) is rather common 
for macroscopic systems. For instance, there are two ground 
states (of the same energy) in the ferromagnetic Ising model 
at zero temperature and zero external field (all the spins are 
either up or down), and a continuum of ground states for 
the classical ferromagnetic Heisenberg model at zero tem-
perature and zero external field. Moreover, in the frustrated 
spin systems, especially those of the spin glass type like 
our model (3.33), (3.34), there is the macroscopic number 
of ground states (of the same energy). 

We believe, however, that the ground state found by our 
procedure is typical, i.e., the overwhelming majority of 
ground states of our model have the same structure differ-
ing only by the lengths of domains and their positions. In 
fact, our procedure can be modified to find all the ground 
states. 

The above suggests a direct numerical algorithm to 
search ground states: split the system into subchains, mini-
mize the energy of every subchain and check the matching 
conditions (3.57). If the conditions are not satisfied, repeat 
the procedure. The choice of an optimal number   of sub-
chains depends on the computer efficiency. Since in this 
scheme we perform the direct enumeration of the states 
(direct energy minimization) for each subchain, the typical 
calculation time is /

0 2N nt n
. An increase in   leads to a 

decrease in enumeration time but also to an increase in the 
number of attempts (the number of generations of division 
points { }kp ). 

It should be noted that the proposed method is rather 
universal and can be applied for a wide class of 1D disor-
dered systems. An important advantage of the methods is 
that the direct minimization of energy is carried out inde-
pendently in each subchain, thus the corresponding opera-
tions can be easily adapted to the parallel calculations. Be-
sides, the method can be modified to deal with systems 
with larger number of interaction neighbors. In this case 
the conditions (3.57) is modified. For example, if we take 
into account the near- and next-neighbors interaction, then 
the matching conditions are [cf. (3.57)] 

 
min min

, 1 1,1
min min

, 1,2

=

= .
k l kk

k l kk

− +

+

σ σ

σ σ

  

Using the proposed method, we have studied the ground 
state of the Hamiltonian (3.33) numerically and the examp-
les of the ground-state spin configurations for 4= 10N  are 
presented in Fig. 3.4. As seen, the ground state consists of 
“domains” [46] of blocks of spins of the same sign, the 
domains concentration increasing rapidly with the increase 
of disorder parameter A . 

It follows from (3.32) and (3.33) that interaction in our 
Ising model is ferromagnetic although random. Thus, the 
ground state of (3.33) without the second term is ferromag-
netic (collinear), i.e., with all the spins either “up” or “down”. 
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Since, however, in our case the second term (random field) 
is of the same order of magnitude as the first one (interac-
tion), an argument similar to that of the well known Lar-
kin–Imry–Ma criterion [41, 42, 48] implies that the ferro-
magnetic ground state is unlikely for any 0 < 1.A ≤  Thus, it 
is not completely unexpected that the ground state is not 
collinear. However, the Larkin–Imry–Ma argument does not 
suggest a detailed form of the genuine ground state, except 
that it has to be of a “spin glass” noncollinear type. On the 
other hand, our numerical method allows us to detect an 
explicit form of a ground state, having the domain structure. 

We can also estimate the concentration domc  of the do-
main walls if A  is small enough. Indeed, the typical fluctu-
ations of the pair interaction of (3.23) [or of (3.33)] are 

2Aδε , while the energy of creation of a domain wall is 
2

dom ( ) 1,k k
+ −ε λ + λ 

 if A  is not too close to 1. Let doml  
be the typical domain length, i.e., 

 dom = / ,l N N+  (3.60) 

where N+  is the number of sites for which the spins are up. 
Then the domain is stable if doml  satisfies the inequality 

dom domlδε ε . We obtain then [46, 49]: 

 4
dom ,l A−


 (3.61) 

hence 

 1 4
dom dom= .c l A−


 (3.62) 

In particular, it follows from (3.61) and (3.62) that the 
ground state consists of a single “ferromagnetic” domain 
for = 0A . We have calculated by the same method the 
domain concentration domc  for a series of disorder parame-
ter value A . The results are presented in Fig. 3.5. 

Note that a similar problem with random variables j
σξ ’s 

uniformly distributed over the interval [0,1) is considered 
in [46, 50]. 

We present now a more detailed description of our pro-
cedure [see (3.50)–(3.59)] of minimization of Hamiltonian 
(3.33), (3.34). Let us consider the Hamiltonian 

 
1

1
=1

= ( , )
N

k k k
k

H u
−

+σ σ∑  (3.63) 

giving the energy of a configuration =1= { }N
k kσ σ  of a spin 

chain of length N  with pair interaction ku . The Hamilto-
nian (3.33), (3.34) is a particular case of (3.63). 

We will discuss the simplest nontrivial case = 2  of 
our procedure, where the chain is divided into two sub-
chains [the general case (3.50)–(3.54) of an arbitrary num-
ber j of subchains is analogous, but just a bit more tedious]. 
Then 0 1 21 = < < =p p p N  are the endpoints (3.50) of the 
subchains, 0,1 0, 0

( , ..., )lσ σ  and 1,1 1, 1
( , ..., )lσ σ  are their spin 

configurations (3.54), 1= 1k k kl p p+ − + , = 0, 1k  are their 
lengths (3.51), and 

 

10

0 0, 0, 1
=1

11

1 1 1, 1, 10
=1

= ( , ),

= ( , )

l

j j j
j

l

l j j j
j

H u

H u

−

+

−

+ − +

σ σ

σ σ

∑

∑
 (3.64) 

are their energies (Hamiltonians) [cf. (3.55)]. 
Let min ,kσ  = 0, 1k  be the minimizing configurations (3.56) 

of the subchains, i.e., min( ) = ( )min m k m kk
H Hσ σ σ , = 0, 1k . 

Assume that the matching condition (3.57) holds, i.e., that 
min min
0, 1,10

=lσ σ . Then 

 min min
0 0 1 1( ) = ( ) ( ),H ' H Hσ σ + σ  (3.65) 

where 'σ  is the union of these subchain minimizing con-
figurations min

0σ  and min
1σ . We claim that 'σ  is a minimiza-

tion configuration for the whole chain, i.e., a ground state 
of the chain Hamiltonian. Indeed, assume that there exists 
another spin configuration ′′σ  of the whole chain, which 
gives a lower energy than ′σ : 

 ( ) < ( ).H H '′′σ σ  (3.66) 

Fig. 3.4. The orientation of spins in the ground state of the sys-
tems for 4= 10N  and two values of the disorder parameter A 
of (3.36). The top corresponds to = 0.4A , the bottom to = 0.2A . 
The ground states have the domain structures and the domain 
concentration increases with A. 

Fig. 3.5. The domain concentration domc  as the function of disor-
der parameter A. 
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Using the same division points 0 1 2( , , )p p p  for ′′σ  and de-
noting 0

''σ  and 1
''σ  corresponding “subconfigurations” of ′′σ , 

which satisfy the matching condition (by definition), we can 
write 0 0 1 1( ) = ( ) ( )H H H′′ ′′ ′′σ σ + σ . This, (3.65) and (3.66) 
yield 

 min min
0 0 1 1 0 0 1 1( ) ( ) < ( ) ( ),H H H H′′ ′′σ + σ σ + σ   

or 
 ( ) ( )min min

0 0 0 0 1 1 1 1( ) ( ) ( ) ( ) < 0.H H H H′′ ′′σ − σ + σ − σ   

The last inequality implies that at least one of the terms on 
its left is negative, i.e., that we have at least one of the in-
equalities 

 min
0 0 0 0( ) < ( ),H H′′σ σ    min

1 1 1 1( ) < ( ).H H′′σ σ   

However, neither of these inequalities is possible, since 
min( ),m kH σ  = 0,1k  are the absolute minima of for subchain 

energies (3.64). 
We came to a contradiction, which proves our claim, 

according to which if the matching conditions (3.57) hold 
for the minimum energy configurations of all the subchains, 
then the union of these configurations is a minimization 
configuration (a ground state) of the whole chain and the 
corresponding minimum energy is the sum of the mini-
mum energies of the subchains [see (3.59)]. 

3.3.2. The “probing field” approach 

In this section we confirm our results of the previous sub-
section on the form of ground states of model (3.33) via 
probing the ground state by an external field of special 
form, determined by a collection =1= { }N

k kb b : 

 
=1

= ,
N

I k k
k

H H b− ε σ∑  (3.67) 

and the corresponding generalized magnetization 

 
=0 =1

1 1( , ) = = < ,
N

k k G
k

FM T b b
N Nε

∂
− σ 〉

∂ε ∑  (3.68) 

where F  is now the free energy of (3.67) and ... G〈 〉  denotes 
the corresponding Gibbs mean. By using the terminology 
of spin glass theory (see, e.g., [33]), we can view (3.68) as 
the overlap between external field =1= { }N

k kb b  and the field 
of local magnetization =1{ }N

k G k〈σ 〉 , where 

 k G〈σ 〉  (3.69) 

is the mean local magnetization at site k  of our effective 
spin system, i.e., the Gibbs average of the spin at a given 
site k  corresponding to the Hamiltonian (3.33), (3.34). 

It follows from the r.h.s. of (3.68) that the inequality 

 
1/2

2 2

=1 =1

1 1| ( , ) |
N N

k k G
k k

M T b b
N N

 
≤ 〈σ 〉  
 
∑ ∑   

holds for a generic { }kb  and that it becomes the equality 
only for an external field proportional to =1{ }N

k G k〈σ 〉 : 

 = , = 1,..., ,k k Gb a k N〈σ 〉  (3.70) 

where a is a constant, i.e., [see (3.68) and (3.70)] 

 2

=1
( , ) = .

N

k G
k

M T b a 〈σ 〉∑  (3.71) 

The constant a can be chosen to be 1 if we normalize 
=1{ }N

k kb  by the condition 

 
2

=1
= 1.

N

k
k

b∑  (3.72) 

Since we are interested in the ground state GSσ  of the Ha-
miltonian (3.33), which we identify with the domain walls 
configuration of the previous subsection, we put = 0T  in 
the above formulas and arrive to the following algorithm to 
detect GSσ . Pick a class of external fields containing the 
assumed ground state GSσ  and satisfying (3.72) and vary b  
over the class. The configuration GSσ  will be obtained as a 
maximizer of the generalized magnetization (3.68): 

 2

=1

1(0, ) = ( ) = 1.
N

GS GS
k

k
M

N
σ σ∑  (3.73) 

Let now 1 2, ,d d  be the coordinates of domain walls 
of the spin configuration found in the previous section 

1 dom( =m md d l−〈 − 〉 ). Consider the following class of ran-
dom external (probing) fields: 

 = ,GS
k k kb fσ +  (3.74) 

where 

2 , ( , ), = 1, 2, ...,= ,
0, otherwise

GS
k m m m

k
k d d m jf

− σ ∈ + ∆



 (3.75) 

 = ( 1) [ ],k
k kBη∆ − ρ  (3.76) 

0B ≥  is a nonnegative constant, [ ]  denotes the integer 
part, { }mη  are the independent distributed random vari-
ables, assuming (0, 1) with probability 1/ 2 and { }mρ  are 
independent random variables with exponential distribution 

1( ) = exp ( / )P x B x B− − . Thus, the random variables { }kf  
provide generic fluctuations of the positions of domain 
walls of the ground-state configuration { }GS

kσ  of the k th 
subchain. The direction of the shift of the k th domain wall 
is determined by kη  and the amplitude of the shift is de-
termined by B . In particular, the probe field (3.74) coin-
cides with { }GS

kσ  if = 0B . 
To find the free energy F  corresponding to (3.33), we 

use the modification of the transfer-matrix method corre-
sponding to (3.67) where the role of the transfer matrices 
play [cf. (3.40)] 
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( , ) ( , )
exp exp

ˆ( , ) = ,
( , ) ( , )

exp exp

k k k k

k k k k

b
T T

P j b
b

T T

+ + + + −

− + − − −

    σ σ − σ σ σ
− −           

 
   σ σ σ σ − ε σ − −           

  

 
 (3.77) 

 ______________________________________________  

where ( , )k
+ +σ σ  is defined in (3.41). Assume the periodic 

boundary conditions ( 1 1=j+σ σ ) and write the correspond-
ing free energy 

 
=1

ˆ( , , ) = log Tr ( , ) ,
N

k
k

F N T b T P T b
  
 −      

∏  (3.78) 

where Tr  denotes the trace of a 2 2×  matrix. 
Using (3.77), (3.78), one can calculate numerically the 

generalized magnetization (3.68) for the class (3.74)–(3.76) 
of probing fields as the function of amplitude B  of fluctua-
tions of the domains walls: 

 =0( , ) ( | ) / .M T b F F Nε≈ − ε  (3.79) 

Figure 3.6 (curve 1) presents the generalized magneti-
zation (3.68) as a functions B  for field (3.74) and 0T → . 

We see that the magnetization is maximal for = 0B , 
where the fluctuations (3.75) are absent, hence the probe 
field (3.74) coincides with { }GS

kσ . However, for > 0B  the 
generalized magnetization decays rather fast with the 
growth of B , i.e., it is a rather sensitive characteristic of 
the proximity of the external field to the maximizing one. 

It is also worth noting that if we replace the maximizing 
field =1{ }GS N

k kσ  in (3.74) by =1{ = }
GS

GS GS Nk
k k kks

σ
σ λ  [see (3.31)] 

and compute again numerically the corresponding gene-
ralized magnetization, we obtain a plot [see curve 2 of 
Fig. 3.6), which is quite similar to plot 1 of Fig. 3.6, except 
the value of maximum, which is now = 1 / 2M A− . 

The value can be explained as follows. In view of 
(3.31) and (3.32) the maximum M  of (3.68) is 

 
=1 =1 =1

1 1 1= .
N N N

GS GS GS
k k k k k

k k k
s

N N N
σ α σ + β∑ ∑ ∑   

The second term on the right is = 1 / 2k A〈β 〉 − , if N  is 
large enough. As for the first term, it vanishes in this case 
according our numerical results. 

This can be viewed as a manifestation of a certain ro-
bustness of our numerical algorithm to detect the ground 
state provided that the probe field takes into account the 
sign structure of the ground state. 

Thus, we showed that if the concentration of electron is 
small enough, then even a weak disorder in host-lattice site 
positions leads to the formation of the “domains” of elec-
tron and to the breaking the long-range order pertinent to 
the generalized Wigner crystal in the absence of disorder. 

Note also that, according to Sec. 3.1, one has to distin-
guish two classes of characteristics of disordered systems: 
the self-averaging and non-self-averaging ones. The former 
are usually proportional to the volume (or the number of 
particles) of the system and, being divided by the volume, 
become nonrandom in the macroscopic limit. In our case, 
this is the free energy (3.27) and (3.78), the ground state 
energy (3.46), the domain wall concentration (3.62), and 
the generalized magnetization (3.68). For these characteris-
tics it suffices to find their disorder average, since their 
values for practically all realizations of disorder coincide 
with the average if the size of system is large enough. Ac-
cordingly, we have calculated the statistical averages of the 
above quantities for various strength of disorder and size of 
the system and found that their fluctuations vanish rather 
fast with the growth of N . 

The second class of characteristics of disordered sys-
tems, e.g., the ground state (3.45) and local magnetization 
(3.69), consists of characteristics, which depend essentially 
on the realizations of disorder and their fluctuations are not 
small for macroscopic systems, if, of course, the disorder is 
not too small. For these characteristic, one has to find their 
whole probability distribution. 

3.3.3. Random domains distribution 

Here we describe an analytical method for the analysis 
of the ground-state properties of the cluster model in the 
limit of weak disorder in the positions of host-lattice sites. 
We will base our analysis on the Hamiltonian (3.23). 

Fig. 3.6. The generalized magnetization (0, )M b  as the function 
of B for the fields (3.74)–(3.76) (curve 1). The analogous curve 
for the probe fields with =

GS
GS GS k
k k ks σ

σ λ  instead of GS
kσ  in the r.h.s. 

of (3.74) (curve 2). 
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Following (3.31), (3.32) and (3.36), we write ks  as 

 
1= (2 ) ( ) ,
2

k
k k k k kks A A Aσ + − + − + ξ + ξ σ + ξ − ξ    

where kσ  is are standard Ising spins and A  is the disorder 
parameter. Recall, that the case of = 0A  corresponds to the 
absence of disorder and the ground state of the system with 
the Hamiltonian (3.23) is a single domain, composed either 
of ks+  or ks−  (the ground state is doubly degenerate). At 

0A ≠  the degeneracy is lifted, thus, the energies of do-
mains that consist of spins directed up and down, become 
different. The energies of domains with the length l  are 
equal to 

 2
1

=1
( ) = ( )

l

k k
k

l s s+ + +
+ε −∑  (3.80) 

and 

 2
1

=1
( ) = ( )

l

k k
k

l s s− − −
+ε −∑  (3.81) 

depending on the direction of the spin. Their difference 

 ( ) = ( ) ( )l l l+ −δε ε − ε  (3.82) 

is a random (fluctuating) variable. Suppose that the domain 
consisting of upward spins is energetically favorable. Since 
δε is random and its mean is zero, its energy grows with l  
roughly as the length 1/2l  and sooner or later this domain 
will inevitably become unfavorable. It should be noted that 
the formation of a domain composed of spins in the oppo-
site direction is associated with losses of energy due to the 
formation of a domain wall. This energy is also random 

 2
1= ( ) .dw l ls s±
+ε −   (3.83) 

If > dw
+ −ε ε + ε , then a domain wall of the down spins 

appears. Next, at some length of the domain the inequality 
> dw

− +ε ε + ε , becomes valid and a domain wall of the up 
spin appears. Hence, the condition for the formation of 
a domain wall is 

 | ( ) | .dwlδε ≥ ε  (3.84) 

When 1A  it becomes possible to estimate the aver-
age length l  of the domain. The fluctuation of the pair 
interaction energy is equal to [see (3.36)]: 

 2 2 2
0 1 1( ) ( ) .k k k ks s s s A+ + − −

+ +δ ≈ − ≈ − ≈   

Consequently, 

 2
dom 0 dom dom( ) = .l l A lδε δ  (3.85) 

According to (3.83), 

 ( )2
= 2 ( ) ,dw A + −ε − ξ + ξ  (3.86) 

then the average energy of domain wall formation is 

 2 2 2= 4 8 2 ( ) 4.dw A A〈ε 〉 − 〈ξ〉 + 〈ξ 〉 + 〈ξ〉 ≈  (3.87) 

Substituting (3.87) and (3.85) into (3.84), we get 

 2 4
dom dom4, .A l l A−

    

The concentration of domain walls dom dom1/c l  can be 
written as [46, 50] 

 4
dom 0= ( / ) .c A A  (3.88) 

The ground state with an arbitrary parameter A  is studied 
numerically in previous subsections. It was shown there 
that for an arbitrary weak disorder ( 0A ≠ ) the long-range 
order of the system vanishes. This result is in complete 
agreement with the stability criterion formulated in [41, 42]. 

Formula (3.88) give the explicit form of the dependence 
dom ( )c A  in the limit of weak disorder 1A  thereby con-

tinuing the direction of study initiated in [41, 42]. We will 
develop further this direction and obtain the domain wall 
distribution. 

According to (3.80)–(3.82), 

 2

=1
( ) = ,

l

k
k

l A sδε ∑  (3.89) 

where 

 2 2
1 1= ( ) ( ) .k k k k ks + + − −
+ +ξ − ξ − ξ − ξ  (3.90) 

Since the typical values of l  in (3.89) are large and the 
terms of the sum are statistically independent, we can use 
the central limit theorem of probability theory, according 
to which the probability distribution of ( )lδε  tends to a 
normal distribution with mathematical expectation M  and 
variance D . Because of symmetry ks , = 0M  (each term 
includes k

±ξ  and 1k
±
+ξ ) and because of the independence of 

terms 

 [ ] [ ] [ ]{ }4
1( ) = 2( 1) , ,k k kD l A lD s l K s s +δε + −  (3.91) 

with the correlator 

 [ ], =K x y xy x y〈 〉 − 〈 〉〈 〉 ,  

and the symbol 〈 〉  denoting the average over the distribu-
tion of ξ’s. Then 

 [ ] 22 2
1 1= ( ) ( )k k k k kD s + + − −
+ + ξ − ξ − ξ − ξ =    

 4 4
1 1= ( ) ( )k k k k

+ + − −
+ +ξ − ξ + ξ − ξ −   

 
2

1 1 1 22 ( )( ) = 2( ),k k k k d d+ + − −
+ + − ξ − ξ ξ − ξ −    

where 

 4 4
1 1 1= ( ) = ( ) =k k k kd + + − −

+ +ξ − ξ ξ − ξ   

 ( )24 3 2= 2 8 6〈ξ 〉 − 〈ξ〉〈ξ 〉 + 〈ξ 〉 ,  
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2 2

2 1 1= ( )( ) = 4 [ ].k k k kd D+ + − −
+ + ξ − ξ ξ − ξ ξ    

Due to the statistical independence and equivalence of 
the distributions of k

+ξ  and k
−ξ  we have 

 2 2
1 1( ) ( ) =k k k k

+ + − −
+ +〈 ξ − ξ − ξ − ξ 〉   

 2 2
1 2 1 2= ( ) ( ) = 0.k k k k

+ + − −
+ + + +〈 ξ − ξ − ξ − ξ 〉   

Consequently, 

 [ ] 2 2
1 1 1, = ( ) ( )k k k k k kK s s + + − −
+ + + ξ − ξ − ξ − ξ ×    

2 2
1 2 1 2 1 2( ) ( ) = 2( ),k k k k k k+ + − −
+ + + + × ξ − ξ − ξ − ξ −   

where 

 
2

1 1 1 2= ( )( ) =k k k kk + + + +
+ + + ξ − ξ ξ − ξ    

 
2

1 1 2= ( )( ) =k k k k
− − − −

+ + + ξ − ξ ξ − ξ    

 ( )22 4 33 4 ,= 〈ξ 〉 + 〈ξ 〉 − 〈ξ 〉〈ξ〉   

 
2

2 1 1 2= ( )( ) =k k k kk + + − −
+ + + ξ − ξ ξ − ξ    

 
2 2

1 1 2= ( )( ) = 4 [ ].k k k k D− − + +
+ + + ξ − ξ ξ − ξ ξ    

We consider the case of the random variables ξ  uni-
formly distributed over the interval [–1,1]. Then we have 

 
1 1

1

1 1 ( 1)= = .
2 2( 1)

n
n nd

n

+

−

− −
〈ξ 〉 ξ ξ

+∫  (3.92) 

Consequently 

 [ ]1 2
16 4 16 4 56= , = , = 2 =
15 9 15 9 45kd d D s  − 

 
,  

 [ ]1 2 1
8 4 8 4 8= , = , , = 2 = .

15 9 15 9 45k kk k K s s +
 − 
 

  

Introduce 

 [ ]
0

( )
= ,lim

l

D l
D

l→∞

δε
  

then (3.91) implies 

 [ ] [ ]{ }
4

4
0 1

8= 2 , =
5k k k
AD A D s K s s ++ , (3.93) 

and we obtain for the probability density of ( )lδε  

 ( ) ( )2

00

( )1( ) = exp .
22

l
f l

D lD l

 δε
 δε −
 π  

 (3.94) 

To calculate the mean length of the domains it is necessary 
to calculate the joint probability distribution of the domain 
lengths l  and domain wall energies dwε . We will find this 

distribution for 1A . We note that the terms in (3.89) are 
bounded from above: | | 1ks ≤  while the energy to form a 
domain wall is bounded from below. Indeed, in accordance 
with (3.86), 

 min 2= 4(1 ) .dw Aε −  (3.95) 

The condition (3.84) of forming a domain wall implies the 
lower bound on the number of terms in (3.89) 

 min 2 2

=1
| | | | .

l

dw dw k
k

A s A lε ≤ ε ≤ δε ≤ ≤∑   

Consequently, we have 

 min 2 2 2
0 / = 4(1 ) / .dwl l A A A≥ ε −

  

Thus, if 0<l l  the probability of forming domain walls is 
equal to zero. In other words, there is a minimal length 0l  
of the domain. In the regime 1A  the value 0 1l  , 
hence, the distribution of ( )lδε  can be considered normal. 

We will now find the distribution of the domain lengths 
given a fixed energy of the domain wall formation dwε  (so-
called conditional distribution). At 0 1l l≥  , the length of 
domains can be considered as a continuously variable. Ac-
cording to (3.84), the probability of forming a domain with 
the length l  is equal to 

 ( ) ( )0| ( ) | = 1 | ( ) | < ,dw dwP l lδε ≥ ε −Φ δε ε   

where ( )0 | ( ) |< dwlΦ δε ε  is the distribution of the absolute 
value of a normally distributed random variable (so-called 
semi-normal distribution). The transition from a normal to 
a semi-normal distribution in our case is possible, since 

= ( ) = 0M l〈δε 〉  according to (3.94). Thus, we can write 

 ( )
2

0
0 00

2| ( ) |< = exp =
2

dw

dwl d
D l D l

ε
 ε

Φ δε ε − ε 
π  

∫   

2 2
2

3/2
00

1= = = exp = 1 ( , ),
22

dw dw dw
dw

l

l
dx G l

x D x xD

∞   ε ε ε
ε − − ε    π   

∫  

where 

 
2

3/2
00 0

1( , ) = exp
22

l
dw dw

dwG l dx
D x xD

 ε ε
ε −  π  

∫   

is the Levy distribution, which represents a steady distribu-
tion with a so-called “heavy tail”. Recall that in this case 

dwε  is the distribution parameter. Therefore, 

 ( )
0

| ( ) | = ( , ) = ( , ) ,
l

dw dw dwP l G l g x dxδε ≥ ε ε ε∫   

where 

 
2

3/2
00

1( , ) = exp .
22

dw dw
dwg x

D x xD
 ε ε

ε −  π  
 (3.96) 
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In order to find the distribution of the domain lengths 
( )w l , it is necessary to average (3.96) over the distribution 

of the energy of domain walls dwρ  

 
0

( ) = ( , ) ( ) .dww l g l d
∞

ε ρ ε ε∫   

According to (3.86), in the limit 1A  the function ( )dwρ ε  
is a distribution of the sum of two independent and uni-
formly distributed random numbers, i.e., the triangular 
Simpson distribution 

min max

min min mid
max min 2

max mid max

0, ( , )
4( ) = ( ), [ , )

( )
( ), [ , ].

dw dw

dw dw dw dw
dw dw

dw dw dw

 ε∉ ε ε


ρ ε ε − ε ε∈ ε ε
ε − ε  ε − ε ε∈ ε ε

 (3.97) 

Here max = 4dwε  [see (3.83)], min max 2= (1 )dw dw Aε ε −  [see (3.95)], 
and mid max min max 2= ( ) / 2 = (1 / 2)dw dw dw dw A Aε ε + ε ε − + . By inte-
grating we get 

min max mid

0 0 0
0 max min 2

Erf Erf 2Erf
2 2 2

( ) = 2
( )

dw dw dw

dw dw

D l D l D l
w l D

     ε ε ε
+ −          

     − ≈
ε − ε

 

 0
mid=

0
Erf .

2 2
''

x dw

D x
D l ε

 
≈ −   

 
  

Here Erf ( )x  is the error function. As a result, 

 
mid mid 2

3/2
00

( ) 1( ) exp .
22

dw dww l
D l lD

 ε ε
≈ −  π  

 (3.98) 

As indicated above, the given expression is formally 
valid only at 0>l l , but if we integrate with respect to (3.98), 
the main contribution will come from the region 1l   
(which is typical for distributions with a “heavy tail”), i.e., 
the lower limit of integration is arbitrary to a large extent. 
Moreover, the numerical modeling we preformed showed 
that the distribution of (3.98) is a good approximation of 
the probability that domain walls will form in the whole 
range of l  (see Fig. 3.7). Therefore, the lower limit of inte-
gration over (3.98) can be set equal to zero. The average 
over the distribution is infinite, while the harmonic mean is 

 
11 mid 2

dom
00

( )1 ( )= = = .
3
dww ll dl

l l D

−∞−   ε
 
 
 
∫   

Using (3.61) and (3.62), we can write 

 
4

0
dom mid 2

6 3 .
10( )dw

D Ac ≈ ≈
ε

 (3.99) 

The obtained expression can be compared with the re-
sults of numerical calculations (see Sec. 3.3.1.) The plot of 

domc  as function of A  is presented in Fig. 3.8. Solid curve 

corresponds to (3.99) and solid boxes are the results of 
numerical simulation (see Fig. 3.5). Good agreement be-
tween the numerical simulation and the obtained analytical 
formula holds until 1 / 2A . 

Thus, it is shown in this section that in the framework 
of an effective magnetic (cluster) model an arbitrarily 
weak disorder destroys the long-range order: the system is 
broken down into ferromagnetic domains having a random 
length. The obtained formula relates the typical size of 
these domains with the disorder parameter A , which char-
acterizes the spread of host-lattice sites. In the terms of the 
initial (electron) model this means that the ground state is a 
sequence of the generalized Wigner crystal fragments ad-
jacent one to another via the segments occupied by the 
domain walls (in terms of the magnetic model). Each of 
these fragments is described by (2.4) for a certain fixed 
value of the phase φ. For = 2ν , it means that the ground-
state structure in each fragment is realized by random 
shifts of the electrons in the same direction, for example, 
all =js s+  [see (3.36)]. In an adjacent segment, therefore, 
all =js s− , etc. In positions where the domain walls 
are formed, φ changes sharply its value. In other words, 

Fig. 3.7. (Color online) The domain distribution with respect to 
the lengths l. Points show the results of numerical simulation at 
A = 0.25. The solid line is the distribution (3.98). 

Fig. 3.8. The dependence domc  on A. Boxes indicate the results of 
numerical simulation (see Fig. 3.5). Solid curve corresponds to 

4
dom = 3 / 10c A  [see (3.99)]. 
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the ground state of a 1D electron ensemble on a weakly 
disordered host-lattice is described by formula (2.4), in 
which phase φ is a random step function. Consequently, a 
typical length of the domain doml  is the average distance 
over which there is a “phase failure” φ. This result is also 
confirmed by studying the weak perturbations of the Hamil-
tonian (3.33) of the model by random external fields (see 
Sec. 3.3.2), which “probes” the domain structure of the 
ground state via random variations (fluctuations) of the do-
main walls. It is shown that the generalized magnetization 
per particle (3.79), corresponding to the field, is maximal if 
the amplitude of fluctuations is small and decays suffi-
ciently fast with the growth of the amplitude, i.e., that the 
magnetization is rather sensitive to the proximity of the 
form of the field to that of the ground state. 

Note, that we obtain the translation invariant version of 
the proposed above disordered cluster model just by setting 

= 0, = 1,u u Lχ   or = 0A , in the above formulas, thereby 
arriving to the model treated in Sec. 2. In the case of = 2ν  
we have = 1j j

+ −λ + λ , = 1,2, ,j N
 [see (3.32)]. Then 

= ( ) / 2 = 1/ 2j j j
+ −β λ + λ  and jI  in (3.34) is equal to 1/ 2. 

If = 1/ec q [see (2.1)], then =jα const and jh  in (3.34) is 
zero. The Hamiltonian (3.33) is then 1D Ising model with 
“ferromagnetic” nearest neighbor exchange = 1/ 2I  and 
zero external magnetic field , = 1, ,jh j L

. 
On the other hand, if = /ec p q , with 1p ≠ , then the ex-

ternal field is a periodic function with period  = [1/ ]T mδ  
[see (2.32)], attaining its extrema ( = 1h ± ) at the endpoints 
of T  interval. At the positions where = 1jh −  the exchange 
energy of j th spin with 2 neighbors is equal to the energy 
of flipped j th spin in the field jh . This leads to an addi-
tional degeneracy of the ground state: the ferromagnetically 
ordered spin chain has the same energy as the ferromagne-
tically ordered spin chain in which every T th spin is flipped. 
These flipped spins in term of electron model are nothing 
else that defectons, described in Sec. 2.4. Next near neighbor 
interactions remove this degeneracy forming superstructure 
of these flipped spins (defectons). 

4. Beyond the nearest-neighbor approximation 
in the cluster model 

It is of interest to study the influence of the range of po-
tential of the interelectron repulsion on the thermodynamic 
properties of the system under study. 

Starting from the one-dimensional version 

 
1 <

= ( )k j
j k N

H V x x
≤ ≤

−∑   

of the general classical Hamiltonian (1.8) and repeating the 
procedure leading from (3.5) to (3.22), we obtain 

 
1

=1
= ,

N

i
i

H H
−

∑  (4.1) 

where 

 ( )2

=1
=

N i m mj i j
i i j i j

j
H J s s

−
+

+ −∑   

and 

 
2

=2
1 ( )= |
2i x il

V xJ
x

∂
∂

.  

The Hamiltonian 1H  corresponds to the interaction be-
tween nearest neighbors [see (3.22)], 2H  corresponds to 
next nearest-neighbor interaction, etc. 

To illustrate the situation we confine ourselves to the 
interactions between  neighboring electrons, using in-
stead of Hamiltonian (4.1), we study 

 
=1

= .i
i

H H∑


  (4.2) 

To calculate the partition function of the system with 
Hamiltonian (4.2), it is again convenient to use the transfer 
matrix formalism [see (3.40), (3.43), (3.77), (3.78)]. We 
consider now the case of = 2 . Since in this case we 
have the interaction of nearest and next to nearest neigh-
bors, the corresponding transfer matrices ( )P j  are of the 
size 2 2ν ×ν  (recall, that ν is the number of states of the 
variables js ): 


1 1 2 2
,{ ( )} = (2 ) (2 1) (2 1) (2 2),a b 'P j A j A j A j A j′ ′′ ′′ ′ ′′ ′ ′′ω ρ ω ρ ρ ρ ω ω+ + +  

  (4.3) 
where 

 
( , )

{ ( )} = exp
k
jkA j

Tωρ

 ε ω ρ
 −
 
 

. (4.4) 

The indexes , , , = 1, ,′ ′′ ′ ′′ω ω ρ ρ ν . 

 = ( 1),a ′ ′ω + ν ρ −  = ( 1)b ′′ ′′ω + ν ρ − ; 2, = 1, .a b ν
  

Analogous formulas can be obtained for any . 

Fig. 4.1. The dependences of specific entropy ( )s T  for = 1 / 2ec , 
= 0.6A  and ( ) = 1 /V r r . Solid curve (black) corresponds to = 1 , 

dashed curve to = 2 , dashed-dotted curve (blue) to = 3 . 
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Assuming for simplicity of subsequent formulas that 
= 2N n and imposing the cyclic boundary conditions [see 

(3.42)], we obtain the analog of (3.43): 

 

=1
( , ) = Tr ( ) .

N

j
Z N T P j

 
 
 
 
∏   

Using the above formula, the plots of specific entropy ( )s T  
(3.44) are calculated for = 1/ 2ec , different  and pair 
potential ( ) = 1/V r r . The results are presented in Fig. 4.1. 
It shows that the entropy slightly decreases as  increases. 
It is caused by the fact that the condition of the frustration 
creation becomes stronger and, hence, the concentration of 
these frustrations decreases. References 
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Одновимірні вузькозонні провідники 
(Огляд) 

L. A. Pastur, V. V. Slavin, A. A. Krivchikov 

Розглянуто одновимірні граткові моделі та відповідні 
їм результати, що описують низькотемпературні вла-
стивості квазіодновимірних граткових систем з далеко-
діючою взаємодією. Широко відомим прикладом таких 
систем є вузькозонні низьковимірні провідники з далеко-
діючим потенціалом електрон-електронного відштовху-
вання. В розглянутих моделях частинки розташовані на 
одновимірній гратці-матриці (ланцюжку), трансляційно-
інваріантній або невпорядкованій, та взаємодіють через 
далекодіючий потенціал відштовхування. В першій час-
тині приведено результати щодо трансляційно-інваріант-
ної гратки-матриці, а саме: низькотемпературна термо-
динаміка, несумірний основний стан та пов’язана з ним 

структура «чортових» сходів, різні характеристики як 
функції відповідних параметрів, самолокалізація части-
нок, нова гілка елементарних збуджень тощо. Далі роз-
глянуто невпорядкований випадок, коли вузли гратки-
матриці випадково флуктують навколо вузлів періодич-
ного ланцюжка. Низькотемпературну термодинаміку та 
структуру основного стану таких систем досліджено в 
рамках певної моделі, яку називають кластерною та яка 
є досить розумним наближенням при низьких темпера-
турах і малих концентраціях частинок. За допомогою 
аналітичних та чисельних методів проаналізовано тер-
модинаміку та основний стан моделі. Останній виявля-
ється послідовністю випадкових доменів, розподіл яких 
досліджено детально. 

Ключові слова: одновимірні системи, невпорядковані системи, 
структура основного стану.
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